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This paper introduces a versatile, open-source MATLAB/Simulink toolbox for modeling and optimizing flow

reactors. The toolbox features a modular architecture and an intuitive drag-and-drop interface, supporting

a range of different modeling approaches, including physics-based, data-driven, and hybrid models such as

physics-informed neural networks. We detail the toolbox's implementation and demonstrate its capabilities
through real-world applications, including the simulation of flow reactors, identification of reaction

Received 20th August 2025
Accepted 26th August 2025

parameters using experimental data (e.g., transient data), and optimization of reactor operating points

and configurations. Experimental validations illustrate the practical applicability and effectiveness of the
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1 Introduction

The field of flow chemistry has seen significant advancements
in recent years due to the growing need for efficient, scalable,
and sustainable chemical processes.”® Flow reactors offer
enhanced control over reaction parameters, improved safety,
and the ability to automate processes, making them an essential
tool in modern chemistry.* Recent studies highlight the role of
flow chemistry in enabling precise control over reactivity and
selectivity, which is difficult to achieve in traditional batch
processes.’ In flow chemistry, the possibility of using transient
(dynamic) flow measurements instead of steady-state
measurements further increases its applicability. Steady-state
measurements involve maintaining constant reaction condi-
tions over time, allowing for the collection of data once the
system has reached equilibrium. This approach provides highly
accurate and reproducible data but is time-consuming and
resource-intensive. Transient flow measurements, on the other
hand, capture data during changes in reaction conditions, such
as variations in flow rate or temperature. When paired with
proper process models, transient measurements can be more
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toolbox, making it a valuable resource for researchers and engineers in the field with the potential of
reducing the cost and time required for parameter determination and reactor optimization.

efficient and provide insights into the system's dynamic
behavior. However, they may be less precise due to the contin-
uous changes in operating conditions when using inappro-
priate models.

The increased interest in the usage of transient measure-
ments in flow reactors can also be seen in literature. Moore
et al. presented a method using inline IR spectroscopy and an
automated microreactor system to generate time-series reac-
tion data from flow reactors, providing a continuous and effi-
cient alternative to traditional batch experiments for studying
reaction kinetics.® Schrecker et al. used transient flow meth-
odology to study the Knorr pyrazole synthesis under pH-
neutral conditions, uncovering a new intermediate and
revising the reaction mechanism, with insights into autoca-
talysis.” Williams et al. reviewed the use of dynamic flow
experiments in optimizing chemical processes, emphasizing
their role in generating data for accurate kinetic models and
identifying optimal conditions for more efficient, sustainable
manufacturing.® Aroh et al. presented an improved method for
reaction kinetics studies using continuous flow microreactors,
where simultaneous variation of temperature and flow rate
enables rapid concentration profile generation and efficient
kinetic analysis.’

Moreover, the integration of continuous flow and automa-
tion technologies has been shown to significantly enhance
efficiency and safety in organic synthesis.'® State-of-the-art
automation technologies, such as machine learning-driven
optimization™** and robotic platforms,* have enabled precise

© 2025 The Author(s). Published by the Royal Society of Chemistry
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reaction monitoring and real-time adjustments.™ This advance
is minimizing human intervention while maximizing effi-
ciency.” Furthermore, recent efforts in autonomous model-
based experimental design underscore the potential of
combining automation with predictive modeling to accelerate
reaction development and significantly reduce the time
required for process optimization.*®

In parallel, modeling approaches significantly
advanced to support the design and optimization of flow
systems. Traditional empirical models are now augmented by
computational tools that integrate both physics-based models
(PBMs) and data-driven models (DDMs).'”*® PBMs, such as the
tanks-in-series model, and the axial-dispersion model,
provide valuable insights into complex phenomena like mix-
ing, heat transfer, and reaction kinetics. The tanks-in-series
and axial-dispersion models are widely used to model fluid
mixing and dispersion in flow reactors, offering critical
insights into residence time distribution and reaction
efficiency.”>* Moreover, transfer functions are employed to
analyze and predict the dynamic response of flow systems to
various input changes, such as variations in flow rate or
temperature, enabling precise control and optimization of
reactor performance.”” In addition, DDM, such as machine
learning algorithms, are increasingly utilized to predict
system behavior by identifying patterns and relationships
within large datasets, allowing for rapid and accurate predic-
tions and optimizations even in complex systems.”?® These
models excel in areas where traditional PBM may struggle,
such as handling non-linearities or high-dimensional
parameter spaces. Furthermore, emerging hybrid models,
such as physics-informed neural networks, combine the
strengths of PBM and DDM, leveraging physical laws to guide
learning processes and ensuring predictions adhere to known
system constraints while benefiting from the flexibility of
data-driven approaches.>***

Despite these advances, automation and advanced modeling
of flow chemistry remain a challenge.*® Specifically, the inte-
gration of automation and modeling into flow chemistry
continues to face difficulties, particularly in areas such as
process control, reaction optimization, process monitoring,
scale-up, and data integration.” Efforts are being made to
develop user-friendly toolboxes that integrate data acquisition,
analysis, and modeling into a single platform for greater
convenience. Existing software such as CHEMCAD,*® Aspen
Plus,” gPROMS,* and Python-based libraries such as Open-
FOAM*' or Cantera®® provide valuable resources for simulation
and optimization. While they are powerful for simulation and
optimization, they often can be complex and require significant
expertise to operate effectively, limiting their accessibility for
non-expert users. Furthermore, while Python-based libraries
including OpenFOAM and Cantera are flexible and open-source,
they can be challenging to configure and may require substan-
tial computational resources for large-scale simulations. Addi-
tionally, some of the commercial solutions, such as CHEMCAD,
Aspen Plus, and gProms, are costly, making them less accessible
for smaller organizations or academic researchers.

have
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Thus, we present a lightweight MATLAB/Simulink toolbox for
modeling flow reactors in a modular way. We intentionally chose
MATLAB due to its widespread use in academia and industry,
especially in pharmaceutical and chemical engineering. Many
users are already familiar with MATLAB, enabling faster adop-
tion, easy integration into workflows, and connection to lab
equipment. Our toolbox targets small-scale continuous flow
applications with user-friendly, transparent modeling including
physics-informed neural networks which are not commonly
supported by commercial tools. Importantly, it offers the oppor-
tunity for users to deepen their understanding and skills through
transparent model structures and detailed documentation. Our
toolbox supports various approaches like PBM, DDM, and
combinations. It includes models such as transfer functions,
tanks-in-series models, axial-dispersion models, and neural
network-based methods, such as physics-informed neural
networks. The toolbox requires minimal input data but allows for
detailed model parameter specifications. Users can combine
approaches to simulate real experiments, rebuild real-world
reactor setups and optimize for reaction parameters. Moreover,
it is possible to apply transient experimental data to identify
reaction parameters which can reduce time and cost. Addition-
ally, the toolbox aids in optimizing reactor operations and setups
and can be used to find the pareto front for a defined setting. In
the toolbox, we combine all common modeling approaches into
one lightweight solution, allowing users to focus on the analysis
and research rather than the implementation of models or opti-
mizations. An overview of the concept of the developed toolbox
can be found in Fig. 1.

The paper is organized as follows. First, we cover the
necessary theoretical background and notations of the
modeling approaches. Next, we introduce the toolbox, detailing
the implementation for each modeling approach and demon-
strating how it can be used to simulate real-world reactor
setups. In the subsequent section, we describe how reaction
parameters can be identified using our toolbox, including
details on training a physics-informed neural network to obtain
these parameters, and we validate the found parameters using
additional experiments. Finally, we show how the toolbox can
be used to optimize operating points and the reactor setup
itself.

* Transfer functions * Modular v
s * Drag & drop Wi |
—z - Tank-in-series * Lightweight
« Axial dispersion model ‘
= I Neural Networks . r:- -@—
— 8 '1 @ Rebuild flow reactors
* Physics-informed NN
lation, validation

R

- Optimization

Fig. 1 Concept of our developed toolbox highlighting the various
modeling approaches, the simple drag and drop system to build flow
reactors and the options of simulation, parameter identification, and
optimization.
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2 Theoretical background

In this section we give a small introduction to the necessary
theoretical background of all the modeling approaches which
we have implemented in our toolbox. We introduce common
notations which we will use in subsequent sections.

2.1 Transfer function

As shown in literature, transfer functions can be used to
describe the input-output behavior of linear time-invariant
systems.”” When modeling the concentrations of species flow-
ing through a pipe, the resulting delay and dispersion effects
can be described using a transfer function. This type of
transport-induced delay and dispersion is not equivalent to
axial dispersion, which is discussed separately in a later section.
Generally, the transfer function can be composed of multiple
transfer functions, with parameters and structure adjusted to
represent the desired behavior. A common approach combines
a dead-time element with a low-pass filter of n-th order.

The dead-time element accounts for the nominal delay
experienced by species as they flow through the pipe. This delay
is given by 1(; ) = L/q where L denotes the length of the tube, ¢
the time, and ¢(¢) the flow rate of the species. For ideal plug
flow, where the species experiences only a delay without any
change in the shape of the inflowing concentration, a dead-time
element alone would suffice. However, in most cases, the flow
through the reactor is not ideal, and additional effects such as
dispersion alter the shape of the inflowing concentration. To
account for these changes, a low-pass filter of n-th order is
introduced. The parameters of this low-pass filter can be tuned
to accurately describe the observed behavior, including
dispersion-induced modifications to the concentration profile
of the species.

A corresponding transfer function H*9(s) for describing the
delay and dispersion effects of an inflowing species with
concentration C"(s) into a tube of length L and a constant flow
rate ¢(t) = g can thus be stated as

(s) = PTL4(s) e T(La) (1)

In the equation, s denotes the Laplace variable, C(°"Y(s) the
outflowing concentration, and the term PT5%(s) represents the
low-pass filter of n-th order. The superscript in H*%(s) and
PTy%(s) specifies the used tube length L and flow rate g. As the
transfer function H™(s), especially the low-pass filter
PTE4(s), can change for different tube lengths L and flow rates g
it might be necessary, to have separate transfer functions for the
individual combinations.

For changing parameters, it is also possible to form the
resulting parameters of the transfer function by interpolating
the parameters of the transfer function within two (or more)
given anchor points. An anchor point, in this context, defines
the parameters of the transfer function corresponding to
a specific flow rate g and length L.
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Fig. 2 A schematic overview of a tanks-in-series model where the
reactor is split into N tanks which are perfectly mixed and species are
flowing from one tank to the next. (Reproduced from ref. 18 with
permission from the Royal Society of Chemistry.)

2.2 Tanks-in-series model

The tanks-in-series model is commonly used in chemical and
biochemical engineering to simulate the flow and mixing of
substances.*® In the tanks-in-series model, the reactor is
conceptualized as a series of interconnected tanks. Each tank
represents a small compartment of the reactor and it is
assumed that each tank is perfectly mixed. Thus, the output
concentration of a tank equals the internal concentration. The
arrangement allows for the simulation of gradual changes, such
as the dispersion of a species or the reaction of a substance as it
progresses through the reactor.

In Fig. 2, a schematic representation of a tanks-in-series
model is shown. The figure illustrates a sequence of N inter-
connected tanks. Species flow sequentially from the first tank to
the second, and continuing through the series. The concentra-
tion of the i-th species in the j-th tank is represented by C/(t).

The change of the i-th concentration within the j-th tank is
given by

dc/ (1)

= @ (G (1) = C/(0)] + 1/ (G (1), ..

In the equation, AV denotes the volume of the j-th tank,
while g(t) represents the volumetric flow rate of the fluid
passing through the system. In general, each tank of the tanks-
in-series model will be of the same size and thus all tanks will
have the same volume AV resulting in AV = AV, Vie {12, ..,
N}. The term r{(C,/(t),...,9(t)) accounts for changes due to
reactions. The underlying reactions can depend on various
factors, including other concentrations within the current tank j
or the temperature ¥(¢). As the reactors are usually heated evenly
across their entire length, it is assumed, that the temperature
9¥(¢) remains uniform throughout the entire reactor system. The
input to the tanks-in-series model consists of all the inflowing
concentrations Ci™(¢). As these concentrations enter the first
tank, the relationship C(t) = C!™(¢) applies. The number of
tanks N can be used to simulate various degrees of mixing
within the tanks-in-series model. When choosing N = 1 the
tanks-in-series model represents a homogeneously mixed
reactor while for N — o ideal plug flow is modeled.

2.3 Axial-dispersion model

The axial-dispersion model is commonly used in chemical
engineering to describe the behavior of flow and mixing in

© 2025 The Author(s). Published by the Royal Society of Chemistry
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tubular reactors or packed beds. It accounts for deviations from
ideal plug flow by introducing a dispersion term that represents
the spreading of species along the axial direction of the system.
The axial-dispersion model bridges the gap between plug flow
and complete mixing by incorporating the effects of molecular
diffusion and flow irregularities. The key parameter in the
model is the axial-dispersion coefficient D, which quantifies the
extent of mixing along the reactor axial direction z. This form of
axial dispersion differs fundamentally from the delay-
dispersion effects discussed earlier in the context of transfer
function modeling. While the former captures physical mixing
effects caused by molecular diffusion and flow heterogeneities
along the reactor axis, the latter typically models transport
behavior in a more abstract way using dynamic system elements
such as dead-time and low-pass filters.

In Fig. 3 a reactor of length L with the main effects of the
axial-dispersion model is depicted. One can see, that the
concentration Cyz,t) of the i-th species is given as function of
space z and time t. Moreover, not only convection due to the
flow rate g(t) is present but also axial-dispersion effects.

The axial-dispersion model is given by the partial differential
equation (PDE) of the form

dCi(z,1)  0°Ci(z,1)
ar 2 9(1) 0z

In the model, C{z,t) denotes the concentration of the i-th
species, D denotes the axial-dispersion coefficient and g(¢) the
flow rate of the solute through the system. Reactions are
accounted for by the term r,(C,/(z,t),...,(t)), which can depend
on various factors, including other concentrations, and the
temperature 9(z).

2.4 Neural network

Neural networks are models which are inspired by the structure
and functioning of the human brain. A neural network consists
of interconnected nodes, also known as “neurons” which are
organized into layers. The neural network processes input data
through weighted connections and applies activation functions
to generate outputs. This mechanism allows them to recognize
patterns, make predictions, or classify information.

In Fig. 4, a fully connected multi-layer perceptron neural
network is illustrated. As shown, the neural network is struc-
tured into three main components: an input layer, one or more

Ci(za t)
x
~
. . . 1
axial dispersion '
\ \ 1
z | \ \ .
v | | —,’ \
Y convection v
‘\
<+—>
z2=0 dz z=1L

Fig. 3 A schematic overview of the effects considered within the
axial-dispersion model.
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Fig. 4 A schematic overview of the architecture of a fully connected
neural network.

hidden layers, and an output layer. Each layer comprises
a specific number of neurons, in which every neuron in a layer is
connected to all neurons in the preceding layer. These
connections transmit the output values of the previous neuron
to the next neurons, whereby each connection has an assigned
weight that scales the transmitted value. Within a neuron, the
weighted sum of all incoming connections plus a bias is
computed, and an activation function is applied to this sum.
The activation function, which can be non-linear (e.g., sigmoid
or softmax), transforms the value before passing it to the
neurons in the next layer. The number of neurons in the input
layer must match the number of input features Nj, while the
output layer must have as many neurons as there are target
labels No. The architecture of the hidden layers, including the
number of neurons and layers, depends on the complexity of
the specific problem. According to the universal approximation
theorem,**** even a shallow neural network with a sufficient
number of neurons can approximate any continuous function
under certain conditions. This demonstrates the theoretical
capability of a neural network for a wide range of tasks.

Given the introduced structure, one can define a neural
network .+ with Ny, + 1 layers, as

AH(x, 0) = 2N (WY W2 (WO +b) + b)) + b T).
(4)

In eqn (4), 0 represents the neural network parameters con-
sisting of the matrices W' and the bias vectors b’, Vi e {0, ..., Ny,
— 1}. Thereby, the matrices W' and the bias vectors b’ represent
the connections of the neurons from layer i to the next layer i + 1
and the bias values of each neuron within the i-th layer
respectively. The activation functions within the i-th layer are
represented by 2.

The goal of the neural network .4 is to reconstruct an
unknown function f: RM—RM guch that .#(x,0) =y = f(x)
where xe RM denotes the input. To achieve that the neural
network .+ maps an input xe RM to the corresponding output
ye R accordingly, the neural network .4 has to be trained. In
the training, the parameters ¢ of the neural network .4 are
optimized in such a way, that a defined loss function % is

RSC Adv, 2025, 15, 33278-33296 | 33281
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minimized. Given a set of Ny input-output samples {(my, ng): k
=1, ..., Ng}, where myeRM is a input-sample, nye R the cor-
responding output-sample, and the prediction n* =.4(my, §) of
the neural network .4, the loss function can be defined as

Ns N -1

1 2 2
P0) = 2wy D I me, 6) = mls +2e Y- (W3 + W) -

k=1 J=0

penalization regularization

(5)

In the equation, ||-||, denotes the L,-norm and one can see,
that the loss function #(f) combines a penalization term and
a regularization term, each weighted by the factors Ap and Ag,
respectively. Generally, these terms take various forms: the
penalization term penalizes deviations of predicted values from
the actual values, while the regularization term mitigates over-
fitting by discouraging extreme weights in the neural network
. Minimizing the loss function #(¢) involves an iterative
process, where each iteration consists of a forward and a back-
ward pass. In the forward pass, the loss is computed based on
the current neural network parameters . During the backward
pass, the parameters ¢ are updated using a gradient-based
method derived from the computed loss. This process is
commonly referred to as “backpropagation”.

2.5 Physics-informed neural network

While data-driven approaches, such as neural networks, have
shown great promise in modeling complex systems, they can be
impractical for flow chemistry applications. This is primarily
because these methods rely heavily on large amounts of exper-
imental data, which can be expensive and time-consuming to
collect. Additionally, in many cases, the necessary data may not
be available at all. This is where physics-informed approaches,
like physics-informed neural networks, offer a significant
advantage.

The principle of physics-informed neural networks lies in
their ability to integrate physical laws, represented by PDEs or
other governing equations, directly into the neural network
training process. Unlike traditional neural networks that rely
solely on data for training, physics-informed neural networks
incorporate these physical principles as part of the loss func-
tion. This approach ensures that the learned solution not only
fits the available data but also covers the underlying physical
laws, such as conservation laws, boundary conditions, or
dynamic equations. By embedding this additional layer of
information, physics-informed neural networks achieve higher
accuracy with smaller datasets and can model complex systems
where data might be sparse or noisy, making them particularly
powerful for solving scientific and engineering problems.

For the integration of the physical principles into the
training of the neural network, the loss function of the physics-
informed neural network can be defined as

Zpinn (0, T) = 2p Zp(0) + Appe Zepe(6,T) 6)
+25%5(0,T) + AR Zr(0).
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In the equation, %p(6) represents the loss from the penali-
zation term, while #x(6) corresponds to the regularization term
similar as in the loss of a neural network. The terms Zppg (6, T')
and #5(0,T) represent the losses associated with the incorpo-
rated physical principles and the boundary conditions, respec-
tively. The two latter terms depend on physical parameters,
collectively denoted as I'. These terms are formulated to
measure the deviations between the predicted behavior and the
physical behavior. Each of the terms is multiplied by a factor A
to appropriately weight their contributions relative to one
another.

By setting Appg and Ag to zero, the corresponding terms in the
loss function vanish, reducing the setup to a standard neural
network training configuration without physics-informed
constraints. On the other hand, setting Ap to zero enables the
training of a neural network solely to reconstruct the PDE
solution without relying on any data. A balanced combination
of these factors allows for a trade-off between utilizing data-
driven learning and incorporating physical knowledge into
the model. This approach also provides the flexibility to identify
the physical parameters I', ensuring that the model aligns with
both empirical observations and the underlying physical
principles.

3 Results and discussion

In this section, we provide an in-depth overview of the imple-
mentation and capabilities of the developed toolbox. We also
explain how the toolbox can be used to build flow reactor setups
and validate them with real-world setups and experiments.
Additionally, we discuss how the toolbox can be used to identify
parameters through various methods, explain the validation
process for those parameters, and demonstrate its application in
optimizing reactor operating points and the reactor setup itself.

3.1 The FlowMat toolbox

Given the variety of modeling approaches available, it is often
challenging to choose the correct one. Moreover, once
a modeling approach is chosen, the implementation and
theoretical background can be complex and not straightforward
especially for a non-specialist in those techniques, e.g. a process
chemist. Thus, we present a lightweight open-source MATLAB/
Simulink toolbox that combines the most common modeling
approaches within one solution. Users can choose between
PBM, DDM, or combinations, such as physics-informed neural
networks. Via drag-and-drop, it is possible to select common
reactor parts and rebuild a flow reactor, requiring only the most
necessary parameters for each element. No further imple-
mentation or detailed mathematical understanding is neces-
sary to use these parts. If more detailed parameters are
required, they can also be entered. The FlowMat toolbox can be
used to simulate, analyze, and optimize reactor systems.
Parameters can be entered from other sources or identified
using the toolbox. For the identification of parameters various
methods are possible whereby one is to train a physics-
informed neural network using experimental data. Here, the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Illustration and concept of the FlowMat toolbox.

real-world reaction and reactor parameters are a byproduct of
the training of the physics-informed neural network.

In Fig. 5 the concept of the toolbox is depicted. One can see,
how a flow reactor is built by choosing the necessary parts out of
the toolbox. It is possible to select from various modeling
approaches the best option or use them in combination.

3.2 Implementation

The implementation was done in MATLAB and Simulink.
MATLAB/Simulink is a commercial software which is highly
used in educational background and universities. In general,
the reactor parts are implemented as individual Simulink
blocks to maintain the idea of a modularity. All parts commu-
nicate via one interface such that each part can be connected
with other ones. This interface contains only necessary infor-
mation such as the flow rates of each species and the corre-
sponding substance concentrations. Along with these
Information also the temperature is transferred within the
common interface.

Before using the toolbox, the toolbox has to be initialized
whereby all the necessary variables and information of the
interface are generated. The initialization of the toolbox can be
achieved by calling one provided method within a MATLAB/
Simulink script.

In addition to implementing the most common modeling
approaches, discussed in more detail in the following subsec-
tions, we developed various reactor components, including
Pumps, Buffers, Tees, Experiments, Analyzers, toOptimization, and
toPlot. Pumps, Buffers, and Tees are used to model inputs and
flow distribution within the system. Analyzers enable the anal-
ysis of concentrations, flow rates, and temperature at specific
points of interest. The Experiments block facilitates the incor-
poration of input data and measured concentrations into the
project, allowing for comparison and ensuring consistency with
real-world inputs. The toOptimization block seamlessly transfers
setup information to an optimization task, while the toPlot
block simplifies the visualization of output data, such as
concentrations.

3.2.1 Implementation of a transfer function. The first
Simulink-block is using the modeling approach of transfer
functions. As described in Section 2.1 we can use transfer

© 2025 The Author(s). Published by the Royal Society of Chemistry
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functions, to model delay effects and dispersion effects. For the
implementation of the according Simulink-block we make use
of the introduced form whereby we use a low-pass filter of 2-nd
order which in general can be extend to any arbitrary order. The
resulting transfer function, for a given tube with length L and
a given flow rate g can be written as

=PTF(s)
~(out) ,I—’T
HL"q(S) = - (S) = . eﬁ\'T(L,lj)Jrsrf
C.(m) (s) 1+sTy 1+sT,
= 1 e—xr(L.q)Jrst,. .

o S2T1T2 + (T] + T2)S+ 1

In the equation, the time constants T; and T, define the
effect of the dispersion effects. Additionally, a delay offset 7. can
be used, if the real-world behavior shows slightly different
results within the nominal delay than expected from theory. The
resulting dispersion effects for different time constants T; and
T, are depicted in Fig. 6. In the figure, a step from 0 to 0.1 at
time ¢ = 0 on the inlet concentration is applied. This step is
often denoted by C™(£) = 0.14(¢). In the figure, one can see, that
the step becomes smoother and more curved as the time
constants T, and T, increase.

As the dispersion effects might change for different flow
rates g and tube lengths L, also the time constants T; and 7,
have to change for the different settings. Thus the Simulink
block provides the possibility, to define several anchor points
for different flow rates g and a given tube length L. For flow rates
in between two anchor points the parameters Ty, T, and the
delay offset 7, are linearly interpolated to allow a smooth tran-
sition and to allow to have flow rates in between two anchor
points.

For the implementation in MATLAB/Simulink, the time-
continuous transfer function H“9(s) is discretized using
a definable discretization time Ty and using the discretization
Method of Tustin.*® Using the Method of Tustin, the discretized
transfer function Hy%(z) is found by

Step response of H4(s) for C™)(t) = 0.10(t)

“gq

g

01 e —

E

3

S

o 1 m 1
1) 2 — 3

2 0.05 2

LT =1

£ 5, Ty =2

3 1, Tp =2

3 0

O 8 10

Time ¢ in seconds

Fig. 6 Step response of a transfer function using a low-pass filter of 2-
nd order for various time constants T; and T, and setting the nominal
delay z(g, L) = 0 and 7, = 0.
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3.2.2 Implementation of the tanks-in-series model. For the
implementation of the tanks-in-series model, eqn (2) is used to
form a state-space model of the entire tanks-in-series model.
The state-space vector x is defined to hold all concentrations
C(t) for each tank j and each species i. Assuming that there are
P species flowing through the system, and we split the reactor in
N tanks, the state-space vector is defined as

x(0) =[C(1) CP() ... OGN ..

Gl ... MO (8)

This results in the state-space model of the form

wiy] | x0.000)

KO _yoxy + 8| : |+ | EOPON] g
ulf) |1 ¥ (x(e), 0(0)
where
Y1) = qA(—Q diag(A, P), and B(z) = ﬁA(_;) diag(b, P).  (10)

In the equation, the expressions diag(A,P), and diag(b,P)
represent a block diagonal matrix where the matrix A and the
vector b are repeated P times along the diagonal respectively. As

1 0 0 .. 0 0 |
1 =1 0 ... 0 0 0

A= 1 - 0 0, andb=0], (1)
0 0 0 1 -1 0

where A is of size N x N and b of size N x 1, we can conclude,
that the block diagonal matrix diag(A,P) is of size NP x NP
whereas the block diagonal matrix diag(b,P) is of size NP x P.
Furthermore, it holds, that u{f) = di“)(t], Vi € {1,...,P}. The
factors r/(x(¢),(f)) which consider the reaction term forming
species 7 in tank j depend on the temperature ¢(t), and the state-
vector X(¢) as it contains all concentrations. The superscript j was
added to the factors r/ as they now collectively depend on x().
For the implementation, the state-space model is discretized
using the ZOH-method*” and a definable discretization time T4.
Additionally the implementation allows several reactions within
the tanks-in-series model to be defined. The form of the reac-
tion is defined as a second order reaction whereby the reaction
rate is described by the Arrhenius equation, which relates the
reaction rate to temperature and an activation energy.*® Given
a reaction where species m and species n react to species i, the
reaction within each tank j can be stated as
! (x(1),0(0)) = G,/ (t) C/(t) 4; e R0 .

———
ki(0(1))

(12)
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In the equation, A; denotes the pre-exponential factor, and E, ;
the activation energy of the reaction forming species i. The
reaction rate k/(J(¢)) is the same throughout all tanks. The
temperature in Kelvin is denoted with 9(¢) and the universal gas
constant with R.

3.2.3 Implementation of the axial-dispersion model. For
the axial-dispersion model we are facing a PDE of the form
stated in eqn (3). We assume, to have a Dirichlet boundary
condition at the inlet and a Neumann boundary condition at
the outlet of the reactor. The boundary condition for the inlet
ensures, that the input concentration C{™(¢) is the concentra-
tion at the inlet C(z = 0, t) of the reactor. The boundary
condition for the outlet ensures, that the concentration at the
outlet of the reactor C(z = L, ¢) cannot change over time,
implying a steady-state behavior or negligible transient effects
at the reactor's exit. The corresponding boundary conditions Vi
€ {1, ..., Pfread as

Clz=0.0=c, 29&0 _g

0z z=L

(13)

respectively. For the implementation of the axial-dispersion
model we first apply a semi-discretization of eqn (3). By
applying a discretization within the axial direction z, we split the
reactor in N sub-parts of the same size Az. Within each sub-part
we approximate the derivatives by using the central difference
and finite difference method. The resulting equation can be
stated as

dc/ (1) G/ (1) —2C/ (1) + C/7 (1)
=D
dt Az?
C[/([) B CvljiI (I)
Az

+ .
(14)

—4(?) +1(Cil (1), ..., 9(2)),

whereby one can see, that we end up with an ordinary differ-
ential equation (ODE) within each spatial discretized block j.
When comparing the resulting form with eqn (2), which is used
to describe the tanks-in-series model, and knowing that

a) _ al) _ q0)
AV AAz Az

for a constant tube cross section A,, we see, that the equation is
the same except the additional term with the axial-dispersion
coefficient D. We can conclude, that when setting the axial-
dispersion coefficient D to zero, we will have the same model
as for the tanks-in-series model. If the axial-dispersion coeffi-
cient D is not zero, we have the additional term and we therefore
have to adopt Y'(¢) and B(¢). The resulting state-space model for
the axial-dispersion model reads as

w( | | 0.20)
d)((j(tl = Yppe()x(¢) + Bppe(?) | L n (x(z?70(,)) |
up(t) o (X(i),ﬂ([))
(15)
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-2 1 0 .0 0
D 1 2 1 .0 0
Yoon(() = 55| 0 1 2 1 0040, (16)
0 0 0 0 1 1
and
b 0 0
D q(O\|0 b 0
B = —7 17
ppE(7) (A22+ Az) s (17)
0 0 b

For the implementation, the resulting state-space model is
again discretized using the ZOH-method. As the tanks-in-series
model and the axial-dispersion model result in a comparable
model, both models are implemented within the same Simu-
link-block. Defining the axial-dispersion coefficient D accord-
ingly, one can define which model is used.

3.2.4 Implementation of neural networks. For the imple-
mentation of neural networks we make use of the introduced
multi-layer perceptron neural networks. The user can define the
structure such as the number of hidden-layers and the individual
number of neurons. Alternatively the user can use a default
structure of a shallow multi-layer perceptron neural network for
which the number of neurons is automatically determined based
on the number of concentrations P. As input vector x, the flow rates
g{t) for each individual species i and the temperature ¥(t) are
chosen. As the input has to contain discrete values in time, we
choose discrete sample times ¢ = kT4 where ke N, for a definable
sample time Ty. To keep the formulas more readable, we abbre-
viate quantities evaluated at time ¢ = kT4 using the additional
subscript k. Moreover, to enhance the estimations of output series,
the input vector x of the neural network./ is extended to also hold
previous input values up do definable number Ny. For a given
dataset of the input flow rates ¢'™(¢) for all i € {1, ..., P}, the
temperature ¥(t), and the recorded measurements of the out-
flowing concentrations C°*(¢) the input-output-samples for the
training of the neural network .4 can be defined as

i
(in)
i
(in) (out)
qll,li»deﬂ Cik
(in) (out)
m; = 92k , = szk . (18)
(in) ’ (;mt)
‘]pl.r;«—xvdﬂ Cox
o
ﬁ/chdJrl
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For the training we use the Adam optimization algorithm®® to
optimize the neural network parameters 6. In the imple-
mentation, the resulting neural network can be used within
a Simulink file or standalone within a MATLAB/Simulink script
itself. In general, it is considered good practice to split the
available data into separate training and validation (or test) sets.
This allows for evaluating the model's ability to generalize and
helps prevent overfitting. The toolbox supports this approach by
letting users supply only the training data to the training
function, while the trained neural network can be evaluated on
the remaining validation data. Additionally, the method can be
adapted to incorporate test data directly into the training
process if needed (for example, for early stopping). Moreover,
hyperparameter tuning is commonly applied during neural
network training to improve performance. Although no hyper-
parameter tuning was performed at this stage, the framework is
designed to be extensible, enabling users to add such optimi-
zation techniques if desired. This could lead to improved model

accuracy by systematically selecting the best training
configurations.
3.2.5 Implementation of physics-informed neural

networks. For the physics-informed neural network we use the
same methods to define the structure as for the neural network,
whereby we incorporate the axial-dispersion model into the loss
function # of the neural network. The considered reactions
within the axial-dispersion model can be of any form. For
instance, one can describe the underlying reaction using the
Arrhenius equation. For the integration of the axial-dispersion
model, we extend the output y; of the neural network .+ to
include spatial predictions of each concentration by dividing
the reactor in N + 1 sub-parts. The spatial discretization is
comparable to the implementation of the axial-dispersion
model in Section 3.2.3. Moreover, we include predictions of
physical parameters I" which are required within the incorpo-
rated physical equations. When incorporating the axial-
dispersion model including reactions, we have to include
parameters like the axial-dispersion coefficient D, the pre-
exponential factors A; and activation energy E,; for each
underlying reaction forming species i. Assuming, that species 3
and species 4 are formed within a reaction, the lifted output y;
of the neural network .4 reads as

. .
C.ll.k D
: Aj
Ye = |:y;k] You = | Clu | ¥r=|Eus |, (19)
1 c° As
2k E
i a4
Crs o

where C;¢ represents the concentration of the i-th species
within the j-th sub-part at time ¢ = kTy. Since not all concen-
trations C; ¢ or physical parameters I can be directly measured,
only a subset of the predicted output ys can be incorporated
into the penalization term of the loss function during the
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training of the physics-informed neural network. Specifically,
the penalization term can only utilize concentrations that are
either measured directly or calculated from flow rates. This
includes the input concentrations of the reactor C?,k forallie {1,

., P}, which can be measured or derived from the flow rates of
individual species, and the output concentrations CP,kN forall p
€ {1, ..., G}. As it may not always be feasible to measure all
outflowing concentrations C,", it holds that G = P. By
combining all measured and known concentrations, we can
define the output of a sample as:

(in)
(ij

éill)
CP4 k

n, =
i

(20)

Csy’

For the input-sample m; we use the same as for the training
of a neural network. When we assume, that we have Ny input-
output samples (my, ng) for k € {1, ..., Ng} which can be used for
the training, we can define the penalization term within our loss
function Zpn(6,T) as

1 1R in) 2
Zp(0,T) = ——ZZHC,% Wl +
j\]S P k=1 i=1
(21)
FRIEE o e el
s G k=1 i=1

In the equation, the elements Cf;, and C;;" are extracted
from the current predictions of the neural network .4 (mg, 6, T")
whereas the elements C("“t), and Cﬁf}}) are from the output-
sample n.

In addition to the data-driven loss %»(0,I"), we can define
a cost term derived from the incorporated axial-dispersion
model. By discretizing the axial-dispersion model from eqn
(14) in both the spatial and temporal dimensions, we can
compute the residual and utilize it as a cost factor. The resulting
cost term Zppg (6, I'), reflecting the incorporated physical rela-
tions, thus reads as:

1 Ny P N-1 C kj _ k —1
L7 0,T —_ - - G,
PDE( ) = N.PN Z s —+
CWt —2C + G Gl = G (22)
-D 2 +q(1) e + ...
=/ (Cril, Coil -, ).

L
In the cost term, At = Ty, Az = Nl and each concentra-

tion C; ¢ is predicted by the neural network .4 (my, 0, T'). Addi-
tionally, to the two losses and the regularization term, which we
described in the theoretical background, we add a loss factor to
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ensure that the physical parameters I' stay within physically
feasible bounds. We do that, by defining the additional cost

_ Ze<7’7min>(7’7mu>\)

yell

(23)

in which v is a physical parameter in T', and yin and vy are
the lower and upper bounds of the feasible values for the
physical parameter v respectively.

For the total cost Zpn (6, I'), which is used for the training
of the physics-informed neural network, we use the combina-
tion of all defined costs and weight them with the terms A
relative to each other. The overall cost thus reads as

2(0,T) = 2pZp(0,T) + Appe Zrpe(0,T) +

+2r 2 (T) + Ax Zr (0). (24)

As we penalize any deviations of our boundary conditions
(13) already in the penalization term %p, we can set the cost
term due to the boundary conditions % = 0. For the training of
the physics-informed neural network .#, the Adam optimization
algorithm is again employed. As with the neural network
training, no hyperparameter tuning was conducted at this stage.
However, the method can also be extended to incorporate such
optimization for physics-informed neural networks, which may
further improve model performance.

3.3 Simulations and model validations

In this section, we demonstrate how the toolbox can simulate
real-world flow reactors and validate our derived and imple-
mented models using measurements. The experimental data
used for validation was recorded using various PAT tools,
including inline FTIR, HPLC, and UV-Vis spectroscopy. Data
from these sources was processed using Partial Least Squares
(PLS) models, which were trained on calibration samples
covering relevant concentration ranges of reactants and prod-
ucts. Spectral pretreatment included baseline correction and
derivative filtering, and the resulting models were used to
convert measured spectra into accurate concentration profiles.
Separate PLS models were applied for each experiment to reflect
the specific system composition. The resulting concentration
and condition data were imported into MATLAB using the
import tool, synchronized to a common time base, and
resampled to ensure consistent sample intervals across all
signals. Finally, the cleaned and preprocessed data were saved
as .mat files. Detailed information on the data preparation
process can be found in the SI.

3.3.1 Model validation of delay and dispersion effects. We
conducted several tracer experiments, in which a tracer di-
ssolved in a solvent flowed through a reactor setup consisting of
three segments. The feed solutions were delivered using Knauer
AZURA P 4.1S HPLC pumps (10 mL min~ ' pump head,
Hastelloy/ceramic, equipped with pressure sensors). The
concentration of the tracer was measured after each segment
using different process analytical tools (PAT), including FTIR,
UHPLC, and UV-Vis. FTIR (Fourier-Transform Infrared Spec-
troscopy) is used to identify and quantify chemical compounds
based on their absorption of infrared light. UHPLC (Ultra-High-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Illustration of the experimental setup to conduct the tracer
experiments.

Performance Liquid Chromatography) separates and quantifies
components in a mixture, offering high resolution and fast
analysis. UV-Vis (Ultraviolet-Visible Spectroscopy) measures the
absorption of light in the ultraviolet and visible ranges,
providing information about the concentration of analytes in
solution. Each segment comprised of a tube, with the lengths
and diameters of the tubes varied across the experiments.
Additionally, the flow rate was modified throughout different
experiments. The described setup is illustrated in Fig. 7.
Within our toolbox FlowMat, we can model the reactor setup.
Here, we can choose one of the different modeling approaches
or combinations of them to model the tubes within the three
segments. As the tracer flowing through the pipes will only
experience delay and dispersion effects, the approach using
transfer functions is the most lightweight one. Besides
rebuilding the reactor setup, we can import the measurements
from the experiments, to use the real flow rates of the pumps
and directly, enabling direct comparisons between the
measured and simulated tracer profiles after each segment.
Fig. 8 compares the measured and simulated tracer values
from the first tracer experiment. In the first experiment, the
tube lengths and diameters remained constant over time for
each segment, while the flow rates were varied. To model the
tubes, the modeling approach of transfer functions was applied.
The time constants 7; and T, were manually adjusted during
the initial use of a tube to ensure alignment between the
simulated values and the measured data. The time constants
represent the dynamic response of the system and capture the
dispersion behavior of the tracer within the tubing. While T;
and T, were empirically adjusted in the present study to achieve
good agreement with experimental data, they are physically
motivated and could be estimated based on tube geometry and
flow characteristics. The toolbox also allows for optimizing
these parameters based on step response experiments, or they
can be estimated using correlations from literature. Addition-
ally, Fig. 6 in Section 3.2.1 illustrates the influence of T} and T,
on a representative step response and can serve as a guide for
parameter selection. The overall effort for identifying suitable
parameters is low, typically requiring only one or two short
tracer experiments per tube, making the approach practical for
routine use. While an optimization based on experimental data
may require more effort, it can yield more accurate results
tailored to specific setups. Subsequently, these time constants
were reused in other experiments involving the same tube to
demonstrate their applicability and consistency across different
experiments. Since the dispersion effects vary with different
flow rates, several anchor points were used to define the time
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Fig. 8 Comparison of the measured and simulated tracer values from
the first tracer experiment.

constants for some of those flow rates. Between these anchor
points, the time parameters of the transfer function were line-
arly interpolated.

The results seen in the figure demonstrate that the overall
concept of simulating delay and dispersion effects is valid, as
the simulated and measured traces show good agreement.
Additionally, the results clearly demonstrate the validity of the
interpolation method between two anchor points. The slight
peak observed in the concentration after the first segment of the
model prediction around ¢ = 0.6 hours can be attributed to
minor inaccuracies during the transition between pump
settings at the beginning of a new tracer step. These transient
fluctuations cause a short-lived disturbance in the tracer profile.
The peak is apparent in the simulation, as the raw pump data is
used as input.

The identified parameters of the tubes used can be stored for
experiments involving the same tube within a segment. This
allows for reusing parameters of previously identified tubes,
requiring only the characterization of new tubes.

3.3.2 Model validation of a flow reactor including reac-
tions. To further validate the implemented models of the
toolbox, we simulate a flow reactor in which a reaction takes
place. For the first validation, we make use of the Paal-Knorr
reaction with one reaction. The Paal-Knorr reaction with one
underlying reaction, involves three key species:
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o the first species C;(t) is iso-propanol, acting as solvent,

e the second species C,(t) is ethanolamine (NH,-CH,-
CH,OH) at a concentration of 1.5 mol L™ ", and

e the third species Cj(f) is 2,5-hexanedione (C¢HgO,) at
1.5 mol L™,

The experimental setup consisted of pumping all three
components into a 5 mL flow reactor under controlled flow rates
and temperature conditions. Feed solutions were delivered
using Knauer AZURA P 4.1S HPLC pumps (10 mL min~' pump
head, Hastelloy/ceramic, equipped with pressure sensors). To
maintain consistent system pressure, a back pressure regulator
(BPR, Upchurch, P-465) with a 34 bar (green, P-765) cartridge
was installed directly downstream of each HPLC pump. The
inlet streams were combined using a 7-port mixer (3 ports
blocked with blanks), and the flow reactor was assembled with
PFA tubing (0.8 mm i.d.) and thermostated using a Huber
Ministat 240. The reaction mixture was continuously monitored
using inline FTIR spectroscopy (Mettler Toledo React IR 15)
with a DS Micro Flow Cell Diamond flow cell. Downstream of
the FTIR, a membrane-based BPR (Zaiput BPR-10) set to 5 bar
was integrated to regulate pressure within the reactor. Details
on the selected input flow rates and reactor temperature are
provided in Fig. 9.

The HPLC pumps and the thermostat were integrated into
the experimental setup via RS232 connections to the HiTec Zang
LabManager. The flow rate and temperature ramps were pro-
grammed using HiText (HiTec Zang), with setpoints configured
in the LabVision software (HiTec Zang). Inline FTIR spectra
were acquired using a Mettler Toledo ReactIR 15 equipped with
a DS Micro Flow Cell Diamond. Data points were recorded every
15 seconds, with spectra captured between 4000 and 600 cm ™ *
at a resolution of 4 em™~". The spectra were exported using iCIR7
software and automatically processed with a PLS model in
Peaxact Process Link (S-PACT), ensuring efficient and accurate
data analysis.

Within the reactor, ethanolamine reacts with hexanedione to
form the final product (1-(2-hydroxyethyl)-2,5-dimethylpyrrole)
along with two molecules of water. The final product is

Sls Input flow rates — Solvent
F ; 0.8 === Ethanolamine
= 82 ----- 2, 5-hexanedione
- .
g 0.2 N -
0
= o 1 2 3 4 5 6 7
Time ¢ in hours
5 Reactor temperature
o
8 100
k=
g 50
o
E o
& 0 1 2 3 4 5 6 7
Time ¢ in hours
Fig. 9 Input flow rates and reactor temperature for the Paal-Knorr

reaction with one reaction.
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Fig. 10 Reactor setup and stoichiometry of the Paal-Knorr reaction
with one reaction.

referred to as species C,(f). The concentrations of the final
product and residual materials are measured after the flow
reactor. To allow the cleaning of the used PAT, an additional
path was added in which the solvent is pumped through the end
part of the reactor allowing to flush any residual material out of
the sensor of the FTIR. One can find the reactor setup and the
stoichiometry of the Paal-Knorr reaction with one reaction in
Fig. 10.

In our Simulink model we can make use of the tanks-in-
series model, the axial-dispersion model or data-driven
approaches to include reactions within our reactor model. For
the first validation including one reaction, we make use of the
axial-dispersion model where we use the parameters found by
the external software solution Dynochem.’ Dynochem is
a process simulation and optimization software developed by
Scale-up Systems, widely used in the pharmaceutical and
chemical industries for modeling and optimizing batch and
continuous manufacturing processes. It can also be used to
identify parameters, supporting rapid scale-up, trouble-
shooting, and process development to enable efficient and
reliable production workflows. After entering the parameters
and importing the experimental data, we can simulate the flow
reactor using the same flow rates as for the real-world experi-
ment. After the simulation, we can directly compare the results
with the measurements from the experiments.

In Fig. 11 the measured and simulated traces for the formed
product and the remaining starting material (diketone - C5(t)) is
depicted. As one can see, the simulated flow reactor depicts the
real-world behavior well and thus validating the results of the
toolbox when using the axial-dispersion model. As the axial-
dispersion model is comparable to the tanks-in-series model
as we can set the axial-dispersion coefficient D = 0, we can also
state, that the simulation can be used to validate the tanks-in-
series model. Additionally to the outflowing concentrations,
the toolbox can also deliver the spatial information within the
reactor which is depicted in Fig. 12. Thus it is possible to
immediately see how the species are consumed and formed
throughout time and space, which might be a useful insight
when designing the reactions and the reactor setup.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Comparison of the measured and simulated species
concentrations for the Paal-Knorr reaction with one reaction using
the axial-dispersion model. The concentration drops to O are attrib-
uted to the FTIR being rinsed with isopropanol.

Besides the PBM, one can also use DDM to model those
reactor systems such as a neural network. Thus we used the
toolbox to train a shallow fully connected neural network using
the experimental data. As mentioned in Section 3.2.4, one can
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Fig. 12 Spatial reactor insight of the Paal-Knorr reaction with one
reaction using the axial-dispersion model.
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Fig. 13 Comparison of the measured and simulated species
concentrations for the Paal-Knorr reaction with one reaction using
a shallow neural network. Data to the left of the 70% border was used
to train the neural network.

split the available data into a training set and a validation set to
evaluate the generalization performance of the neural network.
In this example, 70% of the available data was used for training,
while the remaining 30% served as the validation set. This can
be achieved by providing only the training portion of the data to
the FlowMat training method of the neural network. To assess
model performance, the mean squared error (MSE) was calcu-
lated for both subsets by summing the MSE values across all
predicted concentration traces. This resulted in an MSE of 17 x
107° for the training set and 35 x 107° for the validation set.
These values indicate a good fit to the training data while still
preserving reasonable generalization to unseen data, as the
validation error remains comparable to the training error. The
neural network can afterwards be used within the simulation or
directly within a MATLAB/Simulink script.

The results of the simulation using the trained neural
network are depicted in Fig. 13. In the figure, one can see the
70% split used for training (left section) and validation (right
section) of the data. The figure visually confirms that the trained
neural network is able to predict the outflowing concentrations
not only for the training data but also for the unseen validation
data, demonstrating its generalization capability. This validates
the method and shows that the method can be applied to
simulate a real-world process.

3.4 Parameter identification using FlowMat

Most of the time, the underlying reactor and reaction parame-
ters are not known. Thus, we want to highlight the possibility, to
estimate parameters using our toolbox. With FlowMat, it is
possible to optimize the parameters such that the simulated
values match the measured ones. It is possible to define
constraints on those parameters such that they stay in physi-
cally feasible bounds. The optimization of parameters can be
conducted in different ways. One can use PBM, such as the
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tanks-in-series model, or the axial-dispersion model, or DDM,
such as physics-informed neural networks. For the DDM
method, a neural network is extended to a physics-informed
neural network whereby the parameters are an additional
output when training the physics-informed neural network with
experimental data. Additionally, we want to point out, that it is
possible to use transient data for the estimation of the reaction
parameters. The recording of transient data is more cost effec-
tive and faster compared to recording of steady-state data as the
information between two steady-state points is already used.

For the identification of reaction parameters we investigated
the Paal-Knorr reaction with two reactions. The Paal-Knorr
reaction, with two consecutive reaction steps, involves three key
species:

o the first species C,(¢) is the solvent, a mixture of toluene
and methanol in a 2: 1 ratio,

e the second species C,(t) is ethylenediamine (NH,-CH,-
CH,-NH,) at a concentration of 0.75 mol L™, and

e the third species Cs(t) is 2,5-hexanedione (C¢HgO,) at
1.5 mol L.

All three components are pumped into a 4.2 mL flow reactor
at controlled flow rates. The same equipment as for the Paal-
Knorr reaction with one reaction was used, including Knauer
AZURA P 4.1S HPLC pumps, back pressure regulators (BPR),
and inline FTIR spectroscopy (Mettler Toledo ReactIR 15).
Within the reactor, ethylenediamine reacts with hexanedione to
form an intermediate product. This intermediate product reacts
further with hexanedione to produce the final product (2,5-
dimethyl-1H-pyrrol-1-yl) ethane. The intermediate product and
the final product are referred to as species C,(¢) and species Cs(t)
respectively. The concentrations of the final product and
residual materials are measured after the flow reactor. The
reactor setup and the stoichiometry of the Paal-Knorr reaction
with two reactions is depicted in Fig. 14.

It is assumed that both reaction steps follow the Arrhenius
equation for which the reaction rates are given by

£
r,(ﬂ(t)) B A,‘C,',lC,‘,Z@Rd(') = 4, 5 (25)

whereby the reaction parameters 4;, E; remain unknown. Thus,
the goal is to use our toolbox to estimate those reaction

)
toluene / methanol 2:1 NH, =)
NH. = N
)k/\n/ D Rt~ Eéu_/_ + :éN_/_;; + HO

inline FTIR

toluene / methanol
2:1

Fig. 14 Reactor setup and stoichiometry of the Paal-Knorr reaction
with two reactions.
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parameters using different methods and make use of experi-
mental data. The estimated reaction parameters can afterwards
be used for simulation, validation and optimization of the
reactor setup and the operation points or used for further
analysis.

3.4.1 Parameter identification using a PBM and transient
data. The first option to identify underlying reactor parameters
is to use PBM. Thereby, the tanks-in-series model or the axial-
dispersion model and the inbuilt MATLAB/Simulink optimiza-
tion functions are used. As mentioned, it is possible to define
constraints for the parameters such that they stay in feasible
regions, and one can speed up the optimization by providing
feasible initial values. In general, all available MATLAB opti-
mization algorithms can be utilized along with third-party
optimizers, such as YALMIP.*! In this study, we employed the
MATLAB fmincon function, which supports various algorithms,
including ‘interior-point’, ‘sqp’, ‘active-set’, and ‘trust-region-
reflective’. Each algorithm offers distinct advantages depending
on the problem structure, whereby we selected ‘interior-point’
which is designed for solving large-scale constrained optimi-
zation problems and works efficiently with both linear and
nonlinear constraints.

For the optimization we used an experiment with transient
data. The use of transient experimental data eliminates the
need to wait for steady-state conditions, thereby reducing
overall time, material consumption, and labor. This makes the
parameter identification and optimization process significantly
more efficient. In the experiment the flow rates and temperature
profiles were varied throughout the entire experiment and can
be found in Fig. 15. Due to the transient input data, also the
outflowing concentrations show a continuous change and never
reach steady state. This typically makes it harder to estimate
proper reaction parameters. Traditional identification methods
do not consider underlying dispersion and delay effects and
thus the parameters are often not estimated correctly. As we
consider those delay and dispersion effects within our models
and within our optimization of the parameters we can also

§|E Input flow rates —_— Solvent
j 0.8 === Ethanolamine
= 82 ----- 2, 5-hexanedione
§ 0.2 N -

O |
S
= 0 1 2 3 4 5 6 7

Time ¢ in hours

5 Reactor temperature
8 100
z
§ 50
=%
B
B 0

0 1 2 3 4 5 6 7
Time t in hours

Fig. 15 Transient input flow rates and reactor temperature for the
Paal-Knorr reaction with two reactions.

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra06173c

Open Access Article. Published on 12 September 2025. Downloaded on 2/13/2026 4:47:29 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

make use of transient data and we are not limited to steady state
data.

For the Paal-Knorr reaction with two reactions, we model the
reactor setup using the axial-dispersion model. In the axial-
dispersion model we defined the reaction parameters to be
variables which can be optimized. Using the imported experi-
mental data, we can use the used flow rates as input and opti-
mize the parameters in such a way, that the simulated
concentration outputs align with the measured outputs from
the imported experiment. As the experimental data might show
phases which are not representative, the toolbox allows to
specify time intervals which should be used for the
optimization.

In Fig. 16 we depicted the results after the optimization of
the initial reaction parameters found by the external software
solution Dynochem. In the figure, one can see the prediction
using the reaction parameters found by the external software
solution Dynochem and the predictions after the optimization
from FlowMat. The simulations for the reaction parameters
from Dynochem already show useable predictions yet after the
optimization, the predictions agree much better with the
measured data.

As we used transient data to find the reaction parameters,
we want to use the estimated parameters to cross test them
with an unseen experiment. In Fig. 17 one can see the inputs
and the prediction results when we test the found parameters
on an additional experiment. As one can see, the second
experiment shows huge differences in the actuation patterns
and shows more steady state intervals and less transient pha-
ses compared to the experiment which was used to identify the

g B Diketone
g .
= 0.2 e
B
e
£ 01
=
S 0
g o 1 2 3 4
Time ¢ in hours
—— Measured
----- Reaction parameters - Dynochem
-«=«» Reaction parameters - FlowMat
EE Product
k=
= 0.2
.S
-~
£ 01
=
(]
g 0
S 0 1 2 3 4

Time ¢ in hours

Fig. 16 Comparison of the measured and simulated species
concentrations for initial parameters and optimized parameters for the
Paal-Knorr reaction with two reactions.
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Fig. 17 Comparison of the measured and simulated concentrations
for an experiment with steady state traces for the Paal—Knorr reaction
with two reactions. The parameters were estimated using an experi-
ment with transient data which shows huge differences in the actua-
tion patterns.

reaction parameters. As seen in the figure, the predicted
output agrees with the measured data indicating, that the
estimated parameters can also be used to predict the output
concentrations for the same flow reactor setup when using
different input data.

3.4.2 Parameter identification using physics-informed
neural networks. Using FlowMat, we can also make use of
physics-informed neural networks to estimate physical param-
eters. To do so, the toolbox allows to define a custom training
function when training a neural network. In the custom
training function we can define additional loss factors and
incorporate physical models such as the axial-dispersion model.
Necessary and unknown parameters within the axial-dispersion
model can be estimated by the physics-informed neural
network. The output estimations of the physics-informed
neural network are extended as described in Section 3.2.5 to
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include the spatial predictions of each concentration and
additional estimates for the unknown parameters. In the
custom training function, one can make use of those estimates
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Fig. 18 Time-space result of the physics-informed neural network
after training for the Paal—Knorr reaction with two reactions.
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and calculate the losses given by the measured data and the
axial-dispersion model.

When applying the training of a physics-informed neural
network to estimate the reaction parameters to the introduced
Paal-Knorr reaction with two reactions we find comparable
parameters like in Section 3.4.1. Additionally, the resulting
physics-informed neural network can be used to gain insight in
the time-space behavior within the flow reactor. In Fig. 18 the
time-space results of the physics-informed neural network after
training are depicted. Additionally, the measured concentra-
tions are depicted in black at the reactors output along with the
predicted output concentration of the physics-informed neural
network in red. As one can see, both traces agree within all
concentrations quite well. Moreover, the time-space results are
comparable to those of the axial-dispersion/tanks-in-series
model and verify that the underlying axial-dispersion model is
incorporated.

3.4.3 Parameter validation. To evaluate and compare the
performance of the three modeling techniques—Dynochem as
an external software solution, the axial-dispersion model, and
the physics-informed neural network within FlowMat—we aim
to compare each approach using the experiment which was
used for the parameter identification. The comparison will be
based on an estimation error for all three techniques. Specifi-
cally, we define the estimation error ¢, as:

end

! : 1 predicted measured 2
Soqwa | NCEEEE) - (@) de
i=1

&= (26)

|

0

In the equation, p denotes the modeling technique, and the
found estimation errors {,, are summarized in Table 1. The
estimation error {, is calculated as the sum of the squared
differences between the measured values C**"™Y(7) and the
predicted values (7) across all concentrations i. This
sum is then normalized with respect to the number of
concentrations P = 5 and the total experimental duration 7°"¢,

Both FlowMat techniques—the axial-dispersion model and
the physics-informed neural network method—demonstrate
smaller estimation errors {,, compared to the external software
solution Dynochem. Notably, the physics-informed neural
network method achieves the lowest estimation error ¢, high-
lighting its status as the most advanced modeling approach
available. However, this technique is accompanied by increased
complexity. Despite this higher complexity of the physics-
informed neural networks but also the axial-dispersion model,
FlowMat offers a user-friendly interface that makes these
advanced methods, remarkably easy to use. The identified
results highlight that the more complex modeling techniques
within FlowMat outperform the external solution, thereby

C}::Ir)edlcted

Table 1 Estimation errors ¢, for the three modeling techniques

Modeling technique p Estimation error ¢,
Dynochem 417 x 107*
Axial-dispersion model (FlowMat) 2.45 x 107*
Physics-informed neural network (FlowMat) 0.88 x 10°*

© 2025 The Author(s). Published by the Royal Society of Chemistry
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proving the usability and effectiveness of the toolbox's
modeling techniques.

To further validate the estimated reaction parameters, we
want to cross test the parameters using one modeling tech-
nique. Given the reaction parameters I',, = {A4, A5, E4, E5} from
the software solution Dynochem (parameter set I'pyno), the
identified reaction parameters using the axial-dispersion model
(parameter set I'yp) and the reaction parameters identified
using a physics-informed neural network (parameter set I'pinn),
we want to validate and compare each parameter set I';, using
the axial-dispersion model. Our goal is to demonstrate that all
three techniques for identifying reaction parameters yield
comparable results, which can also be utilized in other
modeling approaches.

We tested the identified reaction parameters I', for the
introduced reactor setup on various experiments. Besides the
experiment with transient data (Experiment [ = 1 — which was
used for identification of the parameters and thus serves as
a reference), we also used the experiments showing more
steady-state phases (Experiment [ = 2 - which was also used in
Section 3.4.1 to verify the identified reaction parameters from
transient data on steady-state data) for validation. The flow
reactor setup using the axial-dispersion model was simulated
for the various reaction parameters for all available experi-
ments. Afterwards we determined the overall estimation error

Jend

1 > 1 ! redictes measure 2
= 3 g | ICT ) — (o)
i=1 "1

ip,l
for each combination. In eqn (27), CP“*d(7) denotes the
predicted concentration of species i for experiment / when using
the reaction parameters I',. The term C}***""‘(z) denotes the
measured values from experiment [ for species i. The term
754 represents the according end time of experiment L

(27)

Simulation error &, ;

1073
1.5 ]
00 Reaction parameters I'4p
I 0Reaction parameters U'pryn | [
g [0 Reaction parameters I' pyno
g1
~
1S
=
£3)
0.5 H

Experiment 1 Experiment 2

Fig. 19 Simulation error £, for all experiments [ and reaction
parameters I'y. The first experiment ([ = 1) was used for parameter
identification, with all simulations conducted using the method of the
axial-dispersion model. Consequently, the simulation based on the
first experiment and the axial-dispersion model shows the smallest
error and serves as a reference.
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The results of the overall estimation error are depicted in
Fig. 19. In the figure, one can see, that all sets of reaction
parameters I', result in similar estimation errors £p;
throughout all experiments /. It is obvious, that the first exper-
iment [/ = 1 shows the smallest overall simulation errors &, ; for
all reaction parameters as the experiment was used for the
identification. Thus the values for the first experiment can be
used as a reference. The other experiments show larger values
yet are in a comparable range. Despite the small increase in the
overall simulation error when cross testing the found parame-
ters, it is essential to see, that the simulation error values &,,;
within an experiment / show a similar performance. We also
want to highlight, that for experiment [/ = 2 the reaction
parameters found by our toolbox FlowMat outperform the
reaction parameters found by the external software solution
Dynochem. Moreover, one can conclude, that all parameters
seem to be a valid choice when facing the small gap of the
simulate error within one experiment / and the comparable
performance for unseen experiments.

3.5 Optimization

Having identified the appropriate parameters and validated the
simulation results of the reactor system, one can consider
optimizing both: the operational points and the reactor setup
itself. To do so, we use our toolbox in combination with the
built-in MATLAB/Simulink optimization tool. Again, all avail-
able MATLAB optimization algorithms can be utilized along
with third-party optimizers. For the optimization of the reactor,
we employed the MATLAB fmincon function, whereby we
selected the ‘interior-point’ algorithm. Using the built-in opti-
mization, FlowMat enables the optimization of operating points
to determine ideal temperatures and input flow rates based on
a customizable objective. Additionally, reactor parameters such
as reactor length L and reactor diameter d can be optimized
while respecting specified constraints. The optimization allows
for the definition of multiple objectives, which can either be
combined into a single target function or used to search for the
pareto front. The pareto front represents a set of solutions
where no single objective can be improved without compro-
mising another, offering valuable trade-off information for
decision making.

We use our toolbox to optimize the operating conditions and
the reactor setup for the introduced Paal-Knorr reaction with
one side product and one desired product. Within FlowMat we
modeled the given reactor setup and determined all necessary
reaction parameters as described in Section 3.4. Given a vali-
dated reactor model of the real-world flow reactor setup, we can
use it for the optimization. We introduce necessary optimiza-
tion variables such as the flow rates q; with i =1, 2, 3 for all three
input species (solvent, ethylenediamine and 2,5-hexanedione),
the temperature ¢ within the reactor, and the total reactor
volume V. We can collect the introduced optimization variables
in a vector

x=[q ¢ ¢z v V" (28)
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The individual optimization variables can be used within the
reactor model. The model can then be simulated for a defined
time 7 using the given parameters in x. We denote the simula-
tion of the reactor model with .4 (x) which returns [C;(Z) ... Cs(t)]
where C{¢) represent the predicted output concentration of
species 1.

Regarding the objectives, one can, e.g., think of

e maximizing the concentration of the final product Cs(t)
while minimizing the concentration of the intermediate
product Cy(?),

e maximizing the total flow rate g = i ¢i to maximize the
i=1

throughput,

e minimizing the temperature ¢ to reduce operational costs,

e minimizing the reactor volume V to reduce the nominal
residence time and material costs.

As each of the optimization variables can only be within
physically feasible bounds, we define the following constraints:

. mL
o the flow rates of the species must be between 0 —— and
min
mL .
2 oin whereby the flow rate of the solvent/species 1 must be

mL
greater than 0.1 ——,
min

e the temperature ¢ must be between 20 °C and 200 °C,
o the total reactor volume V must be between 1 mL and 5 mL,
mL

min
The optimization problem can afterwards be brought in the
form of

mL
o the total flow rate ¢ must be between 0 i and 2

minf(x) such that x=x=X and Ax=b, (29)

where f{x) is the objective or a combination of objectives like

3
f(X) = —(X1C5(T) -+ 062C4(T) — Q3 Zq, -+ 0(4‘19 + o5 V7

i=1

(30)

and

[C1(1)....C5(1)] = t(x). (31)

The factors oy > 0 for l € {1, ..., 5} weight each individual term
in the objective f{x) relative to the others. The term x, and X
represent the lower and upper bounds of x respectively, and
thus read as

=1[0.1,0,0,0,1]]",

X
= 32
x =[2,2,2,200,5]" (32)

for our example. For the inequality constraints we can define

A=[1,1,10,0], b=2 (33)

to realize, that the total flow rate g has to be within the upper
o ml
limit of 2 ——.
The found quantities of the optimization problem can easily
be entered in our toolbox and allow an easy implementation of

the optimization problem. For the weighting factor «; one can
choose a proper combination or use the possibility, to keep each
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Fig. 20 Illustration of the Pareto front for the optimization of a flow
reactor setup. The three plots show the same data: the top is a 3D plot,
while the two plots below represent 2D projections onto selected
variable pairs for improved clarity.

objective separate and determine the pareto front using our
toolbox.

In this paper we want to present the latter option whereby
the resulting pareto front is found in Fig. 20. As we face several
optimization variables the illustration is not trivial. Thus we
depicted the ratio of the inflowing species 2 and 3 (‘C = %)

3
which are consumed in the first reaction, the temperature ¢ and
the reactor volume V. The total flow rate was always found to be
at a maximum and thus giving no more insight when it was
plotted.

In the depicted figure one can see, the pareto front for which
no single objective can be improved without compromising
another. When allowing higher temperatures ¢, the total
reactor volume V is reduced to a minimum while a very low
temperature ¢ require a larger reactor volume V. This might be
explained by the reaction rate being highly dependent on the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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temperature ¢ causing the desired product to be formed faster
within a smaller volume for high temperatures and vice versa.
Moreover, one can see how the optimal trace of the inlet ratio {
changes throughout the temperature-volume space.

4 Conclusions

We developed FlowMat which is an accessible,*” open-source,
yet powerful MATLAB/Simulink toolbox for modeling flow
reactors. The toolbox is designed with a modular architecture,
featuring an intuitive drag-and-drop interface that facilitates
the reconstruction of real-world flow reactor systems. It
supports various modeling approaches, including physics-
based models (PBM), data-driven models (DDM) such as fully
connected neural networks, and hybrid approaches like
physics-informed neural networks (PINNs). These modeling
methods can be used in parallel or individually, depending on
the specific requirements of the application. While the imple-
mentation details of the modeling approaches are abstracted
for ease of use, users have the flexibility to specify detailed
parameters when needed.

After introducing the conceptual background, we demon-
strated the toolbox’'s implementation and its ability to simulate
real flow reactors, including chemical reactions. We further
illustrated how the toolbox can be used to identify underlying
parameters of the reactor and reactions by leveraging transient
experimental data, enabling the determination of accurate
reaction parameters that generalize to unseen data. As the
toolbox allows the use of transient experimental data, there is
no need to wait for the system to reach steady state, which
generally reduces time consumption, material usage, and labor
costs. This capability can thus contribute to lowering the overall
cost and time associated with experimental parameter deter-
mination. Additionally, we employed advanced techniques,
such as PINNG, to identify parameters, showing that the results
were consistent and performed comparably.

Finally, we showcased the toolbox's potential for optimizing
an entire reactor setup. Specifically, we determined the pareto
front for a defined scenario, demonstrating its ability to balance
multiple objectives and provide valuable insights for decision-
making. FlowMat, represents a significant advancement in
flow reactor modeling and optimization, offering robust tools
for researchers and engineers in the field.
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