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a first-principles and machine learning approach to
topological thermoelectrics
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Kingsley Onyebuchi Obodocd and Mohammed Benali Kanoun e

We conduct an in-depth investigation of the structural, electronic, vibrational, thermodynamic, and

thermoelectric characteristics of Na–Bi-based compounds, specifically tetragonal NaBi, hexagonal NaBi3,

and cubic Na3Bi, using advanced first-principles calculations in conjunction with machine learning (ML)

models. We used density functional theory (DFT) with spin–orbit coupling (SOC) to figure out the

electronic structure, phonon dispersions, and thermoelectric transport using Boltzmann transport theory.

Our findings validate the Dirac semimetal nature of cubic Na3Bi and demonstrate varied topological and

thermodynamic properties within the Na–Bi family. To speed up the prediction of the thermoelectric

figure of merit (ZT) while enhancing interpretability to understand at the feature level, we trained

supervised ML models [Random Forest (RF) and Neural Network (NN)] on thermoelectric results from

DFT. It is possible to directly compute the figure of merit (ZT) from DFT-derived transport coefficients

such as the Seebeck coefficient, electrical conductivity, and thermal conductivity. However, machine

learning (ML) models serve as powerful surrogate predictors, enabling rapid screening of derivative

compounds and quantitative assessment of feature importance through SHAP (SHapley Additive

exPlanations) analysis. At low temperatures, RF models consistently outperformed NN models, but both

performed well at high temperatures. SHAP analysis showed that the Seebeck coefficient has the biggest

effect on ZT in all regimes. This integrated, physics-informed, and data-driven methodology

demonstrates that machine learning can significantly augment first-principles approaches. It accelerates

predictions, guides feature prioritisation, and enhances design capabilities. The developed workflow

provides a generalizable and interpretable framework for the predictive modeling of advanced

topological thermoelectric materials.
1. Introduction

Topological quantum materials, particularly insulators and
semimetals, have attracted considerable attention for their
unique band structures arising from inverted bulk bands and
relativistic fermion states. Among these, sodium bismuthide
compounds, including trisodium bismuthide (Na3Bi) and
equiatomic NaBi, have emerged as prototypical systems for
exploring such phenomena. Na3Bi was the rst three-
dimensional (3D) Dirac semimetal to be conrmed. It has
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symmetry-protected Dirac nodes along the kx axis of the Bril-
louin zone, where bulk conduction and valence bands (mostly
Na 3s and Bi 6p) are ipped because of strong spin–orbit
coupling (SOC).1,2 When time-reversal or inversion symmetries
are broken, these Dirac points can split into Weyl nodes. This is
a classic example of Dirac semimetal behaviour.3 This leads to
observable transport phenomena, including negative longitu-
dinal magnetoresistance due to the chiral anomaly and weak
anti-localization indicative of the p Berry phase of the Dirac
fermions.1 Na3Bi also has a unique tunable optical response in
the infrared, with a mid-infrared transparency window that can
be changed by changing the carrier density. This shows that it
could be useful for new optoelectronic applications.4,5 On the
other hand, NaBi is a “topological metal” because it has a bulk
band inversion and a nontrivial Z2 topology, even though it is
metallic.2 Its SOC-driven inverted bands create Dirac-like
surface states, which means it is in between topological insu-
lators and metals. NaBi also has unique lattice dynamics, such
as predicted ultralow and anisotropic lattice thermal conduc-
tivity and a closeness to superconductivity through electron–
© 2025 The Author(s). Published by the Royal Society of Chemistry
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phonon coupling. This makes it a good platform for studying
how topology, lattice vibrations, and superconductivity work
together.2 Both Na3Bi and NaBi can change their topological
phases when pressure is applied. Na3Bi transitions from a Dirac
semimetal to a cubic phase at ∼0.8 GPa, maintaining band
inversion akin to HgTe, and eventually becomes a trivial insu-
lator at >118 GPa.3 Similarly, NaBi transforms into a cubic phase
above ∼36 GPa, with anticipated modications to its topolog-
ical character.3 These transitions illustrate the critical link
between crystal structure and band topology. Chemical alloying
and dimensional reduction further enrich the phase diagram of
Na–Bi compounds. In Na3Bi1−xSbx alloys, increasing Sb content
reduces the effective SOC, driving a topological phase transition
to a trivial insulator.6 Likewise, ultrathin Na3Bi lms exhibit
a thickness-dependent crossover from a 3D Dirac semimetal to
a 2D quantum spin Hall (QSH) insulator state, with helical edge
states emerging at sub-four-monolayer thicknesses.4 This
tunability makes Na–Bi materials attractive candidates for low-
power electronic and spintronic devices.

The goal of this study is to use a combination of rst-
principles density functional theory (DFT) and machine
learning (ML) models to look at the structural, electronic,
vibrational, thermodynamic, and thermoelectric properties of
Na–Bi compounds. These include tetragonal NaBi, hexagonal
NaBi3, and cubic Na3Bi. The goal is to nd out if they could be
used as topological thermoelectric materials and develop a suit-
able method to predict how effectively they will work as ther-
moelectric materials. In addition to rst-principles
thermoelectric modeling, this work integrates supervised
machine learning (ML) to predict ZT from key transport
descriptors (Seebeck coefficient, electrical and thermal conduc-
tivity). While ZT can be computed directly, this ML framework is
introduced to (i) enable rapid prediction and screening of ther-
moelectric behavior once features are known, (ii) quantify the
relative impact of each transport parameter on ZT using SHAP
interpretability analysis, and (iii) demonstrate the feasibility of
physics-informed surrogate modeling. This proof-of-concept
provides a pathway for extending ML prediction to Na–Bi
alloys, doped variants, or related compounds where DFT calcu-
lations are expensive or incomplete. The paper is organized as
follows: Section 2 describes the computational methods
employed for DFT, phonon, thermodynamic, and transport
property calculations, along with the implementation of ML
models. Section 3 presents and discusses the results, including
structural optimization, electronic band structures, phonon
dispersions, thermodynamic behavior, thermoelectric proper-
ties, and ML-based prediction and feature analysis. The key
conclusions and future directions are summarized in Section 4.
2 Theoretical methodologies and
computational details
2.1 Density functional theory

In this work, spin–orbit coupling (SOC)-inclusive density func-
tional theory (DFT) calculations were carried out using the
plane-wave-based Quantum ESPRESSO package.7 To precisely
© 2025 The Author(s). Published by the Royal Society of Chemistry
capture electron–ion interactions, we employed both ultraso8

and norm-conserving Vanderbilt pseudopotentials,9 utilizing
fully relativistic large-core formulations.10 Our simulations were
conducted on NaBi in its tetragonal, NaBi3 in its hexagonal, and
Na3Bi in its cubic phases. The valence electron congurations
for the elements under investigation were treated as follows: Na:
3s1, and Bi: 6s26p3. For geometric relaxation, the exchange
correlation GGA-PBE + SOC11 functional was employed. Struc-
tural optimization was carried out using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS)12 approach, employing a 12 × 12 × 8
Monkhorst–Pack grid.13 To ensure energy convergence, we
imposed the condition that the major component of Hellmann–
Feynman forces acting on a single atom must be less than 1 ×

10−10 eV Å−1. Furthermore, to elucidate crystal structure and
stability, we employed hybrid Heyd–Scuseria–Ernzerhof (HSE)14

computations, which incorporate SOC effects and an adaptively
compressed exchange operator to enhance computational effi-
ciency. Subsequently, we investigated the electronic and optical
properties of the materials under study. Band structures
incorporating SOC effects were computed using the HSE + SOC
method, with Wannier functions15 interpolated using the
Wannier Tools code.16
2.2 Thermodynamic properties

In order to determine the lattice dynamical stabilities for
materials, the phonon dispersion (uj ¼ uj~q for the association
between u~q;j and~q for each j mode) is studied as the frequency
dependance on the wave vector attained within linear response
theory/density functional perturbation theory (DFPT) to obtain
the response to periodic perturbations.17 The phonon density of
states g(u) gives the frequency distribution of normal modes
and is calculated as:

gðuÞ ¼ 1

ndDu

X
k;j

ðu� uðk; jÞÞ

where dDuðxÞ ¼
8<
:

1
Du

2
\x#

Du

2

0 otherwise

(1)

Thermodynamic favorability is determined by a relative free
energy, so that the Helmholtz free energy is favored over Gibbs
free energy for its universality of expressing reversible work at
constant temperatures. The Helmholtz free energy for
a nonmagnetic ideal crystal is expressed as:18,19

A(V,T) = U0(V) + Ael(V,T) + Aphon(V,T) (2)

where U0(V) is the total energy, Ael(V,T) is the electronic excita-
tion contribution and Aphon(V,T) is the nuclear vibrational
motion or the phonon vibration contribution from phonon DOS
g(u) which is dependent the temperature. The vibrational
partition function is given by:

Zvib ¼
Y
~q;j

XN
n¼0

e
�

�
nþ 1

2

�
ħu~q j

kBT
(3)
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Therefore, the vibrational Helmholtz energy in the harmonic
approximation is formulated as:

AHA

�
Veq;T

� ¼ U0ðVÞ þ 1

2

X
~q;j

ħu~q j þ kBT
X
~q;j

log

0
B@1� e

�ħu~q j

kBT

1
CA
(4)

It relies on the temperature only by phonon contributions
calculated for the equilibrium volume Veq. The amplitude of the
vibrations is eased, thus validating the harmonic approxima-
tion for practically all situations at low temperatures. The iso-
choric heat capacity (Cn) for Na atoms per unit cell is:

Cn ¼ �T

�
v2A

vT2

�
V

¼ kBNa

X
gðuÞ

�
ħu
kBT

�2 exp

�
ħu~q j

.
kBT

�

exp

�
ħu~q j

.
kBT

�
� 1

(5)

Yet, the truncation of the third term ignores the anharmo-
nicity in the total energies, which causes some errors including,
innite values in thermal conductivity and phonon lifetimes as
well as null quantities for the thermal expansion.18 Thus,
considering temperature effects alongside vibrational degrees
of freedom requires assuming a rigid harmonic approximation
for the geometry, even as the crystal structure deviates from
equilibrium (i.e. to some degree encompassing anharmonic
contributions).20 This technique is referred to as the quasi-
harmonic approximation (QHA) which presents the computa-
tion of phonons for multiple volumes u~q;jðVÞ so that the
Helmholtz free energy turns into:

AQHAðV ;TÞ ¼ U0ðVÞ þ 1

2

X
~q j

ħu~q jðVÞ

þkBT
X
~q;j

log

0
B@1� e

�ħu~q jðVÞ
kBT

1
CA (6)

where the rst term and second term are grouped as the cold
potential energy Ucold(V) at T = 0K and the second term is the
thermal factor contributed by the phonons Ath(V) which
becomes negligible at extremely low T. Thus, the entropy (S)
where the phonon frequency is volume dependent, with the
neglect of the temperature dependent intrinsic phonon inter-
actions, is written as:21

SQHAðVÞ ¼ � 1

N

X
~q;j

kB ln

�
1� exp

�
� ħu~q j

kBT

��

þ 1

N

X
~q;j

kB
ħu~q jðVÞ
kBT

�
exp

�
ħu~q j

kBT

�
� 1

��1
(7)

The thermodynamical modeling procedure which exhibit
a comprehensive DOS for the vibrational modes is achieved
through the Debye model which is simplied to:19,20
42036 | RSC Adv., 2025, 15, 42034–42050
g(u) = C$u2$Q(u − uD) (8)

where Q is the Heaviside step function, and C is a constant for
the C

Ð
gðuÞdu ¼ 3Na is expressed as C= 9Na/u

3
D. The term uD is

the Debye frequency, wherein the phonon modes are populated
below it. The determination of the phonon Helmholtz free
energy and the isochoric heat capacity in the Debye model are
represented as:

A
Debye
phon ðTÞ ¼ NakBT

0
@9TD

8T
þ 3 ln

0
@1� e�

TD

T

1
A�D

�
TD

T

�1A (9)

CDebye
n ¼ 3NakB

�
4D

�
TD

T

�
� 3TD=T

eTD=T � 1

�
(10)

where D
�
TD

T

�
¼ 3

ðTD=TÞ3
ðTD=T
0

x3

ex � 1
dx is the Debye integral

and TD ¼ ħ
kB

2
46p2V

1 =2Na

3
5
1=3

f ðsÞ
ffiffiffiffiffi
Bs

M

r
is the Debye temperature

which is the temperature where every mode under the highest
frequency mode uD is excited (maximum phonon frequency).22
2.3 Thermoelectric properties: boltzman transport theory

The thermoelectric characteristics are evaluated using the semi-
classical Boltzmann transport theory, implemented via the
BoltzTrap soware in combination with rst-principles calcu-
lations and the relaxation time approximation.23 This approach
models the statistical behavior of charge carriers in systems
slightly deviating from thermal equilibrium. The foundation of
the Boltzmann transport equation lies in the assumption that
particles (such as electrons) undergo randommotion within the
material. To overcome the difficulty in estimating the relaxation
time, the deformation potential theory is used in a theoretical
context.

The electronic transport is dened through the electrical and
heat currents Je and JQ as:

Je = sE − sSVT (11)

JQ=TsSE − k0VT (12)

where s is the electrical conductivity, S is the Seebeck coeffi-
cient, k is the thermal conductivity, E is the electric eld, and VT
is the temperature gradient. By expressing a simplied trans-
port distribution X, the transport properties are easily
computed through:

XabðEÞ ¼ 1

Uc

X
k

X
n

vaknv
b
knskndðE � 3knÞ (13)

The s and S are computed obeying equations which are
termed as a function of chemical potential (m) and
temperature (T).24

sabðT ;mÞ ¼ 1

U

ð
sab

�
� vf0ðT ; 3;mÞ

v3

�
d3 (14)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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SabðT ;mÞ ¼ 1

eTUsabðT ;mÞ
ð
sabð3Þð3� mÞ

�
� vf0ðT ; 3;mÞ

v3

�
d3

(15)

sabð3Þ ¼ 1

N

X
i;k

sabði; kÞ dð3� 3i;kÞ
dð3Þ (16)

sab

	
i; ~k



¼ e2si;kna

	
i; ~k



nb

	
i; ~k



(17)

Here, a and b denote tensor components, e represents the
elementary charge, and f0 is the Fermi-Dirac distribution func-
tion. The symbol U refers to the volume of the unit cell, m is the
chemical potential, and s is the relaxation time, assumed
constant at 10−14 s. The group velocity components, indicated
as naði; ~kÞ, are obtained from the electronic band structure.
When s is considered constant and independent of the wave
vector ~k and carrier energy, it cancels out in the ratio between
the two integrals used in the Seebeck coefficient calculation.25

The use of a constant relaxation time (s = 10−14 s) is a standard
and practical approximation in Boltzmann transport modeling,
particularly for high-throughput screening, as it enables a focus
on the intrinsic electronic-structure-driven trends that govern
thermoelectric behavior.26 This assumption is most appropriate
for scattering mechanisms with weak energy dependence; such
as neutral impurity or alloy scattering; and serves as a reason-
able rst-order approximation at elevated temperatures where
acoustic phonon scattering dominates and its energy depen-
dence becomes less pronounced. While this simplication
omits the full complexity of energy-dependent scattering from
acoustic and optical phonons or ionized centers,27,28 it remains
sufficient for the comparative analysis pursued here. As di-
scussed by Singh and co-workers,29 BoltzTraP-based calcula-
tions under constant s are most reliable for identifying
qualitative and relative trends in transport properties rather
than absolute ZT magnitudes, which may deviate near the
optimized chemical potential where multiple scattering chan-
nels compete. Therefore, the ZT values reported in this work
represent indicative trends, not experimentally calibrated
maxima, and the large Seebeck coefficients observed for Na3Bi
arise directly from its Dirac-like band dispersion and low
density of states near the Fermi level.
2.4 Machine learning models

Random Forest is a non-parametric ensemble learning
method30,31 composed of multiple decision trees, each trained
on a bootstrap sample of the data with randomly selected
subsets of features. The regression prediction is an average over
all trees:32,33

ŷ ¼ 1

N

XN
i¼1

TiðxÞ (18)

where, ŷ predicted output (e.g., ZT), N: number of trees in the
forest, Ti(x): output of the i-th decision tree for input x.

Neural Networks,34,35 by contrast, consist of layers of inter-
connected nodes that transform the input through weighted
© 2025 The Author(s). Published by the Royal Society of Chemistry
sums and nonlinear activation functions. The basic structure
used in this study is:

ŷ = f(W2$ReLU(W1x + b1) + b2) (19)

where, x: input feature vector (e.g., S, s, k), W1, W2: weight
matrices.,b1, b2: bias vectors, ReLU(z) = max(0,z): activation
function, f: output activation (identity for regression), ŷ: pre-
dicted ZT.

Neural networks can capture complex, highly nonlinear
relationships, but require careful regularization and sufficient
data to avoid overtting.
3. Results and discussion
3.1 Crystal structure and optimization

Fig. 1 shows the optimized crystal structures of (a) tetragonal
NaBi, (b) hexagonal NaBi3, and (c) cubic Na3Bi, obtained
through rst-principles calculations using density functional
theory (DFT) with spin–orbit coupling (SOC). Structural relaxa-
tions were performed using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm36 until the total energy converged
below 10−8 Ry and Hellmann–Feynman forces on each atom
dropped below 10−4 Ry Bohr−1.

To make sure that the forces, stress, and electronic proper-
ties converged correctly, we used a plane-wave energy cutoff of
80 Ry and a Monkhorst–Pack grid of 12 × 12 × 8.37 Table 1
shows the optimised lattice constants and the thermodynamic
properties that go with them. The relaxed lattice parameters for
tetragonal NaBi were a= 3.4052 Å, c= 4.8671 Å, and the c/a ratio
was 1.4293. This corresponds to a unit cell volume of 56.44 Å3.
The predicted formation energy is −0.381 eV/atom, which
means that the system is moderately thermodynamically stable.
Hexagonal NaBi3, on the other hand, has a = 6.9326 Å, c =

5.7899 Å, and a lower c/a ratio of 0.8351. It also has a much
larger volume of 240.98 Å3 and a more negative formation
energy of −0.498 eV per atom, indicating higher thermody-
namic stability. The cubic Na3Bi structure has a lattice constant
of a = 7.6478 Å, a volume of 447.31 Å3, and a formation energy
of −0.482 eV per atom. This is in line with previous experi-
mental and theoretical studies that demonstrated it was a very
stable 3D Dirac semimetal.38,39 We employed the standard
method for determining out the formation energies:

Eform ¼
EtotðcompoundÞ �P

i

niEðelementiÞP
i

ni
(20)

where Etot is the total energy of the compound, ni is the number
of atoms of element i, and E(elementi) is the energy of each
elemental reference in its standard state. All three phases have
negative formation energies, which means that the compounds
are thermodynamically stable against breaking down into their
constituent elements. This is in line with the rules set out in
materials discovery frameworks like the Materials Project40 and
AFLOW.41 The rising formation energy from NaBi to NaBi3
suggests that adding more Bi atoms could make the structure
more stable by making the Na–Bi bonds stronger and spreading
RSC Adv., 2025, 15, 42034–42050 | 42037
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Fig. 1 Optimized crystals structures of (a) NaBi tetragonal, (b) NaBi3 hexagonal and (c) cubic Na3Bi using GGA-PBE + SOC.

Table 1 Optimized lattice parameters (a, c, c/a), unit cell volumes, and formation energies of NaBi (tetragonal), NaBi3 (hexagonal), and Na3Bi
(cubic) from DFT-GGA + SOC calculations. Experimental lattice constants (where available) are included for comparisona

Compound & structure Source a (Å) c (Å) c/a Volume (Å3)
Formation energy
(eV per atom)

NaBi – tetragonal (P4/mmm) This work (DFT) 3.4052 4.8671 1.4293 56.4359 −0.381
Exp44 3.46 4.80 1.39 57.5 −0.329
DFT44 3.42 4.89 1.43 57.6 −0.366

NaBi3 – hexagonal (P63/mmc) This work (DFT) 6.9326 5.7899 0.8351 240.9801 −0.498
Exp38 5.448 9.655 1.77 248.2 −0.495
DFT38 5.458 9.704 1.78 251.0 −0.367

Na3Bi – hexagonal (P63/mmc) DFT43 5.448 9.655 1.77 248.2 —
DFT45 5.37 9.64 1.80 240.7 —

Na3Bi – cubic (Fm�3m) This work (DFT) 7.6478 — — 447.3109 −0.482

a Note: Na3Bi is typically reported in hexagonal structure (P63/mmc) in literature. This study focuses on the cubic polymorph (Fm�3m).
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the charge more evenly. These results show that the Na–Bi
family has a wide range of structures and is stable when it
comes to thermodynamics. This gives us a reason to look into
their electronic, topological, and optoelectronic properties
more closely.

To validate the reliability of our DFT-GGA + SOC approach,
we compared the optimized lattice parameters with available
experimental values, as shown in Table 1. The deviations are
within ±1%, which shows that the structural models used for
later electronic and thermoelectric analyses are correct. These
minor discrepancies are characteristic of GGA-based func-
tionals and align with prior experimental and theoretical
research on Na–Bi systems.42–48 This comparison strengthens
the accuracy of our theoretical framework in capturing the
essential structural characteristics of Na–Bi compounds.
3.2 Electronic properties

Fig. 2 shows the electronic band structures of three Na–Bi-based
compounds: tetragonal NaBi, hexagonal NaBi3, and cubic
Na3Bi. These were calculated using the HSE06 hybrid functional
with spin–orbit coupling (SOC). For tetragonal NaBi (Fig. 2a),
42038 | RSC Adv., 2025, 15, 42034–42050
the Fermi level is in a band that is only partially lled, which
means that the material exhibits metallic or semimetallic
behavior. The fact that there is band inversion near the G-
point because Bi has a strong SOC means that the material may
have nontrivial topological states, which makes it a possible
topological semimetal. The hexagonal NaBi3 phase (Fig. 2b) has
a band structure that is both dense and highly dispersive, with
many crossings at the Fermi level. This suggests that it is
a metal. The bands near high-symmetry points (G, A, L) are very
complicated, which implies that the Fermi surface is quite rich.
There is no clear band gap, but it is still possible that the
material has nodal-line or Dirac semimetal character, suggest-
ing the need for further topological surface state analysis.

In contrast, cubic Na3Bi (Fig. 2c) shows a well-dened Dirac
crossing along the G–Z direction, slightly above the Fermi level.
This feature is symmetry-protected and robust under SOC,
conrming Na3Bi's status as a prototypical three-dimensional
Dirac semimetal, as previously reported by Shao et al.49 and
conrmed experimentally by Liu et al.1 Na3Bi is frequently
compared to Cd3As2, another 3D Dirac semimetal, which shows
similar linear dispersion and topological protection when
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The electronic band structure of (a) NaBi tetragonal, (b) NaBi3 hexagonal and (c) cubic Na3Bi calculated via HSE + SOC. The horizontal
dashed line indicates the Fermi level, which is set at the zero level.
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inversion and time-reversal symmetry are present.50,51 The effect
of SOC is signicant in all three phases, causing band inver-
sions and topological features. These ndings underscore the
Na–Bi material family as a promising foundation for adjusting
topological phases through crystal symmetry and indicate the
possibility of achieving innovative quantum phenomena
through structural engineering.

Fig. 3 shows the total and projected density of states (TDOS
and PDOS) for tetragonal NaBi, hexagonal NaBi3, and cubic
Na3Bi. This gives us information about their electronic structure
and how their orbitals contribute. In tetragonal NaBi (Fig. 3a), the
total density of states (DOS) exhibits a nite value at the Fermi
level (EF= 0 eV), thereby affirming its metallic character, which is
consistent with the band structure depicted in Fig. 2a. The PDOS
shows that the states close to the Fermi level mostly come from
Bi-6p orbitals, and Na only adds a little bit. The prevalence of Bi-p
states aligns with the potential for SOC-induced band inversion,
a critical hallmark of topological semimetal characteristics.

In the case of hexagonal NaBi3 (Fig. 3b), the TDOS is
signicantly higher than in the tetragonal phase, and the sharp
Bi-p peaks below the Fermi level highlight strong hybridization
and orbital density. Like the tetragonal phase, the Na states stay
close to the Fermi level, while the Bi-p orbitals are the main
contributors close to it. This strengthens the idea that the
material is a complex metal and suggests at the possibility of
Dirac or nodal-line semimetallic properties. The DOS prole for
cubic Na3Bi (Fig. 3c) conrms about its Dirac semimetal
behaviour. There is a strong peak of Bi-p orbitals close to the
Fermi level. This peak is very important in the formation of the
symmetry-protected Dirac nodes, demonstrated by the band
crossing in Fig. 2c. Na-s orbitals contribute mostly in the
conduction band region and are not involved in low-energy
excitations. The prevalent presence of Bi-derived p-states in all
three structures highlights Bi's essential function in affecting
the electronic topology of these compounds. These results align
with prior research on Na3Bi and comparable topological
materials, wherein heavy-element p-orbital states dominate at
the band edges, facilitating SOC-induced nontrivial phases.49–51
3.3 Phonon, vibrational study and thermodynamics

Fig. 4 presents the calculated phonon dispersion curves for (a)
tetragonal NaBi, (b) hexagonal NaBi3, and (c) cubic Na3Bi,
© 2025 The Author(s). Published by the Royal Society of Chemistry
obtained using density functional perturbation theory (DFPT).
The absence of imaginary phonon frequencies in the Brillouin
zones for all three structures conrms their dynamical stability at
zero temperature. For tetragonal NaBi (Fig. 4a), the phonon
branches cover a frequency range of about 5.5 THz, with clear
differences between the acoustic and optical modes. The high
optical phonon frequencies, which are above 4 THz, suggest that
the bonds are strong, especially between Bi and Na atoms. For
hexagonal NaBi3 (Fig. 4b), the phonon spectrum shows a denser
distribution of modes below 4.5 THz, with at bands that stand
out, especially in the optical branches. These at modes suggest
localised vibrational states, possibly resulting from anisotropic
or layered bonding environments, which align with the quasi-1D
chain-like structural motif depicted in Fig. 1b. The phonon
spectrum of cubic Na3Bi (Fig. 4c) is typical of a highly symmetric
rocksalt-type lattice, and the phonon branches go up to almost
5.5 THz. The degeneracies at high-symmetry points like G and X
show that the crystal has cubic symmetry. The clear separation of
the acoustic and optical branches and no evidence of phonon
soening are strong indicators of mechanical and vibrational
stability. These phonon properties back up the structural nd-
ings and prove that the Na–Bi phases being studied are ther-
modynamically and dynamically stable. Furthermore, the
observed dispersion characteristics, such as at optical bands
and symmetry-induced degeneracies, can directly affect thermal
transport and electron–phonon coupling, which are essential for
describing superconductivity, thermoelectric performance, or
phonon-limited mobility in these topologically signicant
systems. Comparable behaviour has been observed in other Bi-
containing compounds, wherein heavy elements and signi-
cant spin–orbit coupling affect both lattice dynamics and elec-
tronic structure.52–54

We used phonon-based quasiharmonic calculations to look
at the thermodynamic stability and temperature-dependent
behaviour of tetragonal NaBi, hexagonal NaBi3, and cubic
Na3Bi. The results are shown in Fig. 5 and 6. Fig. 5 displays the
computed heat capacity at constant volume (Cn) and entropy (S)
up to 3000 K. All three structures show Cn rising and then
levelling off, which is what the Debye model suggests ought to
occur. This means that all of the phonon modes are lled at
higher temperatures. Tetragonal NaBi reaches a saturation Cn of
about 52 J mol−1 K−1, hexagonal NaBi3 goes over 100 J mol−1

K−1, and cubic Na3Bi stays stable at about 100 J mol−1 K−1.
RSC Adv., 2025, 15, 42034–42050 | 42039
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Fig. 3 The electronic TDOS and PDOS for (a) NaBi tetragonal, (b)
NaBi3 hexagonal and (c) cubic Na3Bi calculated via HSE + SOC. The
horizontal dashed line indicates the Fermi level, which is set at the zero
level.
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These trends show that the atoms in the series are getting
increasingly complicated and have more ways to vibrate.
Entropy increases monotonically with temperature, with
42040 | RSC Adv., 2025, 15, 42034–42050
hexagonal NaBi3 having the highest entropy (∼470 J mol−1 K−1

at 3000 K) because its unit cell is bigger and its phonon spec-
trum is richer.

Fig. 6 shows the Helmholtz free energy (A = E − TS), the
internal energy (E), and the entropic contribution (−TS). With
increasing temperature, the internal energy of all compounds
increases while the Helmholtz free energy (A) decreases, high-
lighting the stabilizing role of entropy. NaBi3 has the most
negative Helmholtz free energy at high temperatures, which
supports its superior thermodynamic stability and is consistent
with its lowest DFT-calculated formation energy (−0.498 eV per
atom). The−TS term is very large in all three compounds, which
shows that lattice entropy plays a big role in how they behave
thermally. These trends correspond effectively with observa-
tions in structurally and chemically similar systems. Bi2Te3 and
Sb2Te3, which are well-known thermoelectric materials, have
similar Cn saturation behaviour (about 125–130 J mol−1 K−1)
and high entropy because they have heavy atoms and strong
anharmonicity.54,55 PbTe, another standard thermoelectric, has
similar levels of entropy (∼400–450 J mol−1 K−1) because it has
so optical phonons and polar bonding.56 Furthermore,
NaSnBi, a topological compound structurally related to NaBi,
exhibits thermal behavior governed by strong SOC and vibra-
tional anisotropy.57,58 Similar phonon stability and free energy
trends have also been reported for Na3Bi and Cd3As2, both
known topological Dirac semimetals, reinforcing the predictive
accuracy of the current phonon-based thermodynamic
analysis.59,60
3.4 Thermoelectric properties

We used Boltzmann transport theory under the constant
relaxation time approximation to look at the electronic trans-
port coefficients of NaBi-based compounds in order to see the
way that they performed as thermoelectric materials. Fig. 7, 8,
and 9 respectively present the calculated electrical conductivity,
Seebeck coefficient, and electronic thermal conductivity as
functions of chemical potential at three representative
temperatures: 100 K, 500 K, and 950 K. Fig. 7 shows the elec-
trical conductivity (s) behavior for tetragonal NaBi (a), hexag-
onal NaBi3 (b), and cubic Na3Bi (c). All three compounds show
metallic properties, with s values as high as 3 × 105 (U m)−1

near the Fermi level, especially at low temperatures (100 K).
Tetragonal NaBi and cubic Na3Bi exhibit elevated s across
a wide spectrum of chemical potential, which is ascribed to
their more compact band structures in proximity to the Fermi
level. As the temperature rises, thermal smearing dampens the
amplitude of conductivity modulations. This is especially clear
in hexagonal NaBi3, which has a relatively at s prole, which
means that its electronic structure is less dispersive. Fig. 8
shows the Seebeck coefficient (S), which is an important
number for thermoelectric applications. The Seebeck coeffi-
cients of tetragonal and hexagonal NaBi phases are moderate
(∼±200 mV K−1), but cubic Na3Bi has very high and very tunable
values, reaching up to ±1200 mV K−1 near the Fermi level at 100
K as its band crossings are linear and its dispersion is Dirac-
like. These values are typical for topological semimetals,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Phonon dispersion curves of (a) tetragonal NaBi, (b) hexagonal NaBi3, and (c) cubic Na3Bi phases.
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where bipolar conduction can greatly increase S in conned
energy windows.61 The sign change of S around m = 0 is crucial
because it shows ambipolar behaviour, which means that both
p-type and n-type conduction may occur depending on the
doping. Among the three, Na3Bi demonstrates the most prom-
ising Seebeck response, especially under electron doping
conditions. Fig. 9 depicts the electronic component of thermal
conductivity (ke), which increases with temperature and carrier
concentration. Tetragonal NaBi and cubic Na3Bi exhibit ke

values up to 25 W m−1 K−1 at 950 K near high-energy doping
regimes, whereas hexagonal NaBi3 retains signicantly lower
values (<10 W m−1 K−1), which may be advantageous in
reducing total thermal losses and enhancing ZT (thermoelectric
gure of merit) when lattice contributions are also minimized.
When comparing the three structures, cubic Na3Bi clearly
exhibits superior thermoelectric characteristics, with high See-
beck coefficient, moderate to high electrical conductivity, and
manageable electronic thermal conductivity. These ndings,
combined with its previously discussed topologically nontrivial
electronic structure and dynamical stability, make it a strong
candidate for topological thermoelectric applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Hexagonal NaBi3, while less conductive, benets from lower ke,
which can improve thermoelectric performance if lattice
thermal conductivity is minimized. Tetragonal NaBi appears to
lie between the two, with balanced but less extreme transport
characteristics. These ndings correspond with studies on
topological materials like Bi2Te3, SnSe, ZrTe5, and Cd3As2,
where mechanisms such as band convergence, Dirac disper-
sion, or band inversion result in enhanced Seebeck responses
and optimised ZT values.61–64 Na3Bi has been recognised as a 3D
Dirac semimetal exhibiting adjustable thermoelectric proper-
ties through alloying or strain engineering.38,65

To evaluate the thermoelectric efficiency of the investigated
Na–Bi compounds, we calculated the dimensionless gure of

merit ZT ¼ S2sT
k

at three representative temperatures: 100 K,

500 K, and 950 K. This was done using the extracted values of
the S, s and ke from our Boltzmann transport calculations. We
assumed that all materials had a constant lattice thermal
conductivity of 1.5 WmK−1, which is in line with what has been
reported for Bi-based compounds. The resulting trends show
that the three phases have very different thermoelectric
RSC Adv., 2025, 15, 42034–42050 | 42041
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Fig. 5 The temperature-dependent thermodynamic properties of (a)
tetragonal NaBi, (b) hexagonal NaBi3, and (c) cubic Na3Bi were found
using phonon calculations. The graphs show how heat capacity at
constant volume (Cn) and entropy (S) change with temperature up to
3000 K. All compounds show the expected saturation of Cn at high
temperatures, which is in line with the Dulong–Petit limit. The entropy
rises steadily as the temperature rises. NaBi3 has the highest values
because it has more complex atoms.

Fig. 6 Helmholtz free energy (A), internal energy (E), and entropic
contribution (–TS) versus temperature for (a) tetragonal NaBi, (b)
hexagonal NaBi3, and (c) cubic Na3Bi. The free energy decreases with
increasing temperature in all cases, driven primarily by the –TS term.
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behaviour. Among the investigated structures, cubic Na3Bi
demonstrates the most promising thermoelectric performance
at low and intermediate temperatures. It achieves a peak ZT of
42042 | RSC Adv., 2025, 15, 42034–42050
0.53 at 500 K, driven by a combination of exceptionally high
Seebeck coefficients (up to 650 mV K−1 at 100 K) and moderate
electrical conductivity. However, its thermoelectric efficiency
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Calculated electrical conductivity (s/s) as a function of chem-
ical potential for (a) tetragonal NaBi, (b) hexagonal NaBi3, and (c) cubic
Na3Bi at 100 K, 500 K, and 950 K.

Fig. 8 Seebeck coefficient (S) versus chemical potential for (a)
tetragonal NaBi, (b) hexagonal NaBi3, and (c) cubic Na3Bi at 100 K, 500
K, and 950 K. Cubic Na3Bi shows highly enhanced and tunable See-
beck response with values exceeding ±1000 mV K−1 near the Dirac
point, indicative of its topological semimetal nature.
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decreases to ZT z 0.11 at 950 K due to a signicant rise in
electronic thermal conductivity, a known limitation of topo-
logical semimetals with metallic character. Tetragonal NaBi, on
the other hand, exhibits more balanced behavior across the
temperature range, reachinga maximum ZT of 0.29 at 500 K,
which decreases to 0.13 at 950 K as ke increases and S saturates.
Its relatively moderate Seebeck coefficient and stable s allow it
© 2025 The Author(s). Published by the Royal Society of Chemistry
to maintain a reasonable ZT across the studied range. Hexag-
onal NaBi3 has the lowest s and S values overall, but it has
a lower ke, which means that its ZT slowly but steadily improves
RSC Adv., 2025, 15, 42034–42050 | 42043
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Fig. 9 Electronic thermal conductivity (ke) as a function of chemical
potential for (a) tetragonal NaBi, (b) hexagonal NaBi3, and (c) cubic
Na3Bi. Na3Bi and NaBi exhibit higher ke at high doping levels, while
NaBi3 remains low across the range, advantageous for thermoelectric
performance.
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with temperature, going from 0.03 at 100 K to 0.21 at 950 K. This
means that although its electrical transport isn't as efficient, its
lower thermal losses could make it useful in thermoelectric
42044 | RSC Adv., 2025, 15, 42034–42050
applications if more kl reduction methods (like alloying or
nanostructuring) are used. These results show that cubic Na3Bi
is the most suitable thermoelectric candidate below 600 K given
that it has a Dirac-like band structure and a high Seebeck
response. However, tetragonal NaBi and hexagonal NaBi3 may
become more competitive for use at high temperatures because
they have lower ke and a more stable thermoelectric response.
These results are in line with what has been seen in other
topological thermoelectric materials, like ZrTe5, Cd3As2, and
engineered Na3Bi alloys, which show higher ZT through band
structure tuning and phonon engineering. In general, the
results show that the Na–Bi family can be tuned thermo-
electrically and that there are many ways to improve their
performance through electronic or phononic design.
3.5 Machine learning-based prediction and analysis of
thermoelectric performance in cubic Na3Bi

To complement the insights obtained from density functional
theory (DFT) and Boltzmann transport calculations, we
employed machine learning (ML) regression models to predict
the dimensionless thermoelectric gure of merit, ZT, from
temperature-dependent transport properties of cubic Na3Bi.
DFT gives us a microscopic view, while ML lets us quickly make
predictions, analyse how sensitive features are to changes, and
make predictions across a range of parameters. In this study, we
utilised two supervised machine learning models: Random
Forest and a fully connected Neural Network aiming to evaluate
their predictive accuracy, interpretability, and conformity with
established physical behaviour.

3.5.1 Dataset construction and feature engineering. The
dataset was created from rst-principles calculations of the
thermoelectric transport coefficients for cubic Na3Bi at three
temperatures: 100 K, 500 K, and 950 K, which cover a wide range
of temperatures, from very low to very high (Table 2). By taking
samples from 101 chemical potentials between −1.5 eV and
+1.5 eV, we got 101 data points for each temperature. We
divided the dataset into two parts: 75% for training (76 points)
and 25% for testing (25 points). We trained and tested models
separately at each temperature. The input features for each
temperature were:

Seebeck coefficient: S in mV K−1.
Electrical conductivity: s in S m−1.
Thermal conductivity k in W m−1 K−1.
These features were selected because they inuence ther-

moelectric efficiency and result from ab initio transport calcu-
lations. Even though ZT can be calculated analytically from
these parameters, the ML models are made to learn how they
interact with each other in a complex, nonlinear, and
temperature-dependent way across chemical potential space.
This lets us use SHAP values for efficient surrogate prediction
and sensitivity analysis, providing both accuracy and inter-
pretability that goes beyond the direct formula.

3.5.2 Training strategy and model parameters. Each model
was trained independently for each temperature using a 75%/
25% train-test split. Input features for NN were standardized via
z-score normalization.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Estimated thermoelectric properties and dimensionless figure of merit (ZT) for tetragonal NaBi, hexagonal NaBi3, and cubic Na3Bi at 100
K, 500 K, and 950 K, using extracted Seebeck coefficient (S), electrical conductivity (s), and electronic thermal conductivity (ke). A constant lattice
thermal conductivity of 1.5 W m−1 K−1 was assumed for all compounds

Compounds Temperatures (K) S (mV K−1) s (S m−1) ke (W m−1 K−1) kl (W m−1 K−1) Total k (W m−1 K−1) ZT

Tetragonal NaBi 100 90 1.5 × 105 5 1.5 6.5 0.19
500 130 1.2 × 105 16 1.5 17.5 0.29
950 180 1.0 × 105 22 1.5 23.5 0.13

Hexagonal NaBi3 100 40 8.0 × 104 2.5 1.5 4.0 0.03
500 70 6.0 × 104 6 1.5 7.5 0.20
950 90 5.0 × 104 8 1.5 9.5 0.21

Cubic Na3Bi 100 650 1.0 × 105 7 1.5 8.5 0.50
500 400 1.1 × 105 15 1.5 16.5 0.53
950 500 1.0 × 105 20 1.5 21.5 0.11
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Hyperparameters for both models were optimized via grid-
based manual tuning. We changed the number of estimators
for RF and used the mean squared error criterion to nd the
best balance between performance and complexity. We chose
100 trees as the best number. We used a two-layer dense
architecture (16 neurons each) with ReLU activations and
trained the NN with the Adam optimiser. To avoid overtting,
early stopping (patience = 20 epochs) was used. We chose these
settings aer testing RMSE and R2 on validation splits over and
over again, which performed successfully given the dataset's
size.

3.5.3 Parity plots and predictive performance. The perfor-
mance of both models on the test set is summarized in Table 3.
Parity plots (Fig. 10) also correspond to test predictions,
showing the correlation between predicted and true ZT values.
For clarity, we now include a comparison of training and test
errors (R2 and RMSE). The fact that the training and test metrics
are remarkably similar shows that both models work well in
general, but RF is preferred due to its resistance to overtting at
low temperatures. The RF model consistently proved more
accurate than the NN, especially at 100 K, where the NN did not
t the data well. The NN performed substantially better at
higher temperatures (500 K and 950 K), almost matching the
RF.

This trend shows that the transport properties become
smoother and less noisy at higher temperatures. This is
advantageous for models like NNs, which are sensitive to data
noise. We observe that tree-based ensemble models, like RF, are
Table 3 Performance metrics (R2 and RMSE) of Random Forest and
Neural Network models in predicting ZT for cubic Na3Bi at 100 K, 500
K, and 950 K using the test set. Models were trained on 75% of the data
and evaluated on the remaining 25%

Temp (K) Model R2 (train) R2 (test) RMSE (train) RMSE (test)

100 RF 0.984 0.971 0.122 0.160
100 NN 0.847 0.791 0.189 0.160
500 RF 0.995 0.994 0.037 0.049
500 NN 0.965 0.947 0.053 0.049
950 RF 0.998 0.998 0.012 0.014
950 NN 0.997 0.996 0.015 0.014

© 2025 The Author(s). Published by the Royal Society of Chemistry
ideal for small, structured datasets because they are resistant to
overtting. In contrast, the NN model performed better at
higher temperatures, where the transport trends are smoother.

3.5.4 SHAP analysis and feature sensitivity. We employed
SHAP to interpret the RF model. SHAP values quantify the
marginal contribution of each feature to the model output by
computing Shapley values from cooperative game theory.

Fig. 11 shows SHAP summary plots for each temperature. In
all cases, the Seebeck coefficient was the most important factor,
which is in line with its role as a quadratic term in the ZT
formula. The SHAP values also showed the effect of k at 100 K,
since it changes more at low temperatures. At 950 K, s was more
important because it was the main factor in total heat transport
and Joule heating losses at high temperatures.

These ML models not only give accurate ZT predictions, but
they also give quantitative information about how to design
materials. The SHAP and parity plots back up the well-known
rules:

� At all temperatures, it is important to maximise the See-
beck coefficient.

� At high T, electrical conductivity becomes more important.
� Thermal conductivity, which is always inversely related to

ZT, is more important at cryogenic temperatures where k

usually dominates the denominator.
� RF is better in this case because it can work with small

structured datasets that do not have many features. NN per-
formed similarly at high temperatures but tended to undert at
low temperatures. These ndings indicate that RF is more
appropriate for initial ML modelling of thermoelectrics,
whereas neural networks may be advantageous for larger,
noisier datasets with additional descriptors (e.g., atomic struc-
ture, bonding metrics, etc.).

This machine learning framework can be readily extended
to predict ZT for related materials (e.g., Na3Bi alloys, strain-
tuned structures, or doped variants). Incorporating addi-
tional features such as electronic density of states, effective
masses, or band gap descriptors could further improve
generalizability. Moreover, hybrid models combining tree-
based learning with deep feature extraction (e.g., graph
neural networks) offer promising avenues for interpretable,
data-driven thermoelectric design. This ability to understand,
RSC Adv., 2025, 15, 42034–42050 | 42045
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Fig. 10 Parity plots showing predicted versus actual ZT values using Random Forest (left) and Neural Network (right) models at (a) 100 K, (b)
500 K, and (c) 950 K.
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along with the ability of RF and NN models to make predic-
tions, supports the idea that ML is not redundant but rather
helpful, especially in complicated thermoelectric systems
42046 | RSC Adv., 2025, 15, 42034–42050
where the interactions between transport coefficients are not
linear and depend on temperature.

The remarkable thermoelectric properties exhibited by Na3Bi
in proximity to its Dirac point warrant a comparison with
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 SHAP summary plots illustrating feature importance in predicting ZT at (top) 100 K, (middle) 500 K, and (bottom) 950 K.
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established theoretical models for Dirac materials. The Tang-
Dresselhaus theory gives a full picture of how thermoelectric
transport works in quantum-conned Dirac systems. It says that
the Seebeck coefficients will be higher because of the unique
linear dispersion and density of states near Dirac points.66–70

Our results in bulk 3D Na3Bi exhibit conceptually coherent
behaviour; the exceptionally high Seebeck coefficients (reaching
±1200 mV/K) we observe arise from identical fundamental
physics: linear band dispersion and the disappearance of
density of states at the Dirac energy. While the material reali-
zation differs (3D bulk crystal vs. 2D quantum-conned
systems), the underlying mechanism of enhanced thermoelec-
tric response near Dirac points appears universal. Moreover, the
integrated DFT-ML methodology developed in this work
provides a general framework that can be directly applied to
study thermoelectric properties in the Dirac materials described
by the Tang-Dresselhaus theory. Our approach, which combines
accurate electronic structure calculation with machine learning
© 2025 The Author(s). Published by the Royal Society of Chemistry
surrogate modeling, is particularly well-suited for exploring the
complex parameter space of engineered Dirac systems,
including doping, strain, and quantum connement effects.
The SHAP interpretability analysis further offers a data-driven
means to validate theoretical predictions about feature impor-
tance in these systems.

4. Conclusion

This work provides a comprehensive multi-scale investigation
of Na–Bi compounds by combining density functional theory
and machine learning models. First-principles calculations
elucidated the crystal structures, electronic topologies, phonon
dynamics, and thermoelectric transport of tetragonal NaBi,
hexagonal NaBi3, and cubic Na3Bi. Our results conrm that
cubic Na3Bi exhibits superior thermoelectric potential at inter-
mediate temperatures due to its enhanced Seebeck response
and Dirac semimetallic nature. Additionally, by integrating
RSC Adv., 2025, 15, 42034–42050 | 42047
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machine learning models trained on DFT-calculated data, we
demonstrated that Random Forest and Neural Network models
can reliably predict ZT across varying temperatures, with RF
models showing superior performance at low temperatures.
The SHAP interpretability framework further claried the rela-
tive feature importance, reinforcing known physical principles
and providing data-driven insights. These ndings showcase
the power of ML in augmenting rst-principles calculations, not
only by predicting ZT efficiently, but also by quantifying feature
contributions and offering a framework that is extensible to
doped or unexplored Na–Bi derivatives. Future research may
apply this methodology to Na3Bi alloys, doped systems, or
strained structures, facilitating the interpretable and efficient
design of topological thermoelectrics via hybrid physics-
informed machine learning workows. This framework can
easily be used with other types of Dirac materials, such as the
quantum-conned systems described by the Tang-Dresselhaus
theory. This makes it possible to compare different Dirac
material platforms.
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