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Elaboration and synthesis of the whitlockite phase
using limestone dust: in vitro bioactivity for
biomedical applications
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Calcium silicate-based bioceramics have attracted attention in biomedical applications due to their calcium
and silicon contents, which are essential for bone health. Whitlockite (WH), the second most abundant
inorganic component of bones after hydroxyapatite (HAP), constitutes 20-35% of bones by weight and
exhibits excellent biological properties, making it particularly attractive for tissue engineering. It is
therefore essential to synthesize the WH phase using cost-effective and eco-friendly by-products. This
study aims to synthesize the whitlockite phase using dicalcium silicate (larnite, Ca,SiO,4). Dicalcium
silicate was synthesized from a mixture of limestone dust (LD), a by-product consisting essentially of
calcium carbonate (CaCOs), and soda lime glass powders, as a source of silicon dioxide (SiO,).
Additionally, the surface reactivity and bioactivity of the composite sample were evaluated in vitro by
immersing it in artificial saliva (SA) and in a simulated body fluid (SBF) for time periods ranging from 1
hour to 5 hours. The mineralogical and microstructural properties of the samples were characterized
using XRD, FTIR and SEM analysis techniques. The characterization of the obtained powders indicated
that the whitlockite phase synthesized through a co-precipitation method exhibited good bioactivity
both in artificial saliva (SA) and simulated body fluid (SBF). Moreover, the analysis revealed the
development of a hydration phase of rosenhahnite (CazSizO10H;) and the formation of a hydroxyapatite
(Cas(POy4)3(OH)) phase within 1 hour of immersion in both bioactive media. The morphology of the
samples was analyzed using SEM, which showed significant grain growth and consolidation after 1 hour
of immersion in artificial saliva and simulated body fluid. After 5 hours, the grains appeared to be well
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1. Introduction

Whitlockite (WH) is the second-most major bone mineral,
which is attracting interest for its application in bone regener-
ation as it promotes growth and supports bone tissue develop-
ment from stem cells.' Magnesium whitlockite (WH:
Ca;sMg,(HPO,),(PO,);,) is an orthophosphate compound that
incorporates both calcium (Ca®") and magnesium cations
(Mg>") and phosphate anions (HPO,>"); it is formed by partially
exchanging magnesium ions with calcium ions in the crystal
structure of calcium orthophosphate.” Whitlockite (WH) is
a biomaterial present in bone and dentin,® and it has also been
identified in salivary stones with apatites.* Although rare in
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connected with each other, indicating good consolidation.

nature, it constitutes 20-35% of human bones, after hydroxy-
apatite, especially in bones subjected to high loads.® Dentin
contains 26-58% of whitlockite, and Mg-whitlockite is a bi-
omineral commonly found in mineralized dental tissues.
Additionally, whitlockite is recognized as the fastest-dissolving
mineral phase of the bone tissue.> In particular, compared
with hydroxyapatite (HAP) under acidic conditions, whitlockite
(WH) is a relatively stable material.® Furthermore, it has been
shown to be more effective than hydroxyapatite in stimulating
osteogenesis,” and it is a promising bioceramic for bone
replacement despite its complex structure.®*® It has been shown
in a recent study that magnesium ions (Mg>"), a well-known
inhibitor of HAP growth, play an essential role in the forma-
tion of WH."* Several methods have been explored to synthesize
the whitlockite phase, including hydrothermal, sol-gel, wet,
and solid-state routes, with varying results obtained in terms of
purity and ionic composition."” Nevertheless, these methods
frequently encounter limitations, such as the need for high
temperatures,” low thermodynamic stability of WH,"” or
a narrow pH range; for example, the sol-gel route requires heat
treatment at temperatures up to 1100 °C.** Similarly, synthesis
under hydrothermal conditions requires a high temperature to
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achieve the desired purity.** Furthermore, attempts to incor-
porate magnesium into other calcium phases have only resulted
in multiphase mixtures.'® In wet synthesis, achieving simulta-
neous control of parameters remains a challenge.”” Thus,
despite numerous studies, obtaining a WH with a controlled
composition remains complex.” Previous studies have shown
that Ca-Si-Mg-containing bioceramics exhibit high bioactivity,
making CaO-MgO-SiO, systems promising third-generation
bone graft substitutes for tissue engineering.'® These ceramics
not only exhibit superior biological performance but also
enhance bone repair and regeneration capabilities upon the
addition of bone progenitor cells and growth factors.”” For
example, clinoenstatite (MgSiO;) is a silicate phase with
remarkable mechanical, chemical and biological properties,
making it promising for applications in tissue engineering.'®
Furthermore, calcium silicates such as wollastonite and di-
calcium silicate efficiently release calcium (Ca) and silicon (Si)
ions, confirming their application potential for bone regenera-
tion and replacement, as demonstrated by in vitro and in vivo
studies.' In addition, multiple studies have substantiated the
bioactivity of Ca,SiO, powder.* Dicalcium silicate, particularly
in its B-Ca,SiO, (belite) form, is attracting considerable interest
due to its diverse applications, including in cement, ceramics,
pharmaceuticals, and biomaterials.”* The B-dicalcium silicate
(B-C,S) phase is generally synthesized by calcining a calcium
carbonate/silica mixture at approximately 1000 °C.*> Heat
treatments between 600 and 1000 °C produce this phase,
confirmed by X-ray diffraction and microscopy.”® In a water
vapor atmosphere, the formation of B-C,S can occur at
temperatures as low as 650 °C, while in dry air, it requires at
least 800 °C.** Sintering at 1050 °C allows for the complete
stabilization of the C,S phase.” The addition of zinc and
sequential treatments with rapid cooling improve the
synthesis.>® Grinding with ethanol increases the reactivity of the
precursors and optimizes the process.”” This form (belite) has
been shown to promote the rapid formation of an apatite layer
on its surface when immersed in a simulated body fluid (SBF).>®
Similarly, it induces the precipitation of hydroxyapatite after
immersion in artificial saliva.>® This bioactivity is linked to the
release of Ca”" and SiO,*~ ions, which induce the precipitation
of an apatite layer.*® This formation is observed even in envi-
ronments not rich in calcium and silicon or phosphate.*' The
mechanism is based on the adsorption of phosphate ions, fol-
lowed by their crystallization into apatite.** Several studies have
shown that the formation of hydroxyapatite (HAP) can be
detected after 5 to 6 hours of immersion.*® Other studies indi-
cate that an initial layer of HAP begins to develop after 10 hours,
although its complete maturation requires more time.** These
observations are explained by the intense ionic exchanges that
occur during the first hours in the simulated body fluid.*
Furthermore, microscopic analyses confirm the presence of
HAP after only 5 hours of immersion.*® In this context, a recent
study has shown that mussel shells and soda-lime glass
powders can be used to synthesize dicalcium silicate by a solid—
solid reaction.’” This material, as well as limestone-silica
mixtures, exhibits interesting bioactivity in an SBF solution,
making it promising for implant applications.’® Furthermore, -
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wollastonite obtained from a mixture of limestone and rice
straw ash reveals bioactive properties suitable for implant
applications.* The use of soda-lime-silica glass waste promotes
the formation of bioactive, recyclable glass-ceramics suitable
for dental restoration.***! In contrast to conventional methods
that require high processing temperatures or high-purity
reagents, our approach relies on the use of industrial by-
products, making it more cost-effective and environmentally
friendly. This study investigates the synthesis of whitlockite-
dicalcium silicate (WH-C,S) powder from by-products such as
limestone dust and soda-lime glass powder via a solid-state
reaction, followed by a co-precipitation process. The bioac-
tivity of the WH-C,S powder was examined by immersing it in
artificial saliva (SA) and simulated bodily fluid (SBF) at various
time intervals ranging from 1 hour to 5 hours. The resulting
products were analyzed before and after immersion to assess
the changes in their bioactivity. The mineralogical development
of the synthesized phases was monitored using X-ray diffraction
(XRD) patterns, recorded using Cu Ko radiation with a wave-
length of 1.5406 A, and infrared spectroscopy (FT-IR), and the
microstructure of the samples was examined by scanning elec-
tron microscopy (SEM).

2. Experimental

2.1. Starting materials

Dicalcium silicate (C,S) was synthesized via a solid-state reac-
tion from a reactant mixture of limestone dust (LD), primarily
composed of calcium carbonate (CaCOj3), and soda-lime glass
powders, serving as a source of SiO,, maintaining a Ca/Si ratio
of 2. For this study, the particle size used was less than 40 um.
The synthesis entailed heating finely ground mixtures within
a temperature range of 100 °C to 1000 °C, followed by rapid air
cooling. The thermal treatments were intermittently halted for
grinding, with ethanol used to augment product reactivity, fol-
lowed by rapid cooling in air. The obtained powder (C,S) was
dissolved separately in deionized water. Subsequently, 1 M
phosphoric acid solution (H;PO,, 85%) was added, with a Ca/P
ratio of 1.42. The resulting mixture was stirred for 4 hours at
a temperature of 75 °C. Then, the precipitates were subjected to
vacuum filtration, washed with distilled water, and dried at 80 ©
C. Finally, the powder obtained was subjected to calcination at
a temperature of 700 °C for 4 hours. The prepared samples were
respectively denoted as WH-C,S. To prepare WH-C,S pastes,
distilled water was used as the liquid phase to mix the powders
and enable the setting reactions. The WH-C,S powder was
meticulously combined with distilled water in a liquid-to-
powder (L/P) ratio of 0.6 mL g ', yielding a homogeneous
paste for immersion in diverse settings, including artificial
saliva and simulated bodily fluid.

The simulated body fluid (SBF) and artificial saliva (SA) were
prepared according to the chemical composition of human
body fluids and saliva, with ion concentrations identical to
those of the inorganic components of blood plasma and natural
saliva. The aim of this approach is to assess the in vitro bioac-
tivity of the whitlockite-dicalcium silicate (WH-C,S) bioceramic
and to compare it with the in vivo bioactivity.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Constitution of the artificial saliva solutions employed in the study (SAGF medium)*”

Substances NacCl KCl CacCl,-2H,0 KH,PO, Urea NH,CI NaHCO; Na,SO, 10H,0 KSCN
Conc. (g Lfl) 0.125 0.963 0.227 0.654 0.200 0.178 0.630 0.763 0.189
Conc. (mmol Lfl) 2.14 12.92 1.54 4.81 3.33 3.33 7.50 2.37 1.94

2.2. In vitro bioactivity in artificial saliva

WH-C,S powder was immersed in artificial saliva (SA) for 1, 3,
and 5 hours, yielding WH-C,S-SA1h, WH-C,S-SA3h, and WH-
C,S-SA5h, respectively. As shown in Table 1,7 the AS solution
corresponds to the SAGF medium. 1 M hydrochloric acid and
ultra-pure water (resistivity of 18.2 MQ cm at 25 °C; a total
organic carbon (TOC) content of less than 5 ppb; and ion and
particle contents of less than 1 ppb and 1 particle per mL,
respectively) with a pH of 6.8, which is comparable to that of
natural saliva, were employed to regulate the pH level. To
evaluate the bioactivity of the samples, they were contained in
polyethylene bottles with 10 mL of saliva and incubated at
a stable temperature of 37 £ 2 °C.*?

Table 2 Simulated body fluid (SBF) composition

Concentration/mol m™>

Ton SBF Human blood plasma
Na* 142.0 142.0
K* 5.0 5.0
Mg 1.5 1.5
Ca*" 2.5 2.5
cl- 147.8 103.0
HCO*~ 4.2 27.0
HPO,>~ 1.0 1.0
SO~ 0.5 0.5

Table 3 pH evolution during immersion in artificial saliva (SA) and in
simulated body fluid as a function of the immersion time

Immersion period (h) 1 3 5
PH (artificial saliva) 5.8 6.9 6.9
PH (simulated body fluid) 5.8 6.7 7.2

Table 4 List of abbreviations and their meaning in the present paper

2.3. Invitro bioactivity in simulated body fluid (SBF)

The bioactivity assessment of the WH-C,S powder was carried
out utilizing a simulated body fluid (SBF) at a temperature of 37
+ 2 °C.® The powders were immersed in SBF for various
durations: 1, 3, and 5 hours. The powders were named WH-C,S-
SBF1h, WH-C,S-SBF3h and WH-C,S-SBF5h, respectively. The
SBF solution in this case carefully represents an ion-
concentration medium similar to human blood plasma (as
shown in Table 2). The SBF solution was made up of NaCl,
NaHCO;, KCl, MgCl,, 1 M HCI, CaCl, -6H,0, Na,HPO, and
Na,S0,, corresponding to the Sigma-Aldrich in St. Louis, MO,
USA. The buffer pH based on the HCO; /CO, (or H,CO;) pair
was carefully adjusted to 7.4 with a solution of HCI (1 M).

The pH of each solution (for pH measurement, each point
was measured three times (n = 3)) was regularly monitored
before any sample was withdrawn (Table 3), and subsequently,
the powders were soaked in acetone solution for at least 24
hours to halt the hydration reaction.?® Following air drying, the
samples underwent characterization by FT-IR, SEM, and XRD
investigations to observe the bioactivity of the bioceramic
phases during the immersion period. The abbreviations utilized
in this study are listed in Table 4.

2.4. X-ray fluorescencet table of contents entry

Table 5 indicates the chemical composition of the limestone
dust and soda-lime glass powders obtained by XRF analysis in
this study. Analysis reveals that limestone dust is composed of
52.09% calcium oxide (CaO) by mass, 3.279% by mass of
magnesium oxide (MgO), as well as small proportions of
aluminium oxide (Al,O3), silicon dioxide (SiO,) and other oxides
in minor quantities. Mass loss is measured by taking the mass
of the sample before and after calcination at 1000 °C. The mass
loss observed for limestone dust (40.34% by weight) is due to
the decomposition of calcium carbonate. For soda-lime glass
powder (Table 5), the major element is silicon dioxide (SiO,)
with a mass percentage of 72.75%, followed by calcium oxide

Meaning Abbreviation
Limestone dust LD
Simulated body fluid SBF
Artificial saliva SA
Dicalcium silicate/larnite C,S
Whitlockite WH
Hydroxyapatite HAP

After co-precipitation of dicalcium silicate (C,S) WH-C,S

After immersing the powders (WH-C,S) in SA for 1, 3, and 5 hours
After immersing the powders (WH-C,S) in SBF for 1, 3, and 5 hours

© 2025 The Author(s). Published by the Royal Society of Chemistry

WH-C,S-SA1h, WH-C,S-SA3h, WH-C,S-SA5h
WH-C,S-SBF1h, WH-C,S-SBF3h, WH-C,S-SBF5h
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Table 5 Chemical composition of limestone dust and soda-lime glass
powder (in % by mass)

Elements Limestone dust Glass powder
CaO 52.09 8.61
MgO 3.27 4.09
Na,O 0.069 2.45
Sio, 1.92 78.75
SO; 0.08 0.27
AlLO; 1.21 1.48
SrO 0.02 —
MnO 0.08 —
Fe,0; 0.68 0.43
Tm,O; 0.02 —
P,O; 0.01 —
K,O 0.10 0.43
NiO 0.01 —
Rb,O 0.002 —

Cl — 0.06
TiO, — 0.05
*PF 40.34 10.15
Total 100 100

(7.618%) and then magnesium oxide (3.091%). We also found
elements in trace form, such as aluminum oxide (Al,O3) and
potassium oxide.

3. Results and discussion

3.1. X-ray diffraction

The mineralogical composition of limestone dust is obtained by
XRD (X-ray diffraction). This composition is represented by the
X-ray diffractogram in Fig. 1. The analysis shows that the main
crystalline phases are calcium oxide (CaO, PDF 99-100-7567)
and magnesium silicate (MgSiO3, PDF 99-100-1647).

Fig. 2 shows the X-ray diffractograms of the synthesized C,S
and WH-C,S powders at 1000 °C. The XRD analysis (Fig. 2(a))

—1LD c C: CaCO,
M: MgSiO,
c M
C
iy JJ

l l i A Mfgnesium silicate‘ ,99:100-1647
R — I 1 Dy L1 — -~ . - Ca0,99-100-7567 _
10 20 30 40 50 60 70

2Theta

Fig. 1 X-ray diffractogram of limestone dust (LD).
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Fig. 2 X-ray diffractogram of the C,S (a) and WH-C,S powders (b).

Magnesium silicate ,99-100-1647

1
100

"

confirms the presence of B polymorphs in the monoclinic
crystal system, with the larnite phase (B-Ca,SiO,, PDF 99-000-
5121) exhibiting very intense peaks, clearly indicating its
predominance. Peaks corresponding to magnesium silicate
(MgSiO;, PDF 99-100-1647) are also observed in the di-
ffractogram. After co-precipitation (Fig. 2(b)), a diminution in
the peak intensities of the B-Ca,SiO, and MgSiO; phases is
observed, with the decrease of the B-Ca,SiO, peak mainly
attributed to its dissolution through hydration. This diminu-
tion of B-Ca,SiO, phase is accompanied by the appearance of
characteristic high-intensity peaks of a new phase, whitlockite
(WH: Ca;sMg,(HPO,),(PO,)1, PDF 99-101-1904), indicating its
predominance.

After immersing the powders and air drying, each sample
was subjected to X-ray diffraction (XRD) analysis. X-ray diffrac-
tion patterns of the samples after 1, 3 and 5 hours of immersion
in saliva and simulated body fluid (Fig. 3 and 4) show the
disappearance of the characteristic peaks of the MgSiO; phase,
as well as the reduction in the peak intensities of the larnite

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 XRD diffractograms of WH-C,S-SAlh, WH-C,S-SA3h, and
WH-C,S-SA5h after immersion in artificial saliva (SA).

WH- C,S- SBF5h W W W: CaygMg,(HPO,),(PO,);,
——WH- CS- SBF3h H:Cayo(PO,)g(OH),
B B: B-Ca,Si0,
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_ Whitlockite,99-101-1904
___Larnite, 99-000-5121
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60 70

10 20

2 Theta

Fig. 4 XRD diffractograms of WH-C,S-SBF1h, WH-C,S-SBF3h, and
WH-C,S-SBF5h after immersion in simulated body fluid (SBF).

(B-Ca,Si0,) phase. At the same time, new phases appear. This is
explained by the reaction established between the prepared
bioactive medium (artificial saliva or simulated body fluid) and
the WH-C,S powder during its immersion. The reaction
promotes the hydration and dissolution of the powder, leading
to the formation of rosenhahnite hydration (Ca3Si;O;0H,, PDF
99-100-0578) and hydroxyapatite ((Cas(PO,4);(OH), PDF 99-100-
1253) phases after 1 hour of immersion in SA and SBF,
respectively. We also observe the growth of the characteristic
peaks of the hydroxyapatite phase with immersion in both
bioactive media as a function of time. A significant increase in
the intensity of the peaks associated with the whitlockite phase
is noted with time intervals ranging from 1 hour to 5 hours, in
the case of powders immersed in SBF. In addition, after
immersion in the simulated body fluid (SBF) and artificial saliva

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

(SA), the samples increased the pH of both solutions. The pH
increase is accompanied by a decrease in the intensity of the
characteristic peaks of the larnite (B-Ca,SiO,) and MgSiO;
phases, indicating a significant dissolution of the phases.
Additionally, the characteristic peaks of the Whitlockite phase
in the simulated body fluid are more intense compared to those
for the artificial saliva medium.

3.2. Spectroscopy FTIR

The FTIR spectra of the C,S and WH-C,S powders are shown in
Fig. 5. The absorption bands detected between 800 and
1000 cm ' correspond to the symmetric and asymmetric
vibrations of the Si-O bonds present in the dicalcium silicate
structure,** as well as to the P-O stretching vibrations of the PO,
group of the whitlockite phase.*® The bands located between
502 and 718 cm ™" are attributed to the deformation vibrations
of the O-P-O* and O-Si-O bonds.*” The absorption bands
between 1431 cm™ " and 1460 cm™ " are related to the stretching
vibrations of the CO;> group, indicating the presence of
CaCO;. Finally, the band at 3645 cm ™" corresponds to the O-H
stretching of the water molecules absorbed by our compound,
which is hygroscopic.*® In addition, a very intense OH absorp-
tion band is observed around 3600 cm™!, attributed to the
presence of incorporated water.*

The FTIR spectra of the WH-C,S powders after 1 hour to 5
hours of immersion in artificial saliva and in simulated body
fluid are shown in Fig. 6 and 7, respectively. The spectra of the
powder samples after immersion in artificial saliva and simu-
lated body fluid reveal pronounced similarities, with the
exception of a small difference for the samples immersed for 5
hours, whose peak intensities decreased with increasing time in
comparison with the other spectra. The absorption bands
detected between 800 and 1000 cm ' correspond to the
symmetric and asymmetric vibrations of the Si-O bonds in the
dicalcium silicate structure, while the bands between 400 and

——WH-C,S

500 1000 1500 2000 2500 3000 3500 4000 4500

Wavenumbers(cm™)

Fig. 5 FT-IR spectra of the C,S and WH-C,S powders.
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Fig. 6 FT-IR spectra of the WH-C,S-SAlh, WH-C,S-SA3h, and
WH-C,S-SA5h powders after immersion in artificial saliva (SA).

WH-C,S-SBF5h
—— WH-C,S-SBF3h
—— WH-C,S-SBF1h

500 1000

Wavenumbers(cm™)

1500

Fig. 7 FT-IR spectra of the WH-C,S-SBF1lh, WH-C,S-SBF3h, and
WH-C,S-SBF5h powders after immersion in simulated body fluid
(SBF).

500 cm ' are attributed to the O-Si-O vibrations.®® Further-

more, the absorption peaks detected around 920 cm ™" (ref. 51)
and 922 cm™,%* as well as those located between 1000 and
1140 cm ™!, reveal the presence of the P-O bonds of the HPO,>~
group.® Finally, the absorption bands located between 555 and
603 cm ™' are attributed to the deformation vibrations of the
O-P-O bonds.* The band observed around 721 cm™" can be
attributed to the valence vibration of the Si-O-Si bridge of
rosenhahnite (Ca3Siz0,0H,).” The band at 1636 cm ™ * and the
bands at 1413 and 2362 cm ™' are attributed to the presence of
CO5>~ group.* Finally, the band around 3400 cm ™" corresponds
to the O-H stretching of absorbed water.*®

3.3. Scanning electron microscopy (SEM). The micro-
graphs obtained by scanning electron microscopy (SEM) anal-
ysis of the C,S and WH-C,S samples are shown in Fig. §(a). We
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determined the average thickness of the formed particles (1 pm
+ 0.3 um) from five analyzed areas. The morphology of the C,S
sample reveals near-spherical particles with an average size of
0.18 to 0.53 um, attributed to the dicalcium silicate phase (B-
Ca,Si0,), as confirmed by XRD.*” Additionally, the SEM analysis
exhibits the presence of the particles in the form of a glassy
matrix, confirming the presence of the MgSiO; phase.*® After co-
precipitation (Fig. 8(b)), notable morphological changes are
observed. Specifically, dense, sphere-shaped particles form on
the sample's surface, indicating the presence of the whitlockite
phase. The observed changes in the morphology related to the
bioactive response of this bioceramic (WH-C2S) are ascribed to
a sequence of reactions involving ion exchange, along with
dissolution and precipitation processes.

A particle-size analysis was carried out based on the SEM
images (magnification x10000), revealing a distribution of
grain sizes predominantly smaller than 0.1 pm, with an esti-
mated average equivalent diameter of approximately 91 nm
(Fig. 9 and 10). This fine particle size demonstrates the density
of the material and the controlled particle growth. Porosity
analysis by image thresholding made it possible to obtain
a porosity rate of approximately 15.3%, indicating an overall
compact microstructure but empty intergranular zones.
Furthermore, we determined the average thickness of the
formed particles (1 to 5 &+ 0.3 um) from five analyzed areas. The
results demonstrate that with different immersion time inter-
vals, the products exhibit significantly different morphologies.
Specifically, after 1 hour of immersion in artificial saliva
(Fig. 9(a) and 10(a)), a large number of dense, sphere-shaped
particles were clearly observed on the plates.” Subsequently,
after 3 hours of immersion (Fig. 9(b) and 10(b)), these particles
continued to grow and gradually covered the plates.> Further-
more, after 5 hours of immersion, notable changes in surface
morphology were observed, with the appearance of inter-
connected sinuous paths.® In addition, the morphologies of the
WH material underwent significant changes following its
immersion in a simulated body fluid solution. As illustrated in
Figures (Fig. 9(c) and 10(c)), the spherical crystals developed an
interconnected network structure.** Notably, after 1 hour in the
simulated body fluid, the grains had grown significantly and
were well joined to each other, with notable consolidation
achieved after 5 hours.” This consolidation is attributable to
the immersion duration, which directly influences the forma-
tion of the calcium phosphate layer on the surface of the bi-
oceramic.®* The change in the morphological results of the
bioactive response of our bioceramic (WH-C,S) could be
attributed to a series of reactions involving ion exchanges, as
well as dissolution and precipitation processes. Due to the rapid
ion exchange between the bioactive solution and the bi-
oceramic, which accelerates along with the hydration reaction,
the sample dissolves rapidly when in contact with the bioactive
solution. During this hydration, the concentration of hydroxide
ions (OH") increases. As a result, the conversion of hydrogen
phosphate ions (HPO,>") into phosphate (PO,*>") ions is facili-
tated by the increased OH™ concentration.®* Additionally, the
silicate species in the bioactive solution, mainly in the form of
Si(OH),, react with the bioceramic surface to form silanol
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Fig. 8 SEM images and EDS of C,S (a) and WH-C,S (b) samples after immersion in artificial saliva (SA).

groups (Si-OH), which facilitate the formation of a silica layer.*
As a nucleation agent, this silica layer stimulates the calcium
phosphate layer's subsequent deposition on the bioceramic.
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Moreover, the bioceramic's (WH-C,S) surface has a negative
charge due to the OH™ and PO,*~ ions, and thus, it attracts
calcium ions (Ca**) from the bioactive solution. As a result, the
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(@), WH-C,S-SA3h (b), and WH-C,S-SA5h (c) samples after immersion
in artificial saliva (SA).

surface acquires a positive charge, which promotes and
enhances the growth of the whitlockite phase layer.** Moreover,
the bioactive solution’s calcium (Ca>*) and magnesium (Mg>")
ions provide a second source of calcium and magnesium for the
WH growth. When the ion concentration in the bioactive solu-
tion reaches its limit, crystalline nucleation develops, followed
by crystalline growth.®* Moreover, the Mg>* concentration from
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SBF3h (b), and WH-C,S-SBF5h (c) samples after immersion in the
simulated body fluid (SBF) x5 um and x1 um.

the bioactive solution appears to improve the microstructure
and microhardness of the samples.®® Additionally, the higher
concentrations of Ca®" and Mg”* in the simulated body fluid
compared to those in the artificial saliva promote the predom-
inant growth of the whitlockite phase in the SBF.* Furthermore,
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the WH phase exhibits a good biological response in the
simulated body.*

4. Conclusion

In this study, bioceramic whitlockite was synthesized from di-
calcium silicate using limestone powder as the source of CaCO;
and soda-lime glass powder as the source of SiO,. The results of
this study can be summarized into the following major
conclusions:

- The bioceramic whitlockite exhibited good bioactivity in
both saliva (SA) and simulated body fluid (SBF).

- The formation of the hydroxyapatite phase was observed
after 5 hours of immersion in both artificial saliva and simu-
lated body fluid.

- The predominant presence of the whitlockite phase in SBF
compared to the case in saliva is attributed to its higher
percentage in human blood compared to its percentage in
natural saliva, making it an important component of the human
bone structure.

- The micrographs obtained by SEM and EDS analysis show
that after 1 hour in the simulated body fluid, the grains had
grown significantly and were well joined to each other, with
notable consolidation achieved after 5 hours.

- The whitlockite phase exhibited a good bioactivity response
in the simulated body fluid.

- This study is based on the valorization of industrial by-
products, such as limestone dust and soda-lime glass, as raw
materials, thus proposing a methodological approach that is
both sustainable and economical for the synthesis of
bioceramics.

- The findings indicate that whitlockite-dicalcium silicate
(WH-C,S) bioceramics are suitable for applications in bone
regeneration and repair.

- The future studies will explore biological tests, such as
cytotoxicity and cell viability assessments, to validate the
biomedical potential of the synthesized material.
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