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sive microfluidic cartridge for
point-of-care detection of antibodies in total
capillary blood based on hemagglutination and
machine-learning assisted interpretation

Munawar Jawad, *a Afroza Tabassum Akhi,a Rian Wendling,b Vanessa Redecke,bc

Hans Häckerbc and Bruce Gale a

Point-of-care (PoC) detection of antibodies in blood enables rapid, on-site diagnosis. However, these

devices often face challenges related to user variability due to the requirement of multiple manual

operations. To address this issue, we designed and developed a disposable microfluidic device that

requires minimal user input for rapid detection of SARS-CoV-2 antibodies (ABs) in total blood and

antigens associated with blood types. Here, we present a passive pressure-driven pumping technique

that rapidly mixes blood samples with reagents, delivering results within three minutes. The device

requires 15 mL of capillary blood and can detect SARS-CoV-2 ABs across a concentration range of 0 to

60 mg mL−1. Additionally, we demonstrated the versatility of the microfluidic device by implementing

blood typing functionality, highlighting its potential for broader serological testing applications. We also

developed a support vector machine (SVM) algorithm as a proof-of-concept to demonstrate the

potential application of machine learning (ML)-based analysis to complement visual interpretation of

results. We evaluated the performance and predictive accuracy of the SVM model and compared it to

human interpretations. The analysis showed that the SVM model achieved a statistically significant

improvement in predicting varying degrees of agglutination when compared to human interpretation.

This device addresses the need for a user-friendly, rapid COVID-19 AB testing solution and blood-typing

assay and also provides a model for the future development of diagnostic devices that are integrated

with ML models for improved diagnostic accuracy and accessibility in both clinical and non-clinical

environments.
1. Introduction

The outbreak of COVID-19 has shown that diagnostic tests are
indispensable tools to manage pandemic situations. Serological
assays, designed to detect the presence of specic antibodies
(ABs) against designated antigens, are pivotal in the manage-
ment and understanding of the COVID-19 pandemic and other
diseases. When dealing with infectious diseases, these assays
facilitate the identication of individuals who have been
exposed to the virus, contributing to epidemiological studies
and the development of strategies for disease control and
prevention. Several tests are available for detecting the presence
of ABs against SARS-CoV-2, including the enzyme-linked
immunosorbent assays (ELISA), chemiluminescence
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immunoassays (CLIA), neutralization assays (NA), and lateral
ow immunoassays (LFIA). Although lab-based techniques like
ELISA, CLIA, and NA have high sensitivity and specicity, they
require complex instruments as well as a long turnaround time.
These techniques are also typically costly.1–3 Point-of-care (PoC)
devices address many of these limitations due to their
simplicity, fast sample-to-result time, and cost-effectiveness.4,5

Lateral ow immunoassay (LFIA) is a commonly used point-of-
care test that can detect AB presence in a blood sample and
provide qualitative results. While these tests can be conducted
without requiring sophisticated equipment and expert knowl-
edge, the sensitivity of LFIA is worse than the standards ach-
ieved in laboratory-conducted tests.6,7 Another AB detection
technique used in point-of-care settings is the hemagglutina-
tion test (HAT), a technique in which red blood cells (RBCs)
aggregate in the presence of viruses or antibodies. Typically,
RBCs act as the source of antigens and interact with the glyco-
proteins on the viral surface or the antibodies, leading to the
clumping of RBCs.8–11 Owing to their inherent simplicity, cost-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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effectiveness, and visual interpretability, hemagglutination
assays are of particular interest to researchers.12

Despite their potential, signicant challenges arise when
using hemagglutination tests for point-of-care testing. First,
recently developed PoC devices still involve complex setups and
are not fully suited to be applied in PoC settings due to their
high costs. In a recent study, Qu et al. developed a microow
cytometry-based agglutination immunoassay (MCIA) for point-
of-care quantitative detection of SARS-CoV-2 IgM and IgG anti-
bodies.13 The MCIA technique offers advantages such as a low
limit of detection, a small volume of sample consumption (10
mL), and a compact setup. However, their developed method
requires expert knowledge to perform the assay and takes about
30 minutes. Another HAT study introduces a portable lens-free
imaging system coupled with a particle agglutination assay as
a biosensor for SARS-CoV-2, enabling accurate detection of the
virus in complex samples.14 The proposed biosensor combines
computational imaging and deep learning to image and quan-
tify individual microbeads undergoing agglutination, allowing
for the detection of SARS-CoV-2 levels. Nevertheless, the usage
of integrated electronics (LED arrays and specic optical lters)
comes with high manufacturing cost and complexity, which
does not make the device fabrication process suitable for mass
production. Second, user variability due to the nature of the
operations of some devices can lead to inconsistent test results.
For example, a couple of studies have developed card-based at-
home COVID-19 tests.15,16 These tests offer the advantage of
HAT's simplicity and user-friendliness. Both studies developed
a highly sensitive hemagglutination-based semi-quantitative
assay for detecting SARS-CoV-2 ABs. However, these tests
require that users themselves mix the blood sample with the
reagent and tilt the card, which can lead to inconsistent results
due to variations in how individuals perform the actions.
Therefore, even though card-based assays are suitable for home
testing, the need for manual mixing and tilting leads to vari-
ability that can negatively affect the performance of the assays.

We identied that integrating a single passive method for
both pumping and mixing into at-home tests can mitigate user
variability. In principle, the developed passive technique should
fulll several criteria: it should be simple to perform, able to
pump low-volume uids autonomously, and mix them effi-
ciently and swily. Many studies have explored a variety of
passive pumping techniques, such as capillary pumping,17

surface-tension-driven ow,18 gravity-driven ow,19 osmotic
ow,20 and nger-powered ow.21 However, each of the tech-
niques has its own limitations. For example, since the Reynolds
number (Re) is low in capillary ow, it is not suitable for the fast
mixing of two uids. Moreover, surface-tension-driven ow and
gravity-driven ow require a consistent supply of solutions to
maintain continuous ow, meaning they are not suitable for
low-volume applications.22,23 Osmotic ow, on the other hand,
requires a more complicated setup than the techniques
mentioned above.24 Lastly, nger-powered ow is vulnerable to
inconsistencies since nger pressure can vary from person to
person.23,25 No existing pumping technique meets the criteria
necessary to address the problem of user variability.
© 2025 The Author(s). Published by the Royal Society of Chemistry
To overcome the limitations of existing pumping techniques,
we developed a pressure-driven pumping mechanism that
develops pressure when the assay well caps are closed and that
can be released to accomplish passive mixing of a blood sample
and reagent. Since the caps always lock at the same position
when snapped, the variability from user to user is minimal with
this method. We also designed and fabricated a disposable
microuidic cartridge to be used in point-of-care HAT assays,
which we successfully implemented for the detection of SARS-
CoV-2 ABs in blood. The chip is designed to perform rapid
mixing of RBCs and proteins, requiring only 3 minutes from
sample to result, which is 3 to 5 times faster compared to
available LFIA-based PoC tests. Furthermore, we chose mate-
rials that are inexpensive, do not require complex processing for
device fabrication, and are applicable for roll-to-roll
manufacturing, making the fabrication process suitable for
mass production. Finally, we developed a proof-of-concept
analysis method using a machine learning algorithm, which
overcomes some of the variations caused by the subjective
nature of visual readout. Our developed code demonstrates how
this study can be integrated with articial intelligence (AI)-
based platforms to obtain accurate interpretation. With the
quick turnaround time, cost-effective materials, and scalability
for mass production, our developed “drop-and-forget” micro-
uidic chip holds promise for accessible and efficient point-of-
care diagnostics for a variety of diseases.
2 Materials and methods
2.1 Device materials, clinical sample, and reagent

The device consists of two polyester lms, 3M™ 9960 and 3M™

9972A. Both materials are approved by 3M's Medical Materials
Technology division for use in healthcare medical devices. 3M
9960 is a transparent polyester lm with a hydrophilic coating
on both sides. 3M 9972A, used as the uid layer, is a white
polyester lm coated with hydrophobic double-sided acrylate
adhesive. 0.2 mL centrifuge tubes were purchased from Stellar
Scientic Ltd. Polydimethylsiloxane (PDMS) was purchased
from Ellsworth Adhesives. The pressure-sensitive adhesive (3M
Scotchcal™ 220) was sourced from Graphic Marking Systems
Media. Whole blood samples were collected from the blood
bank (ARUP Blood Services). The reagents for both the SARS-
CoV-2 total antibody test and the blood grouping test were
provided by Nanospot.ai. For the SARS-CoV-2 antibody test, the
reagent comprises a recombinant fusion protein with a high-
affinity binding domain for RBCs and the Spike-RBD protein,
which acts as the antigen for antibodies specic to SARS-CoV-2.
Additional details on the design of the recombinant protein can
be found here.16 The blood grouping reagents include off-the-
shelf anti-A, anti-B, and anti-D antibodies, which detect the
presence of A, B, and RhD antigens, respectively.
2.2 Design rationale

To implement the assay, we needed a design that could facili-
tate fast mixing and did not require a large sample volume. Aer
some review and testing, we based our design on serpentine
RSC Adv., 2025, 15, 43322–43333 | 43323
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channels that generate moderate Dean ow for mixing while
being simple to fabricate and relatively small. Since blood is
more viscous than the reagent, it experiences greater drag,
slowing the ow. To minimize the blood sample's ow resis-
tance and energy loss, we designed the blood-sample inlet (inlet
1) to be on the same plane as the serpentine channels. The
length of each inlet connecting to the small chamber has also
been carefully designed so that the reagent enters the small
chamber before the blood when both uids are pressurized due
to the cap-closure of the centrifuge tubes. This chamber plays
a vital role as it initiates the mixing between the uids. When
the caps are closed together, 1.2 mL (same as the chamber
volume) of blood and reagent enter the chamber and get mixed.
The uid then moves evenly from the chamber and inlets,
facilitating complete mixing as the uids move forward.

Design features such as the channel geometry and number
of serpentine units are critical considerations to achieve effec-
tive mixing. Design parameters such as the length and width of
the serpentine units were explored and optimized empirically.
We investigated three different lengths of the serpentine
channels: 1 mm, 5 mm, and 10 mm. As expected, 10 mm
provided the best mixing since it facilitated more diffusion of
the uids compared to the smaller lengths. Also, we observed
that agglutinated sample distribution can be better visualized
in the 10 mm long channels, which is convenient for both users
and the machine learning tool for interpreting the results.

Moreover, we tested different widths, such as 200, 300, 400,
and 500 mm, for the channels. We observed that anything below
400 mm results in channel blockage when the samples aggluti-
nate. We selected 400 mm to reduce both the dead volume and
the volume required for the sample and reagent.

The design incorporates two chambers aer the mixing
zone, a small chamber having a 4 mm diameter, followed by an
8 mm diameter chamber. The purpose of the 4 mm chamber is
to help the uid achieve a specic ow rate. We tested two
different shapes (diamond and circular) for this chamber. For
channels with the geometry specied above, we could not ach-
ieve the ow rate required to sufficiently mix blood samples and
reagents in the diamond-shaped chamber. We also varied the
diameter of this chamber from 2 mm to 8 mm. We observed
that the critical ow rate required for the operation of the device
is achieved when the smaller chamber is half the diameter of
the bigger chamber. The bigger 8 mm chamber acts as a reser-
voir and holds the blood-reagent mixture inside the device.
2.3 Fabrication

The device is designed to perform passive pumping and mixing
of the blood sample and the reagent. The blood sample and the
reagent are introduced via inlets into serpentine channels,
where they ow and mix passively due to the pressure generated
from cap closure. The design also includes two chambers at the
end of the serpentine channels to help achieve the desired ow
rate and hold the blood-reagent mixture inside the device as
a safety precaution. The fabrication steps of the microuidic
device are shown in Fig. 1. The design was made in AutoCAD
(Autodesk, Inc), and all three layers were cut through using
43324 | RSC Adv., 2025, 15, 43322–43333
a CO2 laser (VLS 3.75, Universal Laser Systems Inc). All three
layers were cut using the same laser parameters: 10% power, 8%
speed, 1000 PPI and single pass. The white uidic layer (3M
9972A) with adhesive on both sides was manually sandwiched
between two 3M 9960 lms from the top and bottom at room
temperature. Then, PDMS ports (punched through, 4 mm
diameter opening) were attached via plasma bonding (Dyne-A-
Mite™, Enercon Industries Corporation) on top of the inlets to
hold the centrifuge tubes. To hold blood samples and reagent,
we used 0.2 mL centrifuge tubes. The tubes were cut to have
2.5 mm openings at the bottom, facilitating connections to the
channels. Table 1 presents the list of the materials with
dimensions and costs of the chip components.
2.4 Hemagglutination assay

We implemented hemagglutination assays for SARS-CoV-2 AB
detection and blood group identication in blood samples. To
detect the SARS-CoV-2 ABs in user blood, we used a hemagglu-
tination assay developed by Redecke et al., where they devel-
oped a recombinant protein named Nanospike that binds with
the ABs on the RBC's surface, resulting in visible agglutina-
tion.16 The construction of the recombinant protein and the
assay principle is presented in Fig. 2a and b. When total blood is
mixed with the reagent, the bispecic protein attaches to the
RBCs. If spike-antibodies are present in the blood, they bind to
the Spike-RBD, resulting in visible hemagglutination of the
RBCs. No hemagglutination occurs if the spike antibodies are
absent. We performed blood grouping hemagglutination tests
on AB+ and O+ patient blood samples, using anti-A, anti-B, and
anti-D antibody reagents (Fig. 2c).
2.5 Working principle

Fig. 3 provides an overview of the whole on-chip testing proce-
dure. For testing, users will need to perform a ngerstick and
collect 15 mL of blood using a plastic capillary. They will then
load 15 mL of the fresh blood sample and 15 mL of the reagent
into the designated tubes of the microchip. For the experi-
ments, we used pipettes instead of capillaries to load the whole
blood sample (no more than two days old) and the reagent as
the rst step of the assay. Once the blood sample and reagent
are loaded inside the tubes in separate inlets, a pressure-
sensitive adhesive (PSA) is placed on top of the vent to seal
the air inside the device. As both caps are closed together aer
the loading phase, the air inside the tubes induces pressure on
the uid surfaces. However, the uids cannot ow at this point,
even aer being pressurized, since the air has been trapped by
the PSA, preventing a pressure gradient. The vent is opened to
atmospheric pressure as the PSA is removed, and a pressure
gradient is generated that ows both uids evenly and simul-
taneously from the inlets. As the uids ow together through
the serpentine units, the RBCs interact with the reagent and
initiate the agglutination reaction. The agglutinated sample can
be observed within 3 minutes. For instantaneous interpretation
of the test result, the user can compare the agglutinated sample
with control images. For a more quantitative interpretation, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Fabrication process of the microfluidic device. (1) The process begins with designing device geometry in AutoCAD software. The design
defines the dimensions and layout of fluidic channels and other features. (2) Using a CO2 laser, the channel geometry is engraved onto a fluidic
layer consisting of a double-sided tape. Similarly, the top and the bottom layers are cut using the laser with appropriate features and dimensions.
(3) After engraving, the top and bottom layers of the device are laminated manually to enclose the channels, forming a complete, sealed
microfluidic structure. (4) PDMS ports and 0.2 mL tubes are attached to the inlets for fluidic interfacing. The tubes are cut to have a 2.5 mm
opening at the bottom to facilitate fluid entrance. (5) The final assembled device displays the completed serpentine microfluidic channel
structure (Scale bar in red = 2 mm). The inset highlights the intricate details of the serpentine channels, confirming successful fabrication of the
designed geometry.

Table 1 Estimated material costs per microfluidic device

Chip component Dimension Amount (Ct.) Cost (USD)

3M 9972A 99 (L) × 21 (W) × 0.21 (H) mm3 1 $0.03
3M 9960 99 (L) × 21 (W) × 0.175 (H) mm3 2 $0.04
PDMS 10 (L) × 10 (W) × 5 (H) mm3 2 $0.20
0.2 mL centrifuge tubes 22.2 mm (H) × 6.9 mm (OD) 2 $0.12
Scotchcal 220 30 (L) × 17 (W) × 0.063 (H) mm3 1 $0.01

Total cost = $0.40

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 43322–43333 | 43325
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Fig. 2 Fusion protein construction and hemagglutination assay principle. (a) The bispecific protein consists of a nanobody directed against
glycophorin A (GPA) expressed at high levels on RBCs and the receptor binding domain of the spike protein (Spike-RBD). (b) The nanobody
mediates rapid binding to the red blood cells while the antigen moiety causes immediate visible clumping in the presence of SARS-CoV-2-
specific AB, e.g., in COVID-19 patients or vaccinated individuals (left panel). S-tag, twin-strep tag used for affinity purification of Nanospike. No
visible agglutination occurs in the absence of antibodies (right panel). (c) ABO and Rh blood group identification via antibody-mediated
agglutination. Blood samples of both AB+ and O+ groups exhibit no agglutination in the absence of antibodies. Visible agglutination is observed
when the AB+ blood sample is mixed with antibody-A, antibody-B, and antibody-D, confirming the presence of antigen-A, antigen-B, and the
Rhesus factor, respectively, on the RBC surface (top row). Conversely, the blood sample from the O+ group does not agglutinate when mixed
with antibody-A or antibody-B, indicating the absence of these corresponding antigens. However, visible agglutination occurs with antibody-D,
confirming the presence of the Rhesus factor (bottom row).
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user can take a picture of the agglutinated sample, and the
developed code can be used to interpret the result.
2.6 Image acquisition and classication algorithm

All images were collected using a mobile phone (iPhone 14 Pro,
Apple Inc). Upon collection, the images were cropped and
resized to a standardized resolution to ensure uniformity across
the dataset. Additionally, each image was manually labeled
based on the antibody concentration levels. Table 2 shows the
categories of the dataset for binary analysis. First, a total of 180
images were classied into four levels (negative, weak,
moderate, and strong) depending on the AB concentrations. To
perform binary classication, these four categories were then
put under two major classes named negative and positive,
depending on the presence or absence of SARS-CoV-2 ABs in
43326 | RSC Adv., 2025, 15, 43322–43333
blood samples. The nal dataset contained these two major
classes and was saved as a CSV le. The class negative consisted
of data from the negative category, as no agglutination occurred
for these samples due to the absence of ABs in the blood.
Conversely, the class positive included data from the strong,
moderate, and weak categories since they produced different
agglutination levels according to their respective concentration.

To eliminate the variation caused by visual interpretation, we
applied a supervised machine-learning model, support vector
machine (SVM), to distinguish between different sample cate-
gories. SVM is a suitable algorithm for binary classication that
provides fast prediction and requires less computing power. We
developed an SVM classier using Python code. The dataset
(CSV le) consisted of le paths, labels, and dataset split indi-
cators. A label encoder was used to facilitate machine-learning
model compatibility. Class names were dened based on the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 On-chip hemagglutination assay. 15 mL of finger-pricked blood is collected using a capillary. The blood sample and the reagent are loaded
into the inlets using capillaries. After loading, the caps of the tubes are closed, and the pressure-sensitive adhesive (PSA) is removed (direction
indicated by the white arrow) off the vent. Upon removal of the PSA, the blood and the reagent flow simultaneously through the serpentine
channels. The designed geometry ensures mixing of both fluids. After 3 minutes, results (agglutination or no agglutination, depending on the
presence of ABs) can be observed in the channel. Apart from visual interpretation, a digital readout of the assay results can be achieved by taking
pictures of the result with a phone camera and analyzing them using the developed machine-learning-based classifier model.
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label encoder classes, providing meaningful representations for
analysis. The dataset was then split into training (82 images)
and testing (76 images) sets to train and assess the SVM model.
Table 2 Antibody (AB) concentration categories for binary
classification

Class Category AB concentration (mg mL−1)

Negative Negative 0
Positive Weak 10

Moderate 30
Strong 60

© 2025 The Author(s). Published by the Royal Society of Chemistry
Images were loaded and preprocessed from the dataset using
the OpenCV library. We used a “load_and_preprocess_image”
function to read the images, resize them to 256 × 256 pixels,
and return the processed images. This function was applied to
each image in the training and testing sets, and it stored the
resized images along with their labels. Aer that, the code
initialized a SVM classier with a linear kernel. Next, the clas-
sier was trained on the attened training data. The model's
accuracy was evaluated on both the training and testing sets,
providing insights into potential overtting issues. The code
also generated a confusion matrix and a receiver operating
characteristic (ROC) curve for binary classication. Finally,
random images were used to evaluate and validate the model's
RSC Adv., 2025, 15, 43322–43333 | 43327
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performance. We also extended the application of the classier
and performed a multi-level classication.

3 Results and discussion
3.1 Fluid pumping and mixing

To evaluate uid ow and mixing within the device, we intro-
duced food dyes, with yellow dye in one inlet and blue dye in the
Fig. 4 Varying antibody concentrations lead to different levels of
agglutination. Without antibody (0 mg mL−1), no agglutination is
observed, which is indicated by the continuous stream of blood with
zero clumps and empty space within the start and end point of the
flow. The number of clumps increases with the increase in antibody
concentration. The highest antibody concentration, 60 mg mL−1,
depicts the strongest agglutination reaction, indicated by a greater
number of clumps and empty spaces compared to the other cases.
Scale bar in red = 2 mm.

Fig. 5 On-chip blood grouping. The left panels indicate blood group AB
indicate blood group O since no agglutination is observed with either ant
factors for both blood samples, confirming the blood groups to be AB+
antigens A, B, and D found on the surface of the red blood cells. Scale b

43328 | RSC Adv., 2025, 15, 43322–43333
other. Upon cap closure and removal of the PSA from the vent,
uid ow commenced from both inlets. The initial velocity was
high during the rst three seconds, driven by pressurization
from the cap closure. Following this, the ow decelerated and
eventually ceased. Complete mixing of the uids occurred
within 3 to 4 seconds. The average velocity of the dye mixture
during the rst three seconds was approximately 45.7 mm s−1.
Using eqn. (1) and (2), we calculated the velocity and Reynolds
number for the blood sample as 13.1 mm s−1 and 0.96,
respectively.

vblood

vwater
¼ mwater

mblood

(1)

vblood = velocity of blood, vwater = velocity of water
(0.04573 m s−1), mwater = viscosity of water (0.001 Pa − s @20 °
C), mblood = viscosity of blood (0.0035 Pa − s @20 °C).

Reblood ¼ rbloodvbloodDh

mblood

(2)

rblood = density of blood (1060 kg m−3), vblood = velocity of
blood (0.01307 m s−1), Dh = hydraulic diamater (0.000243 mm).
3.2 SARS-CoV-2 antibody detection and blood grouping

Fig. 4 illustrates varying levels of agglutination based on the
different concentrations of antibodies in the blood sample. The
level 0 mg mL−1 indicates blood samples with no antibody
present, which we refer to as negative samples. The other three
concentration levels were produced by spiking the negative
blood samples with various concentrations of SCV-2 antibodies.
No agglutination is observed for the negative blood sample (0 mg
mL−1). The agglutination reaction strength increases with an
increase in antibody concentration. The strength of reactions
due to agglutination with anti-A and anti-B reagents. The right panels
i-A or anti-B test serum. Agglutination with anti-D indicates positive Rh
and O+, respectively. Anti-A, anti-B, and anti-D are antibodies against
ar in red = 2 mm.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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can be visually differentiated by looking at the features of the
agglutinated samples. For example, a strong reaction (60 mg
mL−1 in Fig. 4) yields a greater number of clumps. These
clumps are short, and there are greater areas of empty space
along the path of the uid from the beginning to the end than in
other reactions with lower agglutination strength. As the
concentration of ABs decreases, the agglutination of RBCs is
reduced, correlating with a lower reaction strength.

We also performed on-chip blood grouping (Fig. 5). We
tested samples of two blood groups, AB+ and O+. As expected,
AB+ blood samples react with anti-A, anti-B, and anti-D
reagents, producing readily visible agglutination. On the other
hand, blood samples with the O+ blood group agglutinate only
when reacting with the anti-D reagent. No agglutination is
observed for anti-A and anti-B reagents, indicating the blood
group does not have any A or B antigens on the red blood cells.

A comparison of key performance metrics across relevant
hemagglutination-based studies is presented in Table 3. As
shown in the table, our system simplies user interventions,
automates critical operational steps, and provides rapid
sample-to-result times at a comparatively low per-cartridge cost,
making it suitable to be applied in low-resource, PoC settings.
3.3 Data analysis

Although the simplicity of the hemagglutination test allows
users to interpret results visually, we developed a support vector
machine (SVM) classier to assess the potential for integrating
machine learning tools into the data analysis workow. The
performance of the classier was validated using unseen data-
sets, evaluating its capacity for binary and multi-level classi-
cation. Furthermore, comparative analyses were conducted to
assess how predictions from human evaluators and the
machine learning model aligned with the actual sample cate-
gories. We also assessed prediction accuracy across different
samples and investigated the variability in human interpreta-
tion. Fig. 6 represents an overview of the assessment of the SVM
model and human interpretation.

The SVM model was trained on attened image data to
conform to the input structure required by the classier. The
dataset contained labeled images categorized as either class
0 (negative) or class 1 (positive). Fig. 6a shows the class distri-
bution plot, conrming that the dataset was reasonably
balanced, thus mitigating concerns about class imbalance and
its potential effects on the classier's performance. The model
achieved perfect accuracy (1.00) during training, indicating its
ability to capture the underlying patterns in the training data.
However, when evaluated on a test set, accuracy dropped to
0.84. This discrepancy between training and test performance
suggests the possibility of overtting, where the model exhibits
high performance on the training set but generalizes less
effectively to unseen data. To further assess the model's
generalization ability, we applied ve-fold cross-validation,
which yielded an average accuracy of 0.82. This result, closely
aligned with the test set accuracy of 0.84, suggests that the
model's internal validation was appropriate and its potential to
generalize was reasonable. The binary classication
RSC Adv., 2025, 15, 43322–43333 | 43329
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Fig. 6 Performance of the SVMmodel and human in diagnostic evaluations. (a) Allocation of sample images between positive (106 images) and
negative (75 images) classes used for training and testing the SVM classifier. (b) Confusion matrix showing the SVM model's capability to classify
positive (agglutinated) and negative (non-agglutinated) samples in the test dataset (n = 37). The labels ‘0’ and ‘1’ refer to ‘negative’ and ‘positive’
classes. Themodel accurately identified 18 out of 22 positive and 13 out of 15 negative samples, with 4 false negatives and 2 false positives. (c) The
receiving operating characteristics (ROC) curve demonstrating the classifier's performance at different classification thresholds. The dotted red
line represents a reference line for area under the curve (AUC)= 0.5. (d) Comparison of the number of samples predicted by humans and AI to the
number of samples with known AB concentration levels (control). (e) Prediction accuracy of human readouts for each of the sample images. (f)
Response variation per image with standard deviation shown in error bars. The table represents the corresponding category of all the images
under the actual class column. The classes have been assigned to each of the images depending on their concentration levels.
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performance was assessed based on several standard metrics.
The confusion matrix (Fig. 6b) indicated that the model
correctly classied 13 out of 15 instances of the negative and 18
out of 22 instances of the positive classes, with four false
negatives and two false positives. This suggests a decent overall
43330 | RSC Adv., 2025, 15, 43322–43333
performance in distinguishing between the two classes, espe-
cially considering the limited training data. Table 4 presents
a classication report detailing precision, recall, and F1-scores
for both classes. The model achieved a precision of 0.90 for
class 1, indicating that 90% of the instances predicted as
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Classification report of the SVM classifier

Precision Recall F1-score

Positive (class 1) 0.90 0.82 0.86
Negative (class 0) 0.76 0.87 0.81
Accuracy 0.84 0.84 0.84

Table 5 Summary of the chi-squared test

Human interpretation SVM classication

Chi-squared value (c2) 6.64 8.24
Degree of freedom (df) 3 3
p-value 0.08 0.04
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positive were correctly classied. For class 0, the recall was 0.87,
reecting the model's ability to identify most true negative
cases. The F1-score, a harmonic mean of precision and recall,
was 0.86 for class 1 and 0.81 for class 0, demonstrating balanced
performance in minimizing both false positives and false
negatives. The overall classication accuracy is 0.84.

Fig. 6c presents a receiver operating characteristic (ROC)
curve and its corresponding area under the curve (AUC) score of
0.89, further validating the model's predictive performance. An
AUC score of 0.89 indicates a high probability that the model
will correctly rank a randomly selected positive instance more
than a randomly selected negative instance. Also, the ROC
curve's trajectory signies a favorable trade-off between the true
positive rate (TPR) and the false positive rate (FPR), affirming
the model's effectiveness across different decision thresholds.
This indicates a well-calibrated model capable of adapting its
threshold to balance sensitivity (TPR) and specicity (1 – FPR)
based on the requirements of specic applications. To evaluate
the model's potential in practical applications, we tested the
SVM classier on a newly acquired set of images that were not
included in the original training or test datasets. The model
achieved an accuracy of 94% on this independent dataset.

In addition to binary classication, we extended our inves-
tigation to multi-level classication, where the SVM classier
was tasked with distinguishing between multiple antibody
concentration levels (e.g., “negative,” “weak,” “moderate,”
“strong”). When tested on the same independent dataset as the
binary classication, the performance of the multi-level model
dropped notably, achieving an accuracy of 53%. While the
classier correctly identied all negative samples, most errors
occurred in cases where images from adjacent classes, partic-
ularly “strong” versus “moderate” or “weak” versus “moderate”
exhibited subtle visual differences. This indicates that the
model's feature extraction capabilities were inadequate for
capturing ne distinctions between closely related classes.

To assess the applicability of our proof-of-concept machine
learning model within the diagnostic platform, we compared
the classication performance of the SVM algorithm with
human interpretation. A survey involving 14 participants was
conducted using the same set of 17 images previously employed
for evaluating the SVM model, ensuring that these images were
distinct from those in the original training dataset. Fig. 6d
compares human and SVM-based classications against clinical
samples with established antibody (AB) concentrations. The
distribution of clinical samples within the control group
included seven negative samples (0 mg mL−1 AB), two weak
samples (10 mg mL−1 AB), six moderate samples (30 mg mL−1

AB), and two strong samples (60 mg mL−1 AB). Both human
participants and the SVM model performed effectively in
© 2025 The Author(s). Published by the Royal Society of Chemistry
distinguishing positive from negative samples, as these cate-
gories exhibited clearly discernible differences in agglutination
features. However, classication accuracy notably decreased for
multi-level categorization tasks, with both humans and the
machine learning model experiencing challenges when differ-
entiating among weak, moderate, and strong samples. These
difficulties arose due to subtle feature variations within inter-
mediate categories. For example, both humans and the SVM
model misclassied three out of six samples (50%) in the
moderate (30 mg mL−1 AB) category. Furthermore, there is
potential for misclassication from adjacent categories (weak or
strong) being incorrectly labeled as moderate, underscoring the
inherent complexity of multi-level classication. We anticipate
that expanding the training dataset could enhance the perfor-
mance of the machine learning model. To further investigate
the nature of human classication errors and interpretive
variations, we analyzed participant responses relative to the
known sample categories (Fig. 6e). Additionally, we evaluated
the variation in classications across all 14 participants for each
sample to identify trends in misclassication and disagreement
(Fig. 6f). As shown in Fig. 6e, participants achieved at least 50%
accuracy when identifying negative, weak, and strong samples
but frequently misclassied moderate samples, oen confusing
them with adjacent categories. Fig. 6f presents the variability in
participant responses per image, with standard deviations
(indicated by error bars) reecting the degree of disagreement
among participants. Notably, the large standard deviations for
moderate samples highlight the difficulty humans face in
accurately distinguishing intermediate antibody concentration.

To assess whether the observed difference in multi-level
classication accuracy between the SVM classier and human
evaluators was statistically signicant, we conducted a chi-
square test. The test compared the prediction outcomes of the
AI model and human participants across all classication levels
(negative, weak, moderate, and strong). The results of the test
are summarized in Table 5. The chi-square test results yielded
a p-value of 0.04 (<0.05) for the SVM classier and 0.08 (>0.05)
for the human interpretation. The p-value of the SVM classier
suggests that the classier's interpretations were not due to
chance; it statistically outperformed human participants in
making accurate predictions. These results emphasize the
potential application of the SVM classier to perform multi-
level classications and improve clinical-level interpretations
where humans may struggle with subtle distinctions.

4 Conclusion

We present a disposable microuidic device to conduct
hemagglutination assays. To demonstrate the versatility of our
RSC Adv., 2025, 15, 43322–43333 | 43331
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device, we present its successful application in two distinct
serological systems: rapid, low input detection of antibodies to
SARS-CoV-2 and ABO blood typing. The device utilizes a pres-
sure-driven passive pumping technique to mix reagents with
a small blood sample, providing results within three minutes.
Our developed microuidic chip uses 15 mL of capillary blood
and can detect both the absence and presence of antibodies, up
to a concentration of 60 mg mL−1 in the user's blood. We also
demonstrated the broader scope of the functionality and
applicability of our developed microuidic chip by performing
on-chip blood typing that provides a clear yes/no answer. We
also showed that our device can be integrated with machine
learning models, such as SVM classication models, to enhance
diagnostic accuracy. The SVM model achieved 94% accuracy in
classifying binary (positive versus negative) agglutinations and
53% accuracy in classifying multi-level agglutinations. We
compared the performance of the SVM classier and humans in
interpreting the results and conducted a chi-squared test to
conrm whether the variability was random. The test conrmed
that the SVM's predictions for multi-level classications were
statistically signicant, while human predictions showed
randomness. Considering that our SVM model was trained,
tested and evaluated on only 180 samples, the p-value less than
5% statistical signicance shows promise. Also, as future work,
more advanced feature extraction techniques, such as deep
learning or convolutional neural networks (CNNs), can be
implemented for better accuracy. Likewise, the inclusion of
positive control samples for the calibration of test results may
enable more quantitative assessments of antibody
concentrations.
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