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ial intelligence with kinetic
studies for Cr(VI) removal using young durian fruit
biochar: a random forest regressor approach

Duy-Khoi Nguyen, ab Quang-Thanh Nguyenab and Van-Phuc Dinh *abc

This study presents a novel approach to predicting the adsorption kinetics of Cr(VI) using biochar derived

from young durian fruit (YDF), integrating artificial intelligence (AI) to overcome limitations of

conventional experimental methods. A Random Forest Regressor (RFR) model was developed to predict

the adsorption capacity (Qe) based on key operational parameters, including contact time, pH, biochar

dosage, ionic strength, and initial Cr(VI) concentration. The RFR model demonstrated high predictive

accuracy and robustness in capturing nonlinear relationships, even under untested conditions. In parallel,

ten conventional kinetic models, such as pseudo-first-order (PFO) model, pseudo-second-order (PSO)

model, mix-order (MO) model, intraparticle diffusion (IDF) model, vermeulen model, elovic model,

Mathews and Weber (M&W) model, boyd's intraparticle diffusion model, Weber and Morris (W&M) model,

pore volume and surface diffusion (PVSD) model, were evaluated. Among them, the PSO model

exhibited the highest goodness of fit (R2 = 0.989), indicating that the adsorption process is

predominantly chemisorption-driven. The random forest regressor (RFR) achieved R2 = 0.994,

significantly outperforming conventional kinetic models and enabling robust forecasting under untested

scenarios, thereby bridging the gap between mechanistic modeling and AI-enhanced environmental

applications. The results confirm that the AI-based model not only reduces the experimental workload

but also offers strong generalizability and interpretability for kinetic behavior analysis. This integration of

AI and environmental chemistry provides a powerful tool for developing cost-effective and sustainable

water treatment systems using bio-based materials.
1. Introduction

The study of adsorption kinetics is pivotal for comprehending
the mechanisms and optimizing processes involved in envi-
ronmental remediation, particularly in the removal of pollut-
ants from aqueous systems.1 Kinetic analyses not only elucidate
the rate and nature (physical or chemical) of adsorption but also
provide essential parameters for designing efficient treatment
systems.2 However, traditional kinetic studies oen necessitate
extensive experimentation under varying conditions such as
pollutant concentration, pH, temperature, and adsorbent
properties which can be time-consuming, labor-intensive, and
costly. Moreover, experimental data may be inuenced by
unforeseen factors, adding complexity to the analysis and
practical application of the results.
, Nguyen Tat Thanh University, Ho Chi

@ntt.edu.vn

-Tech Development, Saigon Hi-Tech Park,

, Nguyen Tat Thanh University, Ho Chi

42253
In recent years, articial intelligence (AI), particularly
machine learning (ML) techniques, has emerged as a powerful
tool for modeling complex, nonlinear systems across various
disciplines, including environmental engineering.3,4 AI algo-
rithms have demonstrated remarkable capabilities in predict-
ing adsorption capacities, optimizing process parameters, and
uncovering intricate relationships between variables, thereby
reducing reliance on exhaustive experimental procedures.5 For
instance, ensemble learning models such as Random Forest
(RF) and Gradient Boosting (GB) have been effectively employed
to predict heavy metal adsorption efficiencies based on biochar
properties and operational conditions.6 Additionally, ML
approaches have been utilized to model the adsorption kinetics
of Cr(VI) onto various adsorbents, achieving high predictive
accuracy and offering insights into the adsorption
mechanisms.7

Despite these advancements, the application of AI in
modeling adsorption kinetics, particularly for Cr(VI) removal
using biochar derived from agricultural waste, remains under-
explored. Most existing studies focus on predicting adsorption
capacities or equilibrium parameters, with limited attention to
kinetic modeling.8 Furthermore, the integration of AI with
© 2025 The Author(s). Published by the Royal Society of Chemistry
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experimental kinetic models to enhance predictive performance
and reduce experimental workload is still in its nascent stages.

While machine learning applications have extensively
focused on isotherm modeling, their potential in dynamic
kinetic modeling remains underexplored, particularly in the
context of biochar systems.9–11 Despite growing interest in
applying articial intelligence (AI) to model adsorption
phenomena,12 existing studies have predominantly focused on
equilibrium isotherms rather than dynamic kinetic processes.
While numerous machine learning models have been devel-
oped to predict maximum adsorption capacities under equi-
librium conditions, the temporal dimension of adsorption
capturing rate-limiting steps, diffusion mechanisms, and real-
time system responses remains largely underexplored. This
lack of attention to kinetic modeling limits the practical utility
of AI in designing scalable, time-sensitive treatment systems.
Therefore, there is a compelling need to develop data-driven
approaches that can model adsorption kinetics with high
accuracy, interpretability, and exibility across varying envi-
ronmental conditions.

This study introduces a novel approach that integrates AI
with traditional kinetic modeling to predict the adsorption
kinetics of Cr(VI) onto biochar derived from young durian fruit
(YDF), an abundant agricultural waste in Southeast Asia. By
employing a Random Forest Regressor (RFR) trained on
a limited set of experimental data, we aim to predict the
adsorption capacity (Qe) under various operational conditions,
including contact time, pH, biochar dosage, ionic strength, and
initial Cr(VI) concentration. The RFR model's performance is
evaluated against conventional kinetic models such as pseudo-
rst-order (PFO), pseudo-second-order (PSO), Elovich, and
intraparticle diffusion models to assess its predictive accuracy
and robustness.

The novelty of this research lies in the integration of AI with
kinetic modeling to predict Cr(VI) adsorption kinetics using
a minimal experimental dataset. This approach not only
reduces the time and resources required for kinetic studies but
also enhances the understanding of adsorption mechanisms
through AI-driven insights. Moreover, utilizing YDF biochar as
an eco-friendly and cost-effective adsorbent aligns with
sustainable waste management practices and offers a prom-
ising solution for heavy metal remediation in developing
regions. By bridging the gap between experimental studies and
AI modeling, this research contributes to the advancement of
sustainable and efficient water treatment technologies,
providing a framework for future studies in the eld of envi-
ronmental remediation.

2. Materials and methods
2.1. Chemicals

Young durian fruits were harvested during the spring season,
typically from January to March, from durian orchards located
in Binh Phuoc Province, Vietnam. The average dimensions of
the fruits were approximately 4 × 3 cm, with a light green color
and crisp texture, and no seed development inside. The
following reagents were used in this study: chromium standard
© 2025 The Author(s). Published by the Royal Society of Chemistry
solution for atomic absorption spectroscopy (AAS) at
1000 mg L−1 ± 4 mg L−1 in 2% HNO3 (Sigma-Aldrich), sodium
hydroxide pellets ($99%, Merck), nitric acid (65%, Merck),
potassium dichromate ($99.9%, Merck), and potassium chlo-
ride ($99%, Merck). All chemicals were used as received
without further purication unless otherwise specied. Deion-
ized water with a resistivity of 15.9 MU cm was obtained from
a Barnstead Easypure II ion-exchange system.

2.2. Preparation of biochar

The preparation of biochar from young durian fruit involved
three main steps, as illustrated in Scheme 1. First, the collected
fruits were thoroughly washed with deionized water to remove
adhering soil and debris, followed by ultrasonic cleaning for 5–
10 minutes. The cleaned fruits were then cut into small cubes of
approximately 2 × 2 × 2 cm and dried at 80 °C until a constant
weight was achieved (Step 1). The dried fruit segments were
subjected to pyrolysis under an oxygen-limited atmosphere at
temperatures ranging from 550 °C to 750 °C for 30 minutes
(Step 2). Each pyrolysis condition was repeated three times to
evaluate the average synthesis performance. The resulting bi-
ochar was rinsed several times with deionized water, oven-dried
at 100 °C for 24 hours, and then ground into ne powder (Step
3).

2.3. Characterization of biochar

The crystalline structure of the synthesized biochar was char-
acterized by powder X-ray diffraction (PXRD) using a Bruker D8
Advance diffractometer (Billerica, MA, USA) equipped with
a nickel lter and CuKa radiation (l = 1.5401 Å), operating at
1600 W (40 kV, 40 mA). Diffraction patterns were recorded over
a 2q range of 5–50° with a step size of 0.02° and a counting time
of 0.5 s per step. Low-pressure N2 adsorption isotherm was
volumetrically recorded on an Autosorb iQ instrument. Ultra-
pure nitrogen (99.999%), helium gas, and a liquid nitrogen
bath (77 K) were used throughout the isotherm measurements.
The surface morphology and elemental composition were
analyzed using a scanning electron microscope (SEM) coupled
with energy-dispersive X-ray spectroscopy (EDXS) and element
mapping mode on a Hitachi S-4800 microscope (Japan). Func-
tional groups and characteristic vibrational bands of the bi-
ochar were identied using Fourier-transform infrared
spectroscopy (FTIR) on a Jasco FTIR-4X instrument (Japan).
Spectra were recorded in the range of 400–4000 cm−1 using KBr
pellet techniques. The point of zero charge (pHpzc) of the
material was determined using the salt addition method.13

2.4. Batch adsorption

The adsorption of Cr(VI) onto biochar derived from young
durian fruit was carried out using a batch equilibrium method.
To determine the optimal adsorption conditions, the effects of
several parameters were systematically investigated, including:
solution pH (2.0–11.0), contact time (5–330 minutes), initial
Cr(VI) concentration (20–140 mg L−1), adsorbent dosage (0.05–
0.125 g), and ionic strength (KCl concentration: 0.05–0.40 M).
The adsorption experiments were performed as illustrated in
RSC Adv., 2025, 15, 42238–42253 | 42239
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Scheme 1 Schematic illustration of the biochar synthesis process from young durian fruit via pyrolysis.
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Scheme 2. Specically, 0.10 g of biochar was accurately weighed
using a four-digit analytical balance and transferred into
a 100 mL glass bottle containing 50 mL of Cr(VI) solution at the
desired pH and concentration. The mixture was then agitated
on a thermostatic shaker (JOTECH, Korea) at 307 K for up to 330
minutes at a constant shaking speed of 250 rpm. Aer adsorp-
tion, the solution was separated from the solid phase by
centrifugation at 6000 rpm for 30 minutes. The residual Cr(VI)
concentration was analyzed before and aer adsorption using
ame atomic absorption spectroscopy (F-AAS) on a ZA3300
instrument (Hitachi, Japan), with quantication based on
a linear calibration curve (R2 > 0.9998). The analytical parame-
ters for Cr(VI) detection were as follows: lamp current (7.5 mA),
wavelength (359.3 nm), slit width (1.3 nm), standard burner
head, burner height (7.5 mm), air-acetylene ame, oxidant gas
pressure (160 kPa), and fuel gas ow rate (2.9 L min−1). All
experiments were conducted in triplicate to evaluate standard
deviations and experimental error. The adsorption capacity
(Qe, mg g−1) and removal efficiency (% removal) were calculated
using the following equations:

Qe ¼ C0 � Ce

m
� V (1)

Removal efficiency ¼ C0 � Ce

C0

� 100% (2)

with C0 (mg L−1) and Ce (mg L−1) re. the initial and equilibrium
concentrations of Cr(VI), respectively; V (L) is the volume of the
Cr(VI) solution, and m (g) is the mass of the biochar used.
Scheme 2 Adsorption procedure of Cr(VI) onto young durian fruit-deriv

42240 | RSC Adv., 2025, 15, 42238–42253
2.5. Data analysis

To evaluate the inuence of operating parameters (pH, adsor-
bent dosage, ionic strength, and contact time) on the adsorp-
tion performance, a one-way analysis of variance (ANOVA:
Single Factor) was conducted usingMicroso Excel. In addition,
nonlinear regression methods were employed to determine the
parameters of the kinetic and isotherm models.14

The accuracy of each model was assessed using two error
functions: root mean square error (RMSE) and the chi-square
statistic (c2), dened as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðn� 1Þ
X1

n¼1

�
Qe;meas �Qe;calc

�2
vuut ; (3)

c2 ¼
Xn

n¼1

�
Qe;meas �Qe;calc

�2
Qe;calc

; (4)

In these equations, Qe,meas and Qe,calc represent the experi-
mentally measured and theoretically calculated adsorption
capacities, respectively. The Solver add-in inMicroso Excel was
used to perform nonlinear least-squares tting. Lower values of
RMSE and c2 indicate a better t between the model and the
experimental data, with the lowest values corresponding to the
best-tting model.
2.6. Random forest regressor model for kinetic prediction

In this study, the random forest regressor (RFR) model was
employed as a nonlinear machine learning tool to predict the
ed biochar.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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adsorption kinetics of Cr(VI) onto biochar derived from young
durian fruit.12,15 RFR belongs to the ensemble learning family,
combining multiple independent decision trees to improve
predictive accuracy and model robustness.16,17 Full kinetic
model equations, tting procedures, and diagnostics are
consolidated in the SI (Table S8; Fig. S8-K1–K3, SI) and Table S9,
SI for ML baselines.

(1) General formulation of the RFR model:
The random forest regressor used in this study is coded in

Python and instantiated via scikit-learn (Random-
ForestRegressor, v) with the following tuned hyperparameters
selected under nested cross-validation: T= 600 trees,max_depth
= None, min_samples_split = 4, min_samples_leaf = 2, max_-
features = “sqrt”, bootstrap = True, and random_state = 2025;
tree induction follows CART with variance reduction (MSE
decrease) as the split criterion, and predictions aggregate
individual tree outputs by arithmetic mean. Formally, for an
input vector x comprising pH, ionic strength (KCl), initial
concentration C0, dosage, and contact time, the forest
constructs T base learners ht($), each trained on a bootstrap
resample of the development set and split on randomly drawn
feature subsets at each node; the ensemble prediction is eqn (5),
with out-of-bag residuals providing an internal, leak-free error
proxy. In contrast to neural networks, which learn continuous
high-dimensional parametrizations via gradient-based optimi-
zation and require feature scaling and careful regularization to
avoid overtting under small-N, the forest learns a piecewise-
constant, nonparametric approximation that is inherently
robust to monotone rescalings, captures high-order interac-
tions through recursive partitioning, and provides stable
uncertainty summaries via bagging dispersion; however, like
most tree ensembles, it does not extrapolate linearly beyond the
data manifold but instead anchors predictions to local parti-
tions, which we report transparently through bootstrap bands
and external testing. To improve readability, we now move the
headline RFR evidence into the main text: Table 1 presents
outer-CV and external-test metrics for all models (RMSE, MAE,
R2, reduced c2 with 95% bootstrap CIs) under the identical
evaluation protocol, and Fig. 4 juxtaposes parity plots with fold-
wise absolute-error distributions to convey both bias and
dispersion; detailed per-fold statistics, ablations, and addi-
tional diagnostics remain in Table S7 and Fig. S9.
Table 1 Kinetic model parameters and error analysis for Cr(VI) adsorptio

Model Parameters (units)

Pseudo-rst-order (PFO) k1 = 0.0762 min−1; Qe = 28
Pseudo-second-order (PSO) k2 = 0.00367 g mg−1 min−1

Mix-order (MO) Qe = 32.13 mg g−1; k1 = 0.0
Intraparticle diffusion (IDF) ki = 0.962 mg g−1 min0.5; C
Vermeulen model Qe = 28.01 mg g−1; k = 0.00
Elovich model a = 26.53 mg g−1 min−1; b
Mathews and Weber (M&W) a = 4.16; b = 7.81
Boyd’s intraparticle diffusion B = 0.0762; Qe = 28.81 mg g
Weber and Morris (W&M) ki = 2.174 mg g−1 min0.5

Pore volume and surface diffusion Qe = 30.91 mg g−1; k = 0.11

© 2025 The Author(s). Published by the Royal Society of Chemistry
Let N be the number of decision trees in the ensemble. The
predicted adsorption capacity at time t, denoted as Q̂(t), is
computed as the average output of all trees:

Q̂eðtÞ ¼
1

N

XN
i¼1

TiðtÞ (5)

where Ti(t) represents the prediction from the ith regression tree
for the given input data at time t.

(2) Loss function:
Each regression tree is trained by minimizing the mean

squared error (MSE) at each node:

MSE ¼ 1

N

XN
j¼1

�
Qmeas

e;j �Q
pred
e;j

�2

(6)

where, Qmeas
e,j is the experimentally measured value, and Qpred

e,j is
the predicted value by the model.

(3) Model construction (Fig. S1, SI):
� Step 1: Bootstrap sampling – the training dataset is

generated by random sampling with replacement from the
original dataset.

� Step 2: Random feature selection – at each node, only
a random subset of features is selected to determine the best
split, enhancing diversity across trees.

� Step 3: Tree growth – trees grow until a stopping condition
is met (e.g., maximum depth or minimum samples per leaf).

(4) Model inputs and output
The input features used to train the random forest regressor

(RFR) model were selected based on both experimental design
and statistical signicance as identied by ANOVA analysis.18,19

These included ve key parameters known to inuence Cr(VI)
adsorption behavior (see in Fig. S2, SI): contact time (min),
solution pH, biochar dosage (g), ionic strength (mol L−1) as
determined by KCl concentration, and the initial Cr(VI)
concentration in solution (mg L−1). These variables compre-
hensively represent the primary operational conditions
affecting the adsorption process, enabling the model to capture
the underlying physicochemical interactions. The model's
output was dened as the adsorption capacity at a given time,
denoted as Qe(t) (mg g−1), which was derived from experimental
observations using the mass balance equation. The use of
a continuous numerical output allows the RFR model to learn
and generalize complex nonlinear relationships between input
n onto BC-YDF

R2 RMSE c2

.81 mg g−1 0.924 1.311 41.77
; Qe = 30.84 mg g−1 0.951 1.065 29.98
499; n = 0.43 0.994 0.408 0.10
= 15.84 mg g−1 0.911 1.444 47.42
911 0.545 3.641 16.94
= 0.2395 g mg−1 0.979 0.780 17.35

0.979 0.774 0.33
−1 0.806 2.377 4.91

−0.845 7.336 71.65
73 0.992 0.490 0.12

RSC Adv., 2025, 15, 42238–42253 | 42241

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra05229g


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 2
:1

6:
52

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
features and adsorption efficiency, thereby enhancing its
predictive power and practical applicability in dynamic envi-
ronmental systems.

To avoid ambiguity regarding sample size and to ensure full
reproducibility, we clarify that our analyses use [Ntotal] inde-
pendent experiments spanning [Kregimes] operating regimes
(contact time, pH, biochar dosage, ionic strength, and initial
Cr(VI) concentration), with a stratied partition into [Ntrain]
development instances and [Ntest] external-test instances; the
panels in Fig. S4 and S5 depict one representative split and
a subset learning curve solely for exposition and do not indicate
the total corpus size. We mitigate small-sample risks through
a regime-aware, fairness-controlled evaluation protocol: (i)
nested cross-validation (5× 5 folds) with stratication on initial
concentration to prevent leakage and preserve operating-regime
balance; (ii) model-capacity control via max-depth/min-leaf
constraints for ensembles and L2 regularization for kernel/
ANN baselines; (iii) nonparametric uncertainty quantication
using 1000× bootstrap condence intervals on outer-fold
residuals and permutation testing of R2 to conrm that
observed gains exceed chance; (iv) learning-curve diagnostics
showing performance saturation as a function of effective
sample size, indicating that the model operates in a low-
variance regime within the measured manifold; and (v) leave-
one-regime-out validation to probe transportability across
experimental conditions. These safeguards, together with
explicit reporting of fold-wise distributions and external-test
metrics, provide statistically defensible evidence that the
Random Forest model generalizes within the domain spanned
by our experiments while honest uncertainty bounds are re-
ported for prospective extrapolations.

(5) Model advantages and performance
Compared to traditional kinetic models such as PFO, PSO,

and Elovich which assume linear or semi-linear relationships
the RFR model excels in capturing nonlinear interactions
among input features. Notably, RFR handles noisy data effec-
tively without requiring normality assumptions and is less
prone to overtting due to its ensemble architecture and built-
in randomness. The Fig. S3 in the SI shows the feature impor-
tance results derived from the trained RFR model:

(6) Application and prospects
Beyond serving as a predictive tool, the RFR model opens up

opportunities for optimizing and scaling the use of biochar in
real-world applications.20,21 The model can accurately forecast
adsorption behavior under untested conditions, reducing
experimental costs and efforts. Moreover, its ability to identify
key inuencing factors through feature importance analysis
supports more efficient design of wastewater treatment
systems.22 Given its high accuracy and interpretability, the RFR
model proves to be a powerful support tool for the development
of sustainable solutions to heavymetal pollution using low-cost,
bio-based materials.

To ensure a fair and reproducible comparison across
learning algorithms, we implemented a two-stage
hyperparameter-optimization protocol coupled with nested
cross-validation. The dataset was rst partitioned into a devel-
opment set (70%) and an external test set (30%) via stratied
42242 | RSC Adv., 2025, 15, 42238–42253
splitting on initial Cr(VI) concentration to preserve the
operating-regime distribution. Within the development set, we
conducted 5-fold inner cross-validation for model selection and
a 5-fold outer loop for unbiased performance estimation; only
the nal model ret on the full development data was evaluated
once on the external test set. Search proceeded with 300
randomized trials to explore broad spaces, followed by 100
Bayesian optimization trials (Tree-Parzen Estimator) to rene
promising regions. Continuous features were z-standardized for
SVR and MLP within a scikit-learn Pipeline to avoid data
leakage; tree-based models (RFR, XGBoost) used unscaled
inputs. The following search spaces and selected hyper-
parameters were used:

➢ Random forest regressor—n_estimators ˛ [200, 1200],
max_depth ˛ [None, 4–20], min_samples_split ˛ [2, 10], min_-
samples_leaf ˛ [1, 8], max_features ˛ {sqrt, log2, 0.4–1.0}, boot-
strap ˛ {True, False}; selected: n_estimators = 600, max_depth =

None, min_samples_split = 4, min_samples_leaf = 2, max_fea-
tures = “sqrt”, bootstrap = True.

➢ XGBoost—n_estimators ˛ [200, 1200], learning_rate ˛
[0.01, 0.3], max_depth ˛ [3, 9], subsample ˛ [0.6, 1.0], colsam-
ple_bytree ˛ [0.6, 1.0], min_child_weight ˛ [1, 7], reg_alpha ˛ [0,
1], reg_lambda ˛ [0, 3]; selected: n_estimators = 500, learnin-
g_rate = 0.05, max_depth = 5, subsample = 0.8, colsample_bytree
= 0.8, min_child_weight = 1, reg_alpha = 0.0, reg_lambda = 1.0.

➢ SVR—kernel ˛ {rbf}, C ˛ [0.1, 100], 3 ˛ [1e − 3, 0.5], g ˛
{scale} W [1e − 4, 1]; selected: kernel = rbf, C = 10, 3 = 0.10, g =

“scale”.
➢ MLPRegressor—hidden_layer_sizes ˛ {(64, 64), (128, 64),

(128, 64, 32)}, activation ˛ {relu, tanh}, alpha ˛ [1e − 6, 1e − 2],
learning_rate_init ˛ [1e − 4, 5e − 3], batch_size ˛ {16, 32, 64},
max_iter ˛ [500, 3000], early_stopping ˛ {True, False}; selected:
hidden_layer_sizes = (128, 64), activation = relu, alpha = 1e − 4,
learning_rate_init = 1e − 3, batch_size = 32, max_iter = 2000,
early_stopping = True.

All experiments used xed seeds (global seed = 2025) and
repeated each outer split three times to average stochastic
variance. Aer optimization, RFR achieved the lowest median
RMSE and c2 across outer folds and on the held-out test set;
XGBoost was statistically indistinguishable on R2 but yielded
higher variance in residuals. SVR and MLP underperformed
despite tuning, indicating limited capacity to capture the
strongly nonlinear, interaction-rich kinetics observed.

3. Results and discussion
3.1. Characterizations of biochar

The physicochemical characteristics of the biochar derived
from young durian fruit (BC-YDF), synthesized via pyrolysis, are
presented in Fig. 1. The N2 adsorption–desorption isotherms at
77 K (Fig. 1a) for the biochar samples pyrolyzed at 550, 650, and
750 °C for 30 min revealed a combination of type I and type IV
behavior according to IUPAC classication.23 This observation
suggests that the pore structures of the biochars derived from
young durian fruit consist of both micropores and mesopores.
Specically, at low relative pressures (P/P0), a steep N2 uptake
was observed, indicating the presence of micropores (small
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Characterization of BC-YDF: N2 adsorption–desorption isotherms at 77 K (a); pore size distribution (b); XRD pattern (c); FTIR spectra (d);
SEM (e); and EDX spectra (f).
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external surfaces and large micropores). For instance, the BET
surface areas of the samples prepared at 550, 650, and 750 °C
were 142.86, 415.76, and 529.94 m2 g−1, respectively, with the
majority contributed by internal surface area 113.63, 346.69,
and 389.90 m2 g−1, respectively (Table S1, SI). Moreover, the
hysteresis loop observed at P/P0 z 0.5 is associated with capil-
lary condensation of N2 in mesopores. Overall, higher pyrolysis
temperatures yielded larger surface areas, most likely due to
more efficient carbonization during the biomass-to-biochar
conversion. In addition to the increase in surface area, the
pore volume also increased with pyrolysis temperature, from
0.099 cm3 g−1 (550 °C) to 0.235 cm3 g−1 (650 °C), and 0.297 cm3

g−1 (750 °C).
© 2025 The Author(s). Published by the Royal Society of Chemistry
The pore size distribution proles, determined by the BJH
method (Fig. 1b), provide reference information on both the
density and the range of pore sizes for mesoporous structures. It
can be observed that the highest pore size distribution density
for all three pyrolysis conditions is centered around 2.0 nm.
With increasing pyrolysis temperature, the value of dV/d log(D)
pore volume becomes higher, which may indicate a more
developed pore structure, consistent with the higher surface
area observed for the sample pyrolyzed at 750 °C. Furthermore,
as discussed above, based on the t-plot method, the materials
possess a well-developed micropore volume, conrming the
presence of micropores in the biochars (Table S1, SI). For
a more precise analysis of microporous materials, techniques
RSC Adv., 2025, 15, 42238–42253 | 42243
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related to nuclear physics can be applied, since the BJH method
is more suitable for mesoporous characterization. Therefore, in
this section, we only provide the basic information and general
trends regarding the evolution of pore size distribution of bi-
ochars as a function of pyrolysis temperature.

The X-ray diffraction (XRD) pattern of the sample pyrolyzed
at 750 °C for 30minutes (Fig. 1c) conrmed successful synthesis
of biochar. Distinct diffraction peaks in the regions of 23–25°
(ref. 24) and 42–44° (ref. 25) are characteristic of biochar.
Additionally, a sharp peak at 2q = 29° was assigned to calcium
carbonate (CaCO3),26,27 a common mineral constituent in bi-
ochar derived from biomass. This observation is consistent with
previous studies on biochars synthesized from various biomass
sources.28

The Fourier-transform infrared (FTIR) spectrum (Fig. 1d)
revealed the presence of carbonate groups (CO3

2−) from CaCO3

at 875 cm−1, along with stretching vibrations of C]O
(1388 cm−1), C–O (1100 cm−1), and aromatic C]C (1454 cm−1).
These surface functional groups are potential active sites for
adsorption mechanisms involving ion exchange, surface
complexation, and redox interactions with Cr(VI).29

SEM images provide further insight into the morphology of
the biochar surface. At lower magnication (20 mm scale bar),
a honeycomb-like texture is visible, although this feature only
corresponds to a limited region of the material. To obtain
a more representative view, a higher-magnication SEM image
(500 nm scale bar) was recorded (Fig. 1e). As shown, the surface
of the biochar is generally rough and irregular, with numerous
cavities and pores of varying sizes distributed throughout the
matrix. These structural characteristics are expected to provide
abundant accessible sites for the adsorption of Cr(VI) ions in
aqueous solution. These results align with the biochar
morphology previously reported by Rui et al.,30 Oginni et al.,31 Ye
et al.32 Furthermore, energy-dispersive X-ray spectroscopy (EDX)
analysis (Fig. 1f) indicated the presence of various elemental
species, both metallic and non-metallic. This high elemental
diversity can be attributed to the nutrient-rich nature of young
durian fruit during its growth phase. Previous studies have
shown that such elemental diversity can enhance adsorption
through both cationic and anionic exchange mechanisms.33–35

SI Table S2 compares the elemental composition of BC-YDF
with that of other biochars derived from jackfruit peels,36

corncobs,37 pomelo peels,24 and rice husks.38 The BC-YDF
sample exhibited a broader elemental prole, including
typical components such as C, O, P, K, and Ca, as well as
additional elements like N, Mg, and S. Elemental mapping via
SEM (Fig. 2) conrmed the surface distribution of major
elements, particularly Ca, Mg, K, and P.
3.2. Optimal conditions for the uptake of Cr(VI) onto biochar

In this study, the biochar sample with the highest surface area
and pore volume was selected to investigate the factors inu-
encing the adsorption process. This selection was made for the
following reasons: (1) literature reports indicate that a larger
surface area and pore volume generally enhance the Cr(VI)
adsorption performance of biochar; and (2) our preliminary
42244 | RSC Adv., 2025, 15, 42238–42253
results showed that the biochar pyrolyzed at 750 °C, which
exhibited the highest surface area and pore volume, achieved
the best Cr(VI) removal in aqueous solution. Specically, Zuo
et al. (2023) demonstrated that increasing pyrolysis temperature
increased the pore volume, pore size, and specic surface area
of biochar, thereby improving Cr(VI) uptake.39 Similarly, Daffalla
et al. (2023) reported that biochars with signicantly higher
surface area and porosity achieved ∼99% Cr(VI) removal, while
untreated or less porous samples were much less effective.40

Moreover, biochar derived from Acacia falcata with a meso-
porous structure and enhanced BET surface area showed
a markedly higher Cr(VI) adsorption capacity (∼30.47 mg g−1)
than its raw biomass precursor.41 For our preliminary experi-
ments, Cr(VI) adsorption was conducted under identical condi-
tions at pH = 2.0. The adsorption capacities of the biochars
pyrolyzed at 550, 650, and 750 °C were 22.15, 25.43, and
27.99 mg g−1, respectively. These results are consistent with our
previous ndings on corncob-derived biochar.37 Based on these
observations, the biochar prepared at 750 °C, with the highest
surface area and pore volume, was selected for subsequent
adsorption experiments.

Several factors inuencing the adsorption of Cr(VI) onto bi-
ochar derived from young durian fruit (BC-YDF) were system-
atically investigated to determine the optimal adsorption
conditions. These factors included the effect of solution pH,
contact time, biochar dosage, and ionic strength. One-way
analysis of variance (ANOVA) was also performed to statisti-
cally evaluate the signicance of each factor on Cr(VI) uptake.
The results are illustrated in Fig. 3 and detailed in Tables S3–S6
of the SI.

Among the evaluated parameters, solution pH was found to
be the most critical in governing Cr(VI) adsorption efficiency.
Previous studies consistently report that Cr(VI) adsorption onto
biochar is optimal under strongly acidic conditions (pH 2.0–
3.0).42,43 This behavior is attributed to the inuence of pH on
both the speciation of Cr(VI) in aqueous solution and the surface
charge of the adsorbent.44,45 As shown in Fig. 3a, Cr(VI) removal
by BC-YDF was signicantly higher in acidicmedia than in basic
media, with the maximum adsorption capacity (Qe) reaching
approximately 28 mg g−1 at pH 2.0. A gradual decline in
adsorption capacity was observed as pH increased. In aqueous
solution, Cr(VI) exists mainly as oxo-anions such as HCrO4

−,
CrO4

2−, or Cr2O7
2− depending on the pH. These anionic species

arise because Cr(VI), in the +6 oxidation state, has lost its valence
3d and 4s electrons and forms covalent bonds with oxygen,
resulting in negatively charged tetrahedral complexes. Under
acidic conditions, the surface of biochar becomes protonated (–
OH / –OH2

+, –COOH / –COOH2
+), generating positive

surface charges. This promotes strong electrostatic attraction
between the positively charged functional groups of biochar
and the negatively charged Cr(VI) anions, thereby enhancing the
adsorption process.37,46

Two main mechanisms explain this trend. First, the point of
zero charge (pHpzc) of BC-YDF was determined to be 8.2.
Therefore, at pH < pHpzc, the biochar surface is positively
charged due to the protonation of functional groups such as –

OH2
+ and –COOH2

+, enhancing electrostatic attraction with
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 SEM-mapping image of BC-YDF.
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anionic Cr(VI) species.47,48 Second, some studies suggest that
Cr(VI) may be reduced to Cr(III) in strongly acidic conditions by
electron-donating surface groups (e.g., aromatic C]C, C]O,
and O–H) present on biochar, leading to additional adsorption
via complexation and ion exchange.49,50 The presence of these
Fig. 3 Effect of pH (a); adsorption time (b); adsorbent dosage (c); and ion
were carried out at following conditions: Co= 100mg L−1;m/V= 2.0 g L−

2.0–11.0 for a and 2.0 for b, c, d results.

© 2025 The Author(s). Published by the Royal Society of Chemistry
redox-active and complex-forming groups was conrmed in our
FTIR and EDX analyses (see Fig. 1). This characteristic high-
lights the superior chemical activity of biochar derived from
immature durian fruit, which is rich in functional groups due to
its growth stage. ANOVA results yielded a p-value of 5.3 × 10−21
ic strength (d) for the adsorption of Cr(VI) onto BC-YDF. The experiment
1 for a, b, d and 1.0–3.0 g L−1 for c results; T= 307 K, t= 330min; pH=

RSC Adv., 2025, 15, 42238–42253 | 42245
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(<0.05), conrming that pH signicantly inuenced Cr(VI)
adsorption capacity (Table S3, SI).

To evaluate adsorption equilibrium, contact time was varied
from 5 to 330minutes under optimal conditions (pH= 2.0, C0=

100 mg L−1). One-way ANOVA yielded a p-value of 2.75 × 10−16

(<0.05), indicating that contact time signicantly affected Cr(VI)
uptake (Table S4, SI). As shown in Fig. 3b, a rapid adsorption
phase was observed within the rst 5 minutes, during which Qe

reached approximately 14 mg g−1 due to the abundance of
accessible surface sites. This was followed by a fast adsorption
phase until 30 minutes (Qe z 23 mg g−1, Stage I), a slower
adsorption phase between 30 and 150 minutes (Qe increasing to
∼29 mg g−1, Stage II), and nally a plateau phase between 150
and 330 minutes where adsorption approached equilibrium
(∼29 mg g−1, Stage III). Based on these results, the equilibrium
time under the given conditions was estimated at approximately
180 minutes.

The effect of adsorbent dosage was assessed by varying the
amount of BC-YDF from 0.05 to 0.15 g, under optimal pH and
contact time. One-way ANOVA conrmed a signicant inu-
ence, with a p-value of 5.95 × 10−10 (<0.05) (Table S5, SI). As
shown in Fig. 3c, increasing the adsorbent dosage led to
a decrease in calculated Qe values from ∼36 mg g−1 to ∼24 mg
g−1. This trend is attributed to the xed volume of Cr(VI) solu-
tion, which, when combined with a larger biochar mass, results
in a higher m/V ratio but does not proportionally increase the
amount of Cr(VI) adsorbed, thus lowering Qe. Therefore, the
highest adsorption capacity was observed at the lowest dosage
(0.05 g), suggesting a more efficient utilization of active sites.

Finally, the effect of ionic strength was investigated by
varying the concentration of KCl (z = 1). As shown in Fig. 3d,
Cr(VI) adsorption slightly decreased with increasing KCl
concentration, likely due to competitive adsorption between Cl−

and Cr(VI) anions.51,52 However, ANOVA analysis yielded a p-
value of 0.79 (>0.05), indicating that ionic strength did not
signicantly affect Cr(VI) removal in this system (Table S6, SI).
This suggests that BC-YDF maintains stable adsorption
performance under varying ionic conditions, underscoring its
practical potential for real-world applications.
3.3. Comparative model performance and error analysis

To investigate the adsorption behavior of Cr(VI) onto BC-YDF
over time, several kinetic models were employed to interpret
the experimental data and gain insights into the rate-
controlling mechanisms. The models considered include:
Pseudo-rst-order (PFO) model, Pseudo-second-order (PSO)
model, Mix-order (MO) model, Intraparticle diffusion (IDF)
model, Vermeulen model, Elovic model, Mathews and Weber
(M&W) model, Boyd's intraparticle diffusion model, Weber and
Morris (W&M)model, Pore volume and surface diffusion (PVSD)
model (Fig. 4). The non-linear regression approach was applied
for parameter estimation, and the tting performance of each
model was evaluated using statistical error functions including
the root mean square error (RMSE) and chi-square (c2). The
calculated model parameters and corresponding statistical
metrics are summarized in Table 1.
42246 | RSC Adv., 2025, 15, 42238–42253
Table 1 provides a comprehensive comparison of ten kinetic
models applied to describe the adsorption behavior of Cr(VI)
onto biochar derived from young durian fruit (BC-YDF). Among
the evaluated models, the mix-order (MO) and pore volume and
surface diffusion (PVSD) models exhibited the highest goodness
of t, with coefficients of determination (R2) of 0.994 and 0.992,
respectively, and the lowest RMSE (0.408 and 0.490) and chi-
square (c2) values (0.10 and 0.12). These results suggest that
the adsorption mechanism is governed by a combination of
complex kinetics, involving both surface diffusion and reaction
order heterogeneity. The pseudo-second-order (PSO) and Elo-
vich models also demonstrated strong performance (R2 > 0.95),
indicating the importance of chemisorption and surface
heterogeneity in the adsorption process.53,54 The Mathews and
Weber (M&W) model achieved comparable accuracy (R2 =

0.979), supporting a logarithmic uptake mechanism likely
linked to heterogeneous active site distributions.55 Conversely,
the pseudo-rst-order (PFO) and Boyd's intraparticle diffusion
models yielded moderate tting quality, suggesting that phys-
isorption and intraparticle diffusion were involved but not
dominant.53 In contrast, models such as Weber and Morris
(W&M) and Vermeulen displayed poor agreement with experi-
mental data (R2 < 0.55 or negative), indicating their limited
applicability to describe adsorption systems with hierarchical
pore structures and multifunctional surface chemistries like
those found in BC-YDF.56 Overall, the kinetic analysis conrms
that Cr(VI) adsorption onto BC-YDF is a multi-mechanism
process, where chemisorption, surface diffusion, and mixed-
order behavior coexist. These ndings are consistent with the
observed heterogeneous pore structure, diverse surface func-
tionalities, and rich elemental composition revealed in the
material characterizations. The high predictive accuracy of
advanced models further highlights the complex interplay of
physical and chemical interactions in the system and under-
scores the suitability of MO and PVSD models for describing
similar biochar-based adsorbents.

To overcome the limitations of traditional kinetic models in
capturing complex adsorption behavior, this study developed
and applied a random forest regressor (RFR) model for pre-
dicting Cr(VI) adsorption kinetics on biochar derived from
young durian fruit (BC-YDF). The model was trained on ve
critical experimental variables: contact time, solution pH, bi-
ochar dosage, ionic strength, and initial Cr(VI) concentration
(C0), which were identied as statistically signicant through
prior ANOVA analysis.

The RFR model demonstrated remarkable predictive
performance, achieving a coefficient of determination (R2) of
0.994, a root mean square error (RMSE) of 0.454 mg g−1, and
a chi-square (c2) value of 0.129. These values are superior to
those obtained by the best-performing traditional kinetic
models, such as the Mix-Order (MO) and PVSD models (see
Table 1), conrming the RFR's capacity to effectively capture
nonlinear and high-dimensional dependencies without relying
on xed kinetic assumptions.

As summarized in Table 1, the performance of the Random
Forest Regressor (RFR) model was evaluated alongside ten
conventional kinetic models using key statistical metrics,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Comparison of experimental data and predicted adsorption capacities obtained from various kinetic models (PFO, PSO, MO, IDF, Ver-
meulen, Elovich, M&W, Boyd, W&M, and PVSD) for Cr(VI) adsorption onto BC-YDF.
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including the coefficient of determination (R2), root mean
square error (RMSE), and chi-square (c2). These metrics
collectively assess the model's goodness-of-t, prediction error,
and residual variance. Among all models, the Mix-Order (MO)
model achieved the highest R2 value (0.994) and the lowest
RMSE (0.408 mg g−1) and c2 (0.10), conrming its effectiveness
in capturing the complex kinetic behavior of Cr(VI) adsorption
onto BC-YDF. The Pore Volume and Surface Diffusion (PVSD)
model followed closely, supporting the role of intraparticle and
pore-limited transport mechanisms. Importantly, the RFR
model demonstrated highly competitive performance, with an
R2 of 0.982, RMSE of 0.728 mg g−1, and c2 of 0.419, placing it
among the top-performing models despite being data-driven
and non-parametric. While slightly outperformed by the MO
model in pure statistical terms, the RFR model offers critical
advantages in exibility, generalizability, and predictive capa-
bility under untested conditions, which are beyond the scope of
conventional models. Traditional models such as PSO and
Elovich performed reasonably well (R2 > 0.95), indicating their
adequacy in describing systems dominated by chemisorption
and surface heterogeneity. In contrast, models like Vermeulen,
W&M, and Boyd's exhibited relatively low predictive accuracy,
highlighting their limited applicability to systems with complex
adsorption mechanisms and heterogeneous biochar surfaces.
In summary, this comparative evaluation not only conrms the
robustness of advanced kinetic models like MO and PVSD but
also showcases the practical utility and methodological inno-
vation of integrating machine learning specically Random
Forest Regressor into adsorption kinetic analysis. The RFR
model complements traditional models by providing
a nonlinear, multi-variable framework that adapts well to
© 2025 The Author(s). Published by the Royal Society of Chemistry
experimental variability and supports predictive applications in
real-world environmental systems.

In addition to its high accuracy, the RFR model offers
operational exibility and predictive scalability, enabling it to
estimate adsorption capacities Qe under untested or extrapo-
lated experimental conditions. This is particularly valuable for
real-world wastewater treatment applications where parameter
variability is high and conducting exhaustive experiments is
impractical. The feature importance analysis (Fig. S4, SI) reveals
that contact time and initial Cr(VI) concentration (C0) are the
most inuential predictors of adsorption capacity, followed by
pH and adsorbent mass. This nding aligns with the experi-
mental conclusions that these variables play dominant roles in
adsorption kinetics. Such interpretability reinforces the RFR's
capacity to not only predict outcomes but also diagnose the
driving factors behind the process.

The model t comparison shown in Fig. S5, SI further
conrms the robustness of the RFR model, with predicted Qe

values closely matching experimental data across the entire
kinetic range. Unlike parametric models that tend to overt
certain phases (e.g., initial or equilibrium), the RFR exhibits
uniform performance throughout the kinetic prole.

Fig. S4 in the SI compares the experimentally measured
adsorption capacities (Qe) of Cr(VI) with those predicted by the
RFR model. The close alignment of the data points along the
45° reference line (ideal t) indicates high predictive accuracy
and minimal residual error across the entire adsorption range.
Unlike traditional models that oen deviate in the early or
equilibrium phases, the RFR model demonstrates consistent
performance across both low and high adsorption capacities.
This conrms its robustness in modeling non-linear, multi-
RSC Adv., 2025, 15, 42238–42253 | 42247
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phase kinetic systems without requiring prior assumptions
about adsorption mechanisms. Moreover, the absence of
systematic bias in the predictions suggests that the model
generalizes well to the underlying adsorption behavior of BC-
YDF. These results reinforce the RFR's value as a reliable,
interpretable, and scalable tool for predicting adsorption
dynamics in complex environmental systems, particularly when
experimental constraints limit the scope of kinetic testing.

To validate the generalization ability of the RFR model, the
dataset was randomly split into 70% for training and 30% for
testing. The model was retrained on the training set and then
used to predict adsorption capacities (Qe) on the independent
test set. As shown in Fig. S5 in the SI, the predicted values
aligned closely with the experimentally measured ones, with an
R2 of 0.934, RMSE of 1.33 mg g−1, and c2 of 0.36 on the test data.
This performance conrms that the RFR model generalizes well
to unseen data, thereby demonstrating robustness and practical
potential for real-world implementation. The high consistency
between training and test results reduces concerns of overtting
and validates the use of RFR as a reliable prediction tool in data-
driven adsorption modeling.

To benchmark the predictive performance of the RFR, we
further evaluated three widely used machine learning models:
support vector regression (SVR), gradient boosting regressor
(XGBoost), and multi-layer perceptron (MLP). As presented in
Table S7 in the SI, both RFR and XGBoost achieved superior
predictive accuracy with R2 values of 0.9335 and 0.9338,
respectively, indicating strong generalization to unseen data.
However, RFR yielded the lowest c2 value (0.36) and a competi-
tive RMSE (1.33 mg g−1), suggesting it is slightly more robust
under variance and model residuals. In contrast, SVR and MLP
underperformed signicantly, with R2 values below 0.53 and
RMSE exceeding 3.5 mg g−1, indicating poor t and limited
ability to capture nonlinear adsorption kinetics. These results
underscore the importance of model selection when applying AI
to adsorption systems, and support the choice of RFR as a reli-
able, interpretable, and high-performance model for Cr(VI)
kinetic prediction.

The performance of the RFR model in this study compares
favorably with previous research on adsorption modeling as
shown in Table 2. For instance, Bahrami et al. (2024) used RFR
to model methylene blue adsorption onto microplastics and
reported an R2 of 0.957 and RMSE of 0.912 mg g−1. Similarly,
Hassan and Kazemi (2025) applied RFR for organic pollutant
adsorption onto resins and biochars and achieved an R2 of
0.961. In contrast, the present study achieved a higher R2 of
0.994 and lower RMSE of 0.454 mg g−1, indicating improved
predictive capability. This superior performance can be
Table 2 Comparative performance of RFR models for adsorption predic

Study Adsorbent Target pollutan

This study (2025) Young durian fruit biochar (BC-YDF) Cr(VI)
Bahrami et al.11 Microplastics Methylene blue
Hassan & Kazemi10 Biochar + resin Organics
Solih et al.9 Fruit waste hydrochar Heavy metals

42248 | RSC Adv., 2025, 15, 42238–42253
attributed to the structured variable selection through ANOVA,
the optimized biochar material (BC-YDF), and the targeted
design of the experimental dataset. Compared to prior studies,
the current work not only enhances model accuracy but also
introduces a novel sustainable adsorbent, thereby broadening
the environmental application scope of machine learning in
adsorption kinetics.

To elucidate the adsorption mechanism encoded by the RFR
beyond global importance, we decomposed the learned
response using complementary interpretability techniques.
Partial dependence (PD) and accumulated local effects (ALE)
curves show amonotone decrease ofQe with increasing pH once
pH exceeds the biochar's point-of-zero charge (pHpzc), with the
steepest decline observed between one unit below and one unit
above pHpzc; stratied ICE curves conrm that at pH < pHpzc,
where the YDF biochar surface is positively charged, Qe is
maximized, consistent with electrostatic attraction of anionic
Cr(VI) species, whereas deprotonation above pHpzc weakens
uptake. SHAP interaction plots further reveal that the adverse
pH effect is amplied at higher ionic strength, and ALE surfaces
for {pH, KCl} display a sub-additive ridge consistent with
screening of outer-sphere interactions by background electro-
lyte; at near-neutral pH, increasing ionic strength yields
a measurable but smaller depression in Qe, whereas at pH �
pHpzc the depression is strongest, supporting a dominant
physisorption/electrostatic component under acidic conditions.
Conversely, at extended contact times and/or higher dosages,
PD slices atten and ICE variability narrows, indicating
progressive saturation of fast outer-sphere sites and a growing
contribution from slower intraparticle diffusion and possible
inner-sphere complexation on oxygen-containing functional-
ities identied by FTIR, which aligns with the competitive
performance of diffusion-aware kinetic baselines in our
comparisons. Together, these patterns composed (i) strong
negative pH dependence around and above pHpzc, (ii)
a pronounced ionic-strength penalty that is largest in the acidic
regime, and (iii) attenuation of pH/ionic-strength sensitivity as
time and dosage increase are characteristic of an adsorption
landscape where outer-sphere physisorption governs initial
uptake and is progressively complemented by transport-limited
and site-specic interactions; we provide all PD/ALE/ICE panels,
SHAP interaction summaries, and counterfactual sensitivity
analyses with 95% bootstrap bands in the SI, and we modify the
gure captions to explicitly connect these behaviors to mecha-
nistic hypotheses grounded in the material's measured surface
properties.
tion in recent studies

t R2 RMSE (mg g−1) c2 Remarks

0.994 0.454 0.129 High accuracy, robust validation
0.957 0.912 — Good t but limited interpretability
0.961 ∼0.85 — Applicable to diverse pollutants
0.978 ∼0.6 — Emphasis on XGBoost; limited on RFR

© 2025 The Author(s). Published by the Royal Society of Chemistry
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3.4. Kinetic trends and interpretation

The kinetic adsorption prole of Cr(VI) onto BC-YDF, as illus-
trated in Fig. 5, exhibits a typical three-stage behavior that
reects the dynamic nature of adsorption on mesoporous bi-
ochar materials.24,37,57 The data shows:

� Phase I: Initial rapid uptake (0–30 min)
In the early phase, adsorption proceeds rapidly due to the

availability of a high density of vacant and accessible active sites
on the external surface of the biochar. During this period, Cr(VI)
ions readily interact with functional groups such as –COOH, –
OH, and aromatic p-systems, leading to a steep rise inQe values.
The predicted curve from the PSO model closely follows this
sharp increase, indicating its ability to capture fast
chemisorption-driven interactions.

� Phase II: Transition phase (30–150 min)
Aer 30 minutes, the rate of adsorption decreases gradually.

This is attributed to partial occupation of active sites and
increased steric hindrance as Cr(VI) ions begin to diffuse into
internal pores. The PSOmodel maintains a high tting accuracy
in this range (RMSE = 1.06, R2 = 0.951), suggesting that the
kinetic mechanism transitions into a combination of surface
and pore diffusion, as also supported by the moderate t of the
IDF and Elovich models in this regime.

� Phase III: Equilibrium phase (>150 min)
Beyond 150 minutes, the system reaches near equilibrium

where the net adsorption rate slows down signicantly. This
indicates that the majority of active sites are saturated or
inaccessible, and adsorption–desorption dynamics begin to
dominate. The equilibrium adsorption capacity approaches
30 mg g−1, which matches well with both experimental values
and the predicted plateau by the PSO and PVSD models.
Fig. 5 Strengthens this interpretation by visually distinguishing the kine
transition phase, and green for equilibrium. The alignment between PSO
robustness of the kinetic fit and reinforces the reliability of the derived m

© 2025 The Author(s). Published by the Royal Society of Chemistry
The clearly dened phases in the kinetic curve emphasize
the multi-mechanistic nature of Cr(VI) removal on biochar. The
excellent agreement between the PSO model and experimental
data throughout all three phases further conrms that chemi-
sorption rather than simple physisorption or purely pore-
limited transport is the primary mechanism.

While classical kinetic/isotherm models (PFO/PSO/Elovich,
Weber–Morris, Boyd) correctly track the “linear-then-plateau”
shape for a given set of conditions, their single-template
structure does not, in general, capture how both the local
slope and the saturation level co-vary with operating factors. In
our experiments, the apparent initial rate and the onset of
saturation shi with pH relative to pHpzc and are further
modulated by ionic strength; increasing KCl advances the
plateau and depresses Qe at low pH (electrostatic screening),
whereas longer contact time and higher dosage partially atten-
uate this penalty, consistent with a mixed outer-sphere/
transport-limited picture. Fitting one global parametric equa-
tion across all regimes leaves systematic residual patterns and
inated reduced c2 despite heteroscedastic weighting, indi-
cating structural misspecication rather than mere parameter
scaling. We therefore adopt a Random Forest Regressor as
a regime-aware surrogate that exibly approximates the multi-
variate response surface f(pH, KCl, C0, dosage, t) / Q, trained
under nested cross-validation with an external test set to
preclude leakage. The RFR reduces out-of-sample RMSE and c2

versus single-form ts pooled across regimes, while its PD/ALE
and SHAP interactions recover the expected monotone decline
of Q with pH above pHpzc and the strongest ionic-strength
penalty in the acidic regime, and also quantify how time-
dosage coupling attens the pH sensitivity as fast sites
tic zones using shaded regions: grey for the initial phase, blue for the
-predicted and experimental data across all three zones supports the
odel parameters.

RSC Adv., 2025, 15, 42238–42253 | 42249
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saturate. In practice, the physics-based models remain indis-
pensable for mechanistic interpretation on a xed condition,
whereas the RFR serves as a calibrated, transparent surrogate
for multi-factor optimization and “what-if” design within the
empirical domain; accordingly, we relocate all kinetic deriva-
tions and ts to the SI and retain in the main text the cross-
regime predictive evidence and interpretable response-surface
diagnostics that justify the added value of the data-driven
approach.
3.5. External predictability on literature datasets

To assess cross-study predictability without reproducing third-
party experiments, we implemented a literature-driven valida-
tion in which the trained random forest regressor (RFR) is
applied to independent adsorption datasets reported for
different sorbents and laboratories. We selected open-access
studies that provide sufficient metadata to reconstruct oper-
ating conditions, including Hu et al. (2024) on chestnut-shell
biochar (PC and Ni-doped PCNi3), Dahiya et al. (2023) on
reduced/oxidized rice-straw biochars, and Naseem et al. (2022)
on graphene-oxide and rGO–ZnO nanocomposites; pH, initial
Cr(VI) concentration, dosage, ionic strength/background elec-
trolyte, and contact time were obtained from the text, tables,
and gure captions, and time-resolved qt or equilibrium qe
series were digitized when necessary using a calibrated tool. We
performed two evaluations per dataset: (i) zero-shot transfer,
where the original RFR trained on YDF inputs is used directly to
predict Q under the external study's conditions, and (ii) adapter-
calibrated transfer, where a lightweight correction layer (ridge
regression on the RFR's leaf-embedding features) is t to#20%
of the external study's points selected by stratied sampling
over pH and C0, with the remainder held out. Across cases, the
RFR reconstructed the canonical rise-and-saturation kinetics
and tracked the shis induced by pH and ionic strength, while
the adapter reduced any material-specic bias without inating
variance; performance is summarized by RMSE, MAE, R2, and
reduced c2 alongside parity plots and error-distribution violins.
We benchmarked against best-tting parametric curves re-
ported by the original authors (e.g., PSO/Elovich) to ensure a fair
comparison within each study's preferred physics-based form.
The complete protocol, digitization QA, and per-study results
are provided in Table S10 and Fig. S10–S12, with study identi-
ers and DOIs to facilitate independent replication. These
results indicate that the RFR functions as a regime-aware
surrogate that generalizes qualitative trends across materials
(acid-enhanced uptake below pHpzc, electrolyte screening of
outer-sphere interactions, attenuation at long contact times/
high dosage) while retaining low predictive error within the
empirical domains spanned by those studies.
4. Conclusions

This study introduces a novel integration of machine learning
with adsorption kinetics by applying a Random Forest
Regressor (RFR) to predict Cr(VI) uptake onto biochar derived
from young durian fruit (BC-YDF). The RFR model
42250 | RSC Adv., 2025, 15, 42238–42253
demonstrated excellent predictive accuracy (R2 = 0.994, RMSE
= 0.454 mg g−1), outperforming or matching the best conven-
tional kinetic models such as the Mix-Order and PVSD. Unlike
classical models constrained by predened equations and
assumptions, the RFR approach exibly captures complex,
nonlinear interactions among multiple process variables
without prior mechanistic input. Moreover, the model offers
interpretability through feature importance analysis, high-
lighting contact time and initial Cr(VI) concentration as the
most inuential parameters key insights for optimizing
adsorption performance.

Importantly, this work is the rst to leverage AI-driven
regression for modeling the kinetic behavior of Cr(VI) adsorp-
tion on a sustainable, bio-based adsorbent derived from agri-
cultural waste. The minimal data requirement and high
generalizability of the RFR model make it particularly suited for
practical applications in low-resource settings. By bridging data-
driven learning and environmental engineering, this approach
paves the way for intelligent, efficient, and scalable design of
water treatment systems. Overall, the ndings underscore the
transformative potential of AI in kinetic modeling and
sustainable material utilization, offering a robust framework for
future advancements in environmental remediation science.
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Regalado, J. R. Rangel-Mendez, P. E. D́ıaz-Flores,
M. T. Garza-Gonzalez and J. A. Loredo-Medrano, Copper
Biosorption by Spent Coffee Ground: Equilibrium,
Kinetics, and Mechanism, Clean: Soil, Air, Water, 2013, 41,
557–564.

56 L. Largitte and R. Pasquier, A review of the kinetics
adsorption models and their application to the adsorption
© 2025 The Author(s). Published by the Royal Society of Chemistry
of lead by an activated carbon, Chem. Eng. Res. Des., 2016,
109, 495–504.

57 V.-P. Dinh, T. D. Xuan, N. Q. Hung, T.-T. Luu, T.-T.-T. Do,
T. D. Nguyen, V.-D. Nguyen, T. T. K. Anh and N. Q. Tran,
Primary biosorption mechanism of lead (II) and cadmium
(II) cations from aqueous solution by pomelo (Citrus
maxima) fruit peels, Environ. Sci. Pollut. Res., 2021, 28,
63504–63515.
RSC Adv., 2025, 15, 42238–42253 | 42253

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra05229g

	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach

	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach

	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach
	Integrating artificial intelligence with kinetic studies for Cr(vi) removal using young durian fruit biochar: a random forest regressor approach


