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For sustainable green hydrogen production, bifunctional catalysts must rival or surpass precious metal

electrocatalysts in water splitting. MXenes, with their rich surface chemistry, unique physicochemical

properties, and stability, have emerged as promising candidates. However, achieving balanced hydrogen

evolution (HER) and oxygen evolution (OER) activity in a single medium remains challenging. Herein, we

report the synthesis of Ti3C2Tx MXene and erbium intercalated (Er@Ti3C2Tx) nanocomposites as

bifunctional electrocatalysts for overall water splitting in alkaline media. The Er@Ti3C2Tx catalyst

demonstrates outstanding HER performance, requiring only 256 mV overpotential at 10 mA cm−2 with

a Tafel slope of 102 mV dec−1, while also exhibiting superior OER activity with an overpotential of

381 mV at 10 mA cm−2 and a Tafel slope of 157 mV dec−1. Electrochemical tests were conducted in 1 M

KOH using an Ag/AgCl reference electrode and a Pt wire as the counter electrode. Chronoamperometry

confirmed long-term stability and durability. Structural and morphological analyses conducted using

XRD, SEM, EDX, FTIR, and Raman spectroscopy verified the successful intercalation of Er while

preserving the 2D MXene structure. A notable increase in d-spacing from 8.9 Å (pristine MXene) to 12.2 Å

(Er@Ti3C2Tx) further confirmed erbium (Er) incorporation. Moreover, electrochemical impedance

spectroscopy (EIS) revealed reduced charge-transfer resistance, highlighting enhanced kinetics and

efficiency for water-splitting reactions.
1 Introduction

The considerable increase in energy demand, driven by pop-
ulation growth and improved living standards, poses a major
global challenge. It is estimated that the energy demand will
increase by nearly 50% by 2030.1,2 Most developing countries
still rely on conventional fossil fuels,3 which release carbon
dioxide and other toxic by-products, threatening human health
and the environment. To address this, renewable energy
resources such as solar, wind, and water have gained wide-
spread attention.4 Among them, hydrogen has emerged as
a clean and sustainable energy carrier, with hydrogen
combustion offering environmentally friendly energy conver-
sion due to its zero carbon emissions.5 As the global demand for
clean energy escalates, the development of efficient, scalable,
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and cost-effective hydrogen production methods has become
imperative6,7

Electrochemical water splitting8,9 is one of the most prom-
ising green strategies for hydrogen generation,10 producing
hydrogen and oxygen gases through the application of electrical
current. Different electrolysis technologies have been devel-
oped, including Solid Oxide Electrolysis Cells (SOEC),11 Alkaline
Water Electrolysis (AWE),12 Anionic Exchange Membranes
(AEMs)13 and Proton Exchange Membranes (PEMs).14 The effi-
ciency of these processes depends strongly on the performance
of electrocatalysts. Precious metals such as Pt and Ir remain
benchmark catalysts for HER and OER, respectively, but their
scarcity and high cost hinder large-scale applications.15,16

Consequently, research has shied toward earth-abundant
alternatives, such as transition metal chalcogenides,17,18 gra-
phene,19 graphene-based composites,20 metal–organic frame-
works (MOFs),21 and MXene composites22

MXenes, rst reported by Gogotsi and colleagues in 2011,23

are a new class of 2D transition metal carbides, nitrides, and
carbonitrides with the general formula Mn+1XnTx, where M is an
early transition metal (like Ti, V, Mo, Nb, Cr, etc.), X is C and/
or N, Tx denotes surface terminations (–O, –OH, –F, –Cl) and n
varies from (1–4). More than 70 MXene compositions have been
synthesized experimentally, while over 100 are predicted theo-
retically. MXenes have transitioned from the early synthesized
RSC Adv., 2025, 15, 37379–37390 | 37379
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forms that had just one or two metal atoms to the latest high-
entropy 2D MXenes that incorporate three metal atoms
(Ti3SiC2, Ti3AlC2)24 selectively removing the A-layers from the
corresponding ternary carbide or nitride MAX phases.
Compared to rGO (reduced graphene oxide)25,26 and copper,27

MXenes exhibit high conductivity, hydrophilicity, chemical
stability, large surface area, and tunable surface chemistry,
making them attractive for energy-related applications,
including water splitting, batteries,28 and supercapacitors.29 For
HER, the metallic conductivity of MXenes facilitates fast charge
transfer, while theoretical studies suggest that M2X and M3X2

can provide active sites for hydrogen adsorption.30 However, the
catalytic activity is strongly inuenced by surface terminations,
as –F and –O groups can impede ion diffusion or alter adsorp-
tion energetics.31,32

To enhance MXene activity, various modication strategies
have been reported.33,34 Among them, doping or intercalation
with rare-earth metals is particularly effective in tuning surface
chemistry and electronic properties.35–37 Rare-earth elements
can reduce surface –F/–OH groups, improve charge transfer,
and introduce new active sites.38 Specically, Er doping has
been shown to modify MXene surface functionalities, leading to
improved hydrogen adsorption and catalytic activity. The –F
and –OH terminations have been observed to be reduced by
erbium doping in an MXene.39

In this study, we present the rst-ever synthesis and
electrochemical evaluation of Er-intercalated Ti3C2Tx (Er@Ti3-
C2Tx) MXene as a bifunctional electrocatalyst for overall water
splitting in alkaline media. Unlike previous reports that mainly
focused on either HER or OER activity of rare-earth-modied
MXenes, our work emphasizes dual catalytic performances,
long-term stability, and structural reinforcement achieved
through Er intercalation. The Er atoms were incorporated into
the MXene layers via a simple van der Waals-mediated self-
assembly process, which, unlike conventional methods
requiring harsh post-treatments, offers a facile, template-free,
and solution-based route with controllable Er loading while
preserving the intrinsic 2D lattice. The intercalation of Er
effectively pillars the interlayer galleries, expands the d-spacing,
introduces new catalytic centers, and reduces charge-transfer
resistance, thereby accelerating reaction kinetics. Among the
tested compositions, the optimized Er@Ti3C2Tx (0.5 : 2), deno-
ted as T1, exhibited the most favorable catalytic performance for
both the anodic (OER) and cathodic (HER) reactions, signi-
cantly outperforming pristine Ti3C2Tx. Furthermore, the opti-
mized catalyst demonstrated remarkable stability in alkaline
media, highlighting its promise as a cost-effective and durable
alternative to precious-metal-based electrocatalysts.

2 Experimental section

Materials such as Ti3SiC2 MAX powder (300 mesh size, 95%
pure), hydrouoric acid (HF 48 wt% in H2O $ 99%), TMAOH
(trimethyl ammonium hydroxide 25%), potassium hydroxide
(KOH), N-methyl-2-pyrrolidinone (NMP), absolute ethanol,
deionized water (DI H2O wt% purity 99%), erbium nitrate
hexahydrate (Er(NO3)3$6H2O) and 5% concentration of Naon
37380 | RSC Adv., 2025, 15, 37379–37390
(Binder) were utilized in synthesis. All materials and chemicals
were employed exactly as received from the supplier (Sigma-
Aldrich) and without any prior modication.

Fig. 1 illustrates the synthesis process for producing multi-
layered Ti3C2Tx MXene via wet chemical etching, followed by
the preparation of erbium-doped Ti3C2Tx MXene through
a sonication treatment as explained below.

2.1 Ti3C2Tx MXene synthesis

In a Teon beaker, 5 mL H2O2 and 45 mL hydrouoric acid (HF)
were mixed for the etching of Ti3SiC2 MAX. The HF/H2O2

mixture was stirred in an ice bath for 30 minutes before adding
3 g of Ti3SiC2 MAX. The ice bath must be kept at 5 °C since the
etching process is exothermic and releases H2 gas (Fig. 1). The
bottle's lid must be kept unfastened to allow the gas to escape.
The solution-lled Teon beaker was placed at 30 °C in an oil
bath for 45 hours for the selective etching of Si layers of theMAX
phase. Aer the completion of the reaction, the received
product (MXene) was washed 5 times in 45 mL centrifuge tubes.
Finally, Ti3C2Tx MXene was collected aer a successful washing
procedure and placed in a vacuum oven to dry for 24 hours at
a temperature of 80 °C.

The chemical reaction is as follows, where eqn (2) and (3)
lead to different surface terminations, and the reaction
occurred with HF as an etchant.

Ti3SiC2 (s) + 3HF (aq) = Ti3C2 (s) + SiF3 (aq) + 3/2H2 (g) (1)

Ti3C2 (s) + 2HF (aq) = Ti3C2F2 (s) + H2 (g) (2)

Ti3C2 (s) + 2H2O (aq) = Ti3C2 (OH)2 (s) + H2 (g) (3)

2.2 Ti3C2Tx MXene delamination

To delaminate Ti3C2Tx MXene, 1.0 g of Ti3C2Tx powder was
mixed with 2 mL of tetramethyl ammonium hydroxide
(TMAOH) and manually shaken for 3 minutes. This produced
a deeper black color in the MXene wet powder. 20 mL of
deionized water (DI water) was added to the black Ti3C2Tx

MXene mixture, and the mixture was stirred for 24 hours at
300 rpm. Ti3C2Tx MXene was washed three times using centri-
fugation at 3500 rpm using deionized (DI) water. The washing of
the MXene was as follows: the rst two washing cycles took 10
minutes, and the last one took 15minutes at 3500 rpm. Aer the
rst washing cycle, the sluggish green solution of Ti3C2Tx

MXene can be seen to be strong. Aer the third washing cycle,
the basic Ti3C2Tx solution's pH was no longer acidic or basic.
MXene can be used to make freestanding MXene lms by
washing it further with vacuum-assisted ltration. MXene was
dried in a vacuum oven at 120 °C for 18 hours.

2.3 MXene nanocomposite preparation

Erbium nitrate hexahydrate was added to Ti3C2TxMXene, which
was denoted in terms of different atomic weight percentages,
with three ratios of Er/Ti3C2Tx nanocomposites (T1 (0.5 : 2), T2
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Synthesis process of Ti3C2Tx (etching & delamination).
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(1 : 2), and T3 (1.5 : 2)) synthesized using a sonication method.
The procedure involved dispersing 40 mg of Ti3C2Tx in 40 mL of
DI water and 12 mg of salt in 12 mL of DI water (1 : 1 volume
ratio for each case). The solutions were stirred on a hot plate for
60 minutes and sonicated for 2 minutes. The MXene solution
was carefully added to the salt solution dropwise, followed by
sonication for two minutes aer being magnetically stirred on
a hotplate for 2 hours. The resulting solution was centrifuged at
4500 rpm, ltered using vacuum-assisted ltration, and kept for
drying overnight at 45 °C in a vacuum oven. The dried product
was characterized further.
3 Electrochemical measurements

For the fabrication of the electrode, 0.8 mg of active mass, e.g.,
Er@Ti3C2Tx, Ti3C2Tx powders, acetylene black as a conductive
agent, 35 mL of Naon (C7HF13O5S C2F4) binder with 5%
concentration, and 0.1 mg of carbon black were dissolved in 100
ml of ethanol solvent in an 80 : 10 : 10 weight ratio. The mixture
solution was kept for sonication for 10 minutes to create
a homogeneous ink/slurry. The ink/slurry was then applied
dropwise onto a conductive nickel foam (1.5 × 1 cm) and dried
at 40 °C in a vacuum oven overnight. The resulting electrode
was then pressed at 500 psi for 10 seconds. Before casting the
slurry on the nickel foam (the efficiency of water electrolysis can
be signicantly improved by modifying nickel foam),40 the foam
was washed by sonicating it in DI water and ethanol for 10
minutes each and then dried on a hot plate. This process
ensured that the foam was clean and ready for slurry
application.
4 Material characterizations

The XRD (Model: Dron 8) was employed to examine crystal
structure and phase identication throughout the angular
range of 2q from 4° to 80°. Diffraction patterns were acquired
for all materials using Cu-Ka wavelength light (l = 1.5406 Å).
Scherrer's formula (D = Klb cos q) measures particle size by
broadening the diffraction peak. ‘D’ indicates crystallite size, K0

shows the coefficient (typically 0.89), ‘l’ represents X-ray
© 2025 The Author(s). Published by the Royal Society of Chemistry
radiation wavelength, ‘b’ represents FWHM, and ‘q’ is the
diffraction angle. The surface morphology of the synthesized
MXene and nanocomposites was investigated using SEM (JEOL
JSM 6490) at 10 kV, while EDX was employed to determine the
elemental composition. The chemical bondings of the synthe-
sized materials were analyzed using FTIR (ATR ALPHA). Using
RAMAN (uRAMAN 532 TEC-Ci), the internal structural vibra-
tional modes of MXene and nanocomposites containing MXene
were investigated.
5 Results and discussions

Fig. 2a represents the XRD pattern of MAX phase Ti3SiC2, pris-
tine Ti3C2Tx MXene, Delaminated MXene, and Er@Ti3C2Tx

nanocomposites with varying proportions. The crystal planes
(002) and (103) of MAX phase Ti3SiC2 were identied at 9.95°
and 39.6°, respectively. The MAX phase-derived MXene was
prepared through the wet chemical etching method. Though
Ti3SiC2 treated with HF/H2O2 mixture showed a shi in (002)
peaks to a lower 9.1° angle, yielding Ti3C2Tx and an increase in
lattice parameter up to 19.4 Å (Fig. 2a purple colour) with d-
spacing 9.7 Å,41 which is mainly attributed to the removal of Si
layers, the attachment of surface functional groups introduced
during the synthesis route, and the intercalation of adsorbed
water molecules between the MXene layers, thereby conrming
the successful exfoliation of the MXene sheets.42 The XRD
analysis of Ti3C2Tx MXene, which was synthesized from Ti3SiC2

conrmed the intercalation of TMAOH between MXene sheets
(Fig. 2a, red colour). The intercalation of TMA+ ions is indicated
by the increase in d-spacing from approximately 8.88 Å to 12.18
Å, yielding the shi of the (002) peak from 9.95° to 7.25° angles,
respectively. The apparent formation of TiO2, as seen by the
peak at 25°, indicates that the MXene sample had minimal
oxidation, as previously reported.43,44 Peaks at 34° indicate the
presence of the SiC phase following a successful exfoliation
route process. The signicant peak at 8.9° degrees on the XRD
of MXene corresponds to Ti3C2Tx, which is shied to an even
lower degree as a result of the delamination process.45–47 The
attachment of Er3+ ions on/to delaminated Ti3C2Tx sheets
altered the XRD pattern of the sample. Specically, the (002)
RSC Adv., 2025, 15, 37379–37390 | 37381
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Fig. 2 (a) XRD pattern of MAX Ti3SiC2 (green), etched MXene Ti3C2Tx (purple), delaminated MXene (red), and T1, T2, T3 nanocomposites with the
best sample T1 (brown), (b) scanning electronmicroscopy (SEM) images of Ti3SiC2 MAX phase at 5 mm, (c) etched Ti3C2Tx MXene, (d) delaminated
MXene at 1 mm, (e) nanocomposite of Er@ Ti3C2Tx at 1 mm.
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peak shied to about 5.75° angle, which may indicate a change
in the crystal structure of the prepared material due to chemical
composition (Fig. 2a, brown colour). The corresponding c-
lattice parameter of the (002) peak increased by 30.7 Å for the T1

(0.5 : 2) nanocomposite, and the d-spacing by 15.35. This shi
indicates that the layer spacings in Ti3C2Tx were increased due
to the addition of Er.

The morphology and elemental content of the samples have
been studied using scanning electron microscopy (SEM) and
energy-dispersive X-ray spectroscopy (EDS).48 Fig. 2b exhibits an
unetched bulk Ti3SiC2 MAX phase. Fig. 2c illustrates an image
of etched MAX phase, where a sheet-like structure bears
resemblance to the scanning electron microscope (SEM) images
presented in prior research on etched Ti3C2Tx powder.49 The
removal of silicon from etched Ti3C2Tx MXene results in an
extended layered structure, which has been supported by the
enhanced c-lattice parameter. Fig. 2d shows delaminated
Ti3C2Tx MXene, TMA+ ion intercalation caused MXene layers to
expand signicantly, indicating their accordion-like
morphology.50 Additionally, Fig. 2e shows that tiny particles of
Er or Er3+ ions can be observed on/in between layers or on the
surface of the T1 (0.5 : 2) nanocomposite of Er@Ti3C2Tx. As the
amount of Er@Ti3C2Tx in the system evolves, the rate of reac-
tion slows down. The increased concentration, as observed in
the SEM micrographs in Fig. 2e, covers the 2D sheet structure,
which may lead to blockages and a reduction in activity.

The Fourier-transform infrared radiation FTIR spectra of
Ti3C2Tx MXene and Er@ Ti3C2Tx or T1 (0.5 : 1) nanocomposite
have been shown in Fig. 3a. FTIR of all the samples was recor-
ded in the range of 400 to 4000 cm−1. FTIR spectra are mostly
divided into two regions: the functional group region (4000–
1200 cm−1) and the ngerprint region (<1200 cm−1). The
detected functional groups may originate from moisture and
environmental inuences, while the peaks in the ngerprint
region are attributed to Ti–O, Er–O, and functional group
stretching vibrations, whose detailed congurations are
described as follows.51,52 In FTIR spectra, broad absorption
37382 | RSC Adv., 2025, 15, 37379–37390
bands observed at 3430 cm−1 show the vibrational stretching of
a hydroxyl group (–OH), which shows the absorbance of water53

and peak at 2923 cm−1 corresponds to the C–H bond (Fig. 3a
red). The O–H vibrational mode is represented around
1630 cm−1, and the bands in the ngerprint region correspond
to the 1019 cm−1 C–F bond and 648 cm−1 is associated with the
Ti–O stretching band, respectively. The peak at 648 cm−1

represents the Ti–O bond, indicating the deformation vibration
of Ti and O atoms.54 The presence of an oxygen-terminated
functional group is conrmed by the C–O bond peak at
1130 cm−1. The peaks at 2924 and 1451 cm−1 were assigned to –

CH2 and CH, respectively. Similarly, (Fig. 3a-brown) illustrates
the FTIR spectra of T1 (0.5 : 1) nanocomposite, where absorption
bands at 3423 cm−1, 2924 cm−1, 2850 cm−1, 1633 cm−1,
1024 cm−1 and 510 cm−1 can be observed. At 3423 cm−1, the
broad band corresponds to the –OH vibrational stretching. The
bands at 2924 cm−1 and 2850 cm−1 correspond to the C–H
vibrational stretching vibrations. While the peak at 1633 cm−1

represents O–H bending vibrations. The bands at 1024 cm−1

and 645 cm−1 are relevant to the C–F and Ti–O stretching
modes, respectively.54 As reactive sites of Ti3C2Tx functionali-
zation, the functional groups can function as highly activated
sites. Additionally, there is a prominent peak of Er–O charac-
teristic stretching vibration at 510 cm−1 caused by the stretch-
ing vibration. No new peaks have been seen in the FTIR
spectrum of Er@Ti3C2Tx. As the peaks for Ti3C2Tx's functional
terminations diminish, it's clear that Er has grown successfully
on Ti3C2Tx.

The Raman spectra of delaminated Ti3C2Tx MXene powder
and Er@Ti3C2Tx or T1 (0.5 : 1) nanocomposite are shown in
Fig. 3b. The observed presence of Raman-active phonon modes
at various vibrational frequencies indicates the existence of
functional groups on the surface of MXene. Raman spectros-
copy was used to study structure, phase shi, crystallinity, and
molecular interface interaction. Four phonon peaks of the
crystal structure at 153, 240, 414, and 597 cm−1 have been
observed in the Raman spectrum of Ti3C2Tx (Fig. 3b red). The
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) FTIR spectra of delaminated Ti3C2Tx MXene (red) and T1 nanocomposite (brown), (b) RAMAN spectra of delaminated Ti3C2Tx MXene
and T1 (0.5 : 2) nanocomposite.
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spectrum of Ti3C2Tx matches that reported in the previous
literature.55 The spectral modes at 240 cm−1 and 597 cm−1 are
attributed to out-of-plane stretching vibrations of Ti2 and C,
respectively56 utilized to study the intercalation mechanism
between sheets or the adsorption occurring on the surface of
MXene. The Raman bands between 300–800 cm−1 are particu-
larly associated with the Ti–C bond in MXene.57 The subsequent
vibration contains surface groups, Si, and C atomic planes. In
addition, the Ti2 atoms in-plane and out-of-plane vibrations of
the outer layer, also attached with functional groups and carbon
atoms, are identied at 282.95 cm−1 and 399 cm−1, respectively.
It is related to the phonon modes Eg (Ti, C, O) and A1g (Ti, C, O).
Sharper Raman peaks, indicative of increased crystallinity, were
observed for MXene and T1 composite.58 Observation of the
phonon peak at 587 cm−1 conrms the Eg and A1g vibrations of
C atoms (Fig. 3b brown). Adjacent C-atomic planes form
longitudinal modes at 683.66 cm per phonon frequencies,
which correspond to Ag modes46,59 peak shiing in position is
observed when both datasets are compared. The upshiing of
the peak's position is attributed to the elongation of bonds. The
structural atomic strain is also linked to the prolongation of
bonds. In Fig. 3b, the Raman data also show the M–Tx bond
stretching or weakening due to the shielding effect of the Er
atom as it attaches to the surface. The Raman spectra of MXene
can be broadly classied into four regions, Raman laser has
a resonant peak of about 138 cm−1. The MXene akes have
mainly Eg (in-plane) and A1g (out-of-plane) vibrational modes
associated with titanium carbide atoms in the outer layer, Ti
atoms, C atoms, and functional group atoms. Most of the atoms
within the MXene unit cell actively participate in these vibra-
tions, rendering them the most rigid of all potential vibrations.
Surface functional groups that attach to the titanium atom
© 2025 The Author(s). Published by the Royal Society of Chemistry
cause vibrations in the adjacent region. Eg and A1g (in- and out-
of-plane) carbon atom vibrations occurred in the fourth range
from 570 to 720 cm−1.60
5.1 Electrochemical performance analysis

On a Gamry Interface 1010B potentiostat with a three-electrode
system 61–63 in a 1 M KOH (pH = 14) electrolyte, electrochemical
testing was conducted. A functional electrode was used to
evaluate the as-synthesized MXene and its composites with
variable ratios. Ni foam served as the current collector for the
active electrode, allowing fast mass and electron transfer, while
a platinum wire and an Ag/AgCl (3.5 M KCl) electrode served as
counter and reference electrodes, respectively. The polarization
curves' Tafel slope and overpotential indicate activity. Changes
in the overpotential or current as a function of time are used to
characterize stability. The Nernst equation, ERHE = EAg/AgCl +
0.0591 pH + 0.1976, was used to analyze all potentials in LSV in
reversible hydrogen electrode (RHE), and both the OER and the
HER were studied at a xed low scan rate of 10 mV s−1.62,63 To
determine the kinetic efficiency of the prepared catalyst, the
Tafel slope is computed using the equation h= a + b log j, where
b represents the Tafel slope and h denotes the overpotential.
Composites of Ti3C2Tx were prepared with Er in different mass
ratios, i.e., 0.5 : 2, 1 : 2 : 2, and 1.5 : 2. MXene and Er: MXene
samples were synthesized and labelled as T1, T2, T3, respec-
tively. Among all these ratios, Er@Ti3C2Tx (0.5 : 2), denoted as
T1 gave the best results for overall water splitting applications.
The EIS measurement was taken by a sinusoidal voltage signal
of 10 mV and a frequency range of 20 kHz to 0.1 Hz. The
chronoamperometry test was used for long-term durability
testing at 0.6 V constant voltage.
RSC Adv., 2025, 15, 37379–37390 | 37383
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5.2 Water electrolysis electrochemistry

Although electrocatalytic water splitting is the typical approach
for hydrogen production, it only accounts for 4% of overall
hydrogen production.64,65

Water electrolysis (reduction and oxidation)

H2O/H2 þ 1

2
O2 (4)

Involves cathodic (HER) and anodic (OER) half-cell reac-
tions, yielding H2 and O2 (respectively).66

Cathode: the hydrogen evolution process (HER) entails the
reduction of protons (H+), resulting in the formation of
hydrogen gas (H2).

2H+ + 2e− / H2 (5)

Anode: in the Oxygen Evolution Reaction (OER), water
molecules (H2O) undergo oxidation,67 resulting in the produc-
tion of oxygen gas (O2).

2H2O / O2 + 4H+ + 4e− (6)

For determining overpotential to standard 10 mA cm−2

(h@10 mA cm−2), a standard diagram of current density versus
voltage is utilized. This involves measuring the generated
current with the provided voltage using a potentiostat. The
resultant current density is then determined by dividing the
current by the catalyst's surface area on the electrode. Typically,
the oxygen evolution reaction commences at the end of the non-
faradaic zone, at which point the onset potential is identied. A
lowered onset potential indicates that an OER catalyst is better.
At each electrode, the following are the usual half-cell reactions:
5.3 Linear sweep voltammetry (LSV)

5.3.1 Oxygen evolution reaction (OER). In alkaline/aqueous
electrolyte

4OH− / O2 (g) + 2H2O (l) + 4e− (7)
Fig. 4 (a) Polarization curve of OER against RHE, (b) Tafel slope of dela
current density at 10 mA cm−2 (h10) and 20 mA cm−2 (h20).

37384 | RSC Adv., 2025, 15, 37379–37390
Using LSV polarization curves (electrochemical system to V
versus RHE stimuli), Fig. 4a depicts the response of delaminated
MXene Ti3C2Tx and Er@Ti3C2Tx nanocomposites (T1, T2, and
T3) for OER activity at potential varied from 0 to 1.4 V at a scan
rate of 10 mv s−1 in 1 molar KOH electrolyte.68–71 The T1 (0.5 : 2)
nanocomposite exhibited the highest activity, the lowest onset
potential, the lowest overpotential h10 (385 mV), and the least
Tafel slope of 157 mV dec−1. The other electrocatalysts Ti3C2Tx,
T2 (1 : 2), and T3 (1.5 : 2) showed overpotentials of 510 mV,
498mV, and 453mV, respectively, at the same current density of
10 mA cm−2 and Tafel slopes of 248 mV dec−1, 237 mV dec−1,
and 216 mV dec−1. The Tafel slope of all materials is depicted in
Fig. 4b. Moreover, the OER reaction of electrocatalytic kinetics
was engaged by Tafel slope (log(jjj) versus over-potential (h)) in
Fig. 4c. Increased Er salt concentration causes a decrease in
OER activity, which may be associated with active site over-
loading and blockage of ion transform and active sites. The
employment of a minimal quantity of intercalated erbium as
a redox species can yield exceptional performance in linear
sweep voltammetry for hydrogen and oxygen evolution reac-
tions. This approach effectively balances the necessity for
a robust signal with the prevention of mass transport
limitations.

5.3.2 Hydrogen evolution reaction (HER). The process of
the hydrogen evolution reaction (HER) generally occurs in
alkaline electrolytes. It typically begins with a phase where water
dissociates and forms a proton (H+) adsorbed on the surface of
the electrode, which is known as the Volmer step (Fig. 5a).69

Then, it was followed by the Tafel step, where adsorbed species
recombine or absorbance of water molecules with hydrogen in
a coupling, and the Heyrovsky step, followed by the electron.
The electrochemical desorption occurred, and it created
molecular hydrogen at the electrode surface M as a result of the
Heyrovsky step.68 The T1 nanocomposite follows the Volmer–
Heyrovsky pathway for the HER process during the determining
step (RDS) according to the literature72,73 and is indicated by its
slope value. The reaction is followed as:

H2O + M + e− / MHads + OH− Volmer step: 120 mV dec−1
minated MXene Ti3C2Tx and T1 nanocomposite, (c) comparison of the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Polarization curve of HER against RHE, (b) Tafel slope of delaminated MXene Ti3C2Tx and T1 nanocomposite, (c) comparison of the
current density at 10 mA cm−2 (h10) and 20 mA cm−2 (h20).
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MHads + H2O + e− / H2 + M + OH− Heyrovsky step: 40 mV

dec−1

Tafel slope values are represented in Fig. 5b and the values
T1, T2, and T3 observed were 102, 164, and 176 mV dec−1,
respectively. Whereas T1 has 102 mV dec−1, which is the lowest.
Furthermore, the Tafel slopes of pure Ti3C2Tx are 201 mV dec−1,
respectively. Using the nickel foam substrate caused a signi-
cant enhancement in the overall performance of the T1 nano-
composite, which could be due to Er's strong interaction with
Ti3C2Tx on a nickel foam substrate. The nickel substrate in the
composite structure acts as a conductive support and facilitates
a fast transfer channel for electron mass. Additionally, the
nickel foam has demonstrated very low activity for OER and
HER, indicating that it has a negligible impact on the entire
water splitting process. The ow of electrolytic ions into the
active sites of the sample by the phenomenon of creating
a narrow path could be stimulated by using the porous nickel
materials. Additionally, the robust bonding of Er onto MXene
nanosheets, coupled with Er's active sites, has resulted in
improved electrochemical performance. XRD analysis showed
that the intercalation of Er into MXene layers facilitated faster
ion diffusion pathways. The interaction between the surface
oxygen at Ti3C2Tx and H is quite strong, which impedes the
escape of H2 gas. This interaction also enhanced the capability
of Ti3C2Tx and expedited the charge transfer process. Fig. 5c
shows the overpotential exhibited by all studied materials.
5.4 EIS analysis

The process involving electron transport was investigated using
electrochemical impedance spectroscopy (EIS), and the
frequency range of the EIS ranged from 0.1 kHz to 20 kHz. The
EIS patterns of the delaminated Ti3C2Tx and Er@Ti3C2Tx/T1
(0.5 : 2) composite structures and equivalent circuit model are
shown in Fig. 6a. A basic Randle model incorporating
a constant phase element was employed in series, where the
electrolyte solution between the cell's electrodes is responsible
for the solution resistance (Rs), the electrolyte interface's charge
transfer resistance (Rct), which refers to polarization resistance,
© 2025 The Author(s). Published by the Royal Society of Chemistry
and faradaic capacitance (Cdl) are displayed in Fig. 6a following
tting for the EIS results.74 A structure containing Ti3C2Tx had
the lowest electron transfer resistance (Rct) at 342.7 ohms, fol-
lowed by an Er@Ti3C2Tx (T1) structure with 77.61 ohms and
solution resistance or ohmic resistance 6.731 and 1.69 ohms,
respectively. The results of the Nyquist plot show Ti3C2Tx

MXene has enhanced conductivity and quicker transfer mech-
anisms, resulting in faster reaction kinetics.

5.5 Chronoamperometry

Maintaining the stability of electrochemical materials is a crit-
ical factor for their commercial applications. Fig. 6b represents
the stability of pristine Ti3C2TxMXene and T1 composite sample
by a chronoamperometry test was performed at 0.6 V in a 1 M
KOH solution. The relative current stability of 80% and 34%was
observed aer 14 hours of operation for T1 nanocomposite and
delaminated Ti3C2Tx MXene, respectively, which indicates the
stable behaviour attributed to the material's structural
features.75 During chronoamperometry testing, ion diffusion
resistance was observed to reduce at the interface of electrode–
electrolyte, which facilitated the penetration of ions via the
active sites in the prepared material due to the electrochemical
activation process.

5.6 Mechanistic role of Er intercalation on enhancing HER/
OER activity

The incorporation of erbium (Er) into Ti3C2Tx MXene signi-
cantly enhances its electrocatalytic performance for hydrogen
and oxygen evolution reactions.76,77 Erbium, with its partially
lled 4f orbitals, interacts strongly with the Ti sites and surface
terminations of MXene, leading to modulation of the electronic
structure and optimization of the adsorption energies of reac-
tion intermediates.78 This adjustment lowers the kinetic
barriers associated with *H adsorption in HER and *OH/OOH
formation in OER.79,80 In alkaline media, the strong interac-
tion between Er and Ti3C2Tx facilitates water dissociation by
reducing the energy barrier for the Volmer step, which is
generally rate-limiting in HER. Furthermore, Er sites preferen-
tially stabilize *OH intermediates, while Ti sites favor *H
RSC Adv., 2025, 15, 37379–37390 | 37385
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Fig. 6 (a) EIS curves of delaminated Ti3C2Tx MXene and Er intercalated Ti3C2Tx or T1 (0.5 : 2) nanocomposite along with an inset equivalent
circuit. (b) Chronoamperometry curves of delaminated Ti3C2Tx MXene and Er intercalated Ti3C2Tx or T1 (0.5 : 2) for 14 h.
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adsorption, resulting in a synergistic effect that improves the
kinetics of both half-reactions.81 Structurally, Er intercalation
increases the interlayer spacing of MXene, suppresses restack-
ing, enhances electrolyte penetration and ion transport, and the
strong Er–MXene interaction induces charge redistribution and
enhances electrical conductivity, which directly lowers the
kinetic barrier for water dissociation in alkaline HER, and
stabilizes oxygenated intermediates during OER.82 Together,
these factors account for the observed improvements in cata-
lytic activity and durability of Er-intercalated Ti3C2Tx MXene
during overall water splitting in alkaline conditions.
6 Conclusion

In conclusion, the bifunctional performance of a novel nano-
composite structure in an alkaline electrolyte was enhanced by
the deposition of Er onto 2D Ti3C2Tx MXene nanosheets for
overall water-splitting application. A bare MXene catalyst was
prepared and characterized for comparison. In comparison to
pure MXene, Er@Ti3C2Tx nanocomposites demonstrated
exceptional HER activity and OER performance. This improved
performance may be attributed to the uniform networking of Er
over the surface and the high conductivity of MXene sheets,
which increases the ability for excellent, rapid charge transfer to
the active sites and an effective synergistic impact for both the
oxygen evolution reaction (OER) and the hydrogen evolution
reaction (HER), and prevents aggregation. They also contain
numerous active sites. Er-based nanocomposites have remark-
able durability in alkaline environments, leading to the excep-
tional stability of the nanostructure. This research implies that
the Er@Ti3C2Tx nanocomposite might replace commercial
noble metal electrocatalysts due to its efficient cost and eco-
friendliness. Furthermore, the present study provides poten-
tial for the development of nanocomposites based on 2DMXene
and Er to facilitate the efficient bifunctional electrocatalysis
required for the overall water splitting process.
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