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Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease with an extremely poor prognosis. Our
previous studies revealed that CCR2 (C-C chemokine receptor type 2) expression is significantly
upregulated in bleomycin-induced pulmonary fibrosis in mice. Moreover, bioinformatics analysis
indicated that higher CCR2 expression is associated with poorer prognosis in patients. Therefore, we
proposed a novel dual-target intervention strategy focused on the orthosteric and allosteric binding sites
of the CCR2 receptor. By integrating structure-based pharmacophore modeling, 3D-QSAR, common
feature pharmacophore modeling, and large-scale virtual screening (covering 152406 molecules), we
successfully identified two candidate small molecules, compound 17 and compound 67, that exhibit high
site selectivity. Molecular dynamics (MD) simulations, principal component analysis (PCA), and potential
energy surface analyses via umbrella sampling confirmed that both compounds attain stable binding
conformations at their respective target sites. MM/PBSA calculations revealed that compound 17 binds at
the orthosteric site with a free energy of —30.91 kcal mol™2, while compound 67 binds at the allosteric
site with a free energy of —26.11 kcal mol™ . Surface plasmon resonance (SPR) confirmed compound 17's
direct binding to murine CCR2 (Kp = 3.46 uM), while co-administration with compound 67
synergistically enhanced binding affinity. Simultaneously, we analyzed the CCK8 results and found that
both compounds 17, 67 and positive control nintedanib, exhibited a concentration-dependent increase

in their inhibitory effects on pulmonary fibrosis. Furthermore, in a TGF-B-induced pulmonary fibrosis cell
Received 14th July 2025

Accepted 13th October 2025 model, both compounds significantly reduced hydroxyproline and COL1Al levels and upregulated ELN

expression, with compound 17 exhibiting comparable antifibrotic efficacy to the positive control
DOI- 10.1039/d5ra05026; nintedanib. Collectively, our integrative computational-experimental approach reveals a therapeutic

rsc.li/rsc-advances framework for precision-targeting CCR2-driven pathologies.

1 Introduction

IPF is a common interstitial lung disease of unknown etiology
characterized by extensive fibrosis in both lungs, leading to
restrictive ventilatory defects. A five-year follow-up study of
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three months of an acute exacerbation," leading a serious threat
to human health. Current treatment methods primarily focus
on palliative care, utilizing drugs like nintedanib and
pirfenidone, and high doses of acetylcysteine. Nintedanib and
pirfenidone are the most commonly approved drugs for treating
IPF. They have been shown to slow the decline in lung function,
highlighting their clinical value.? However, both are expensive,
placing a significant economic burden on patients, and their
clinical efficacy is modest, further compromised by the occur-
rence of adverse events. In one study, some patients experi-
enced multiple adverse effects, predominantly gastrointestinal
symptoms (e.g., diarrhea, dyspepsia, and vomiting), as well as
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photosensitivity and skin rashes, particularly with pirfenidone.
In cases where these side effects were exceedingly severe and
posed a greater risk than the disease itself, discontinuation of
therapy became necessary,® indicating a need for new drug
development.

The underlying mechanisms of IPF remain unclear,
Mohanan et al. demonstrated that organelle stress and oxida-
tive stress play pivotal roles in pulmonary fibrosis develop-
ment,* chemokines are key mediators of the inflammatory and
immune responses in IPF. Mehrnaz et al.> demonstrated that
CCR2 deficiency attenuates pulmonary fibrosis, thereby con-
firming the involvement of CCR2 in the pathogenesis of
pulmonary fibrosis. Moreover, analysis of The Cancer Genome
Atlas (TCGA) data revealed that higher expression of CCR2 is
associated with poorer prognosis in patients.® Receiver oper-
ating characteristic (ROC) curve analysis further suggested that
CCR2 could serve as a potential biomarker for diagnosing
pulmonary fibrosis. Additionally, limited existing studies have
demonstrated that CCR2 can influence the progression of
pulmonary fibrosis by recruiting inflammatory cells.””®
However, to our knowledge, despite CCR2 playing a significant
role in the pathogenesis of IPF and serving as a potential
biomarker and therapeutic target, there are currently very few
drugs targeting CCR2 for the treatment of pulmonary fibrosis.
Therefore, designing anti-fibrotic drugs targeting CCR2 holds
substantial scientific significance and clinical promise, depic-
ted as Abstract Fig. A.

Computer-Aided Drug Design (CADD) represents a trans-
formative approach in drug discovery and development,
utilizing computational tools to design and optimize novel
therapeutic compounds. Key aspects of CADD include Phar-
macophore Modeling, Molecular Docking, Quantitative Struc-
ture-Activity Relationship (QSAR), and MD Simulations. CADD
offers numerous advantages over traditional drug discovery
methods, including speed, efficiency, precision, and innova-
tion. SPR is a highly sensitive optical technique used to study
molecular interactions, particularly suitable for real-time
monitoring of the binding kinetics between biomolecules and
their ligands. Therefore, in this study, we employed CADD and
MD simulations to develop drugs targeting CCR2, followed by
experimental validation to develop CCR2 dual-pocket inhibitors
with potential therapeutic efficacy for IPF.

To address the urgent need for more effective and better-
tolerated treatments for IPF, especially in China where the
disease burden is high and the only approved drugs—ninteda-
nib and pirfenidone—are not only associated with adverse
effects but also prohibitively expensive, this study aims to
develop a safer, affordable, and effective alternative to reduce
the medical and economic burden on patients and the health-
care system, this study focuses on the chemokine receptor
CCR2, which has been implicated in the pathogenesis and
progression of pulmonary fibrosis. Despite its biological rele-
vance, CCR2 remains an underexplored target in IPF drug
development. The key research question of this study is whether
novel small-molecule inhibitors targeting CCR2 can be ratio-
nally designed and validated using computational and experi-
mental approaches. Accordingly, the primary objective is to
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identify and characterize potential CCR2 inhibitors with dual-
pocket binding properties by integrating CADD, MD simula-
tions, and experiments. Through this approach, we aim to
provide new candidate compounds with therapeutic promise
for the treatment of IPF, thereby contributing to the develop-
ment of more effective anti-fibrotic strategies.

The primary objective of this study is to identify and char-
acterize novel CCR2-targeted small molecules using a structure-
based drug discovery strategy, supported by molecular simula-
tions and in vitro binding validation.

2 Materials and methods

2.1 Experimental validation and in-depth analysis

2.1.1 Data collection. In this study, RNA-seq data and
related clinical information for idiopathic pulmonary fibrosis
patients were obtained from the GEO database (GSE70866).
This dataset includes bronchoalveolar lavage (BAL) samples
from 112 idiopathic pulmonary fibrosis (IPF) patients and 20
healthy controls, generated based on the GPL14550 platform
(Table S1). Data normalization was performed using the Robust
Multi-array Average (RMA) algorithm from the limma R package
(version 4.4.3). The effectiveness of models was validated using
ROC curves. Prognostic analysis of survival curves was per-
formed using the Kaplan-Meier test and Log-rank test to eval-
uate differences between groups. Statistical significance was set
at p <0.05.

2.1.2 Establishment of idiopathic pulmonary fibrosis
model. This study was approved by the Animal Ethics
Committee of Hunan Normal University. The idiopathic
pulmonary fibrosis model was established using C57BL/6] mice
(6-8 weeks, 18-22 g)."° Mice were randomly divided into
a control group (n = 6) and an experimental group (n = 6). Mice
in the experimental group were anesthetized with 1% sodium
pentobarbital (50 mg kg™'), and a single dose of 5 mg kg™
bleomycin (BLM) solution (Selleck, USA) was administered
intratracheally. The BLM solution was prepared in normal
saline (1 mg mL™"), and healthy mice served as controls. All
procedures were conducted following the guidelines for the care
and use of laboratory animals published by the US National
Institutes of Health and in accordance with the protocols
approved by the Animal Ethics Committee of Hunan Normal
University.

After 4 weeks of feeding, the mice were sacrificed, and lung
tissues were collected for hematoxylin and eosin (H&E) staining
(Servicebio, China) and Masson's trichrome staining (Service-
bio, China) to evaluate the modeling effects. H&E staining was
employed for histopathological examination, and the lung
sections were scored based on alveolar congestion, hemorrhage,
and infiltration (4: Extremely serious, 3: Serious, 2: Moderate, 1:
Mild, 0: Normal). Masson's trichrome staining was used to
assess collagen fiber deposition. Images of the tissue sections
were captured at 200x magnification, and the same shade of
blue was selected using Image-Pro Plus 6.0 software as the
standard for identifying positive collagen areas. The collagen
pixel area and corresponding tissue pixel area were measured in

RSC Adv, 2025, 15, 41648-41666 | 41649


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra05026j

Open Access Article. Published on 29 October 2025. Downloaded on 1/20/2026 3:48:20 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

each image, and the collagen area percentage was calculated
(collagen pixel area/tissue pixel area x 100).

2.1.3 CCR2 detection

2.1.3.1 RT-qPCR detection of CCR2 mRNA. Total RNA was
extracted from the tissues using Trizol reagent (Thermo Fisher,
USA) following the manufacturer's instructions, and reverse
transcription was performed using an mRNA reverse tran-
scription kit (CWBio, China). RT-qPCR (Quantitative Reverse
Transcription-polymerase Chain Reaction) amplification and
analysis were conducted using the SYBR Green method. GAPDH
mRNA was used as an endogenous control. The primer
sequences (purchased from Beijing Tsingke Biotech Co., Ltd,
China) were as follows:

Mouse-CCR2 forward: TGTGATTGACAAGCACTTAGACC,
reverse: TGGAGAGATACCTTCGGAACTT

Mouse-GAPDH forward: GCGACTTCAACAGCAACTCCC,
reverse: CACCCTGTTGCTGTAGCCGTA

Human-COL1A1 forward: GAGGGCCAAGACGAAGACATC,
reverse: CAGATCACGTCATCGCACAAC

Human-ELN forward: GCAGGAGTTAAGCCCAAGG, reverse:
TGTAGGGCAGTCCATAGCCA.

2.1.3.2 Western Blot detection of CCR2 protein. Tissue
samples were lysed using RIPA lysis buffer (Coolaber, China),
and protein concentrations were measured using a BCA (Bi-
cinchoninic Acid) protein assay kit (Biosharp, China). SDS-
PAGE was performed for protein separation (ACE, China), fol-
lowed by transfer onto a nitrocellulose membrane (Millipore,
USA). The membrane was blocked with 5% milk at room
temperature for 2 hours and incubated with the CCR2 antibody
(Proteintech, China) overnight at 4 °C. After washing three
times with TBST (tris-buffered saline with Tween 20), the
membrane was incubated with a secondary antibody at room
temperature for 1 hour on a shaker, using B-actin as the
endogenous control. Finally, the signal was developed using
a chemiluminescent imaging system, and quantitative analysis
was performed using Image J software.

2.1.3.3 Data analysis. Independent samples ¢-tests and one-
way analysis of variance were used for group comparisons, with
a significance level set at P < 0.05. All data were analyzed using
GraphPad Prism 9 software.

2.2 Preliminary exploration in drug discovery

2.2.1 Protein structure preparation. The 3D structure of
CCR2 (PDB ID: 5T1A) was obtained from the Protein Data Bank
(https://www.resb.org/). According to the study by Y. Zheng
et al,”” CCR2 features two distinct binding pockets: an
orthosteric site, located on the extracellular side of the
membrane, and an allosteric site, located intracellularly. The
orthosteric site is the primary binding pocket where
endogenous ligands typically bind, directly influencing
receptor activation and signaling. In contrast, the allosteric
site serves as a secondary binding pocket that modulates
receptor activity indirectly by inducing conformational
changes upon ligand binding. Moreover, Y. Zheng et al.*?
mentioned that the simultaneous binding of two inhibitors to
both the orthosteric and allosteric sites of CCR2 exhibits
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stronger inhibitory potency compared to the binding of
a single inhibitor to the orthosteric site alone. These two sites
are crucial in receptor function and serve as reference points
for constructing pharmacophores and docking molecules. The
orthosteric and allosteric mechanisms are particularly
significant as they allow for the identification of small
molecules that can either directly inhibit receptor activation
or modulate receptor function through indirect pathways,
thereby offering multiple avenues for therapeutic intervention.

2.2.2 Protein construction. The CCR2 structure underwent
amino acid repair, hydrogen atom addition, and energy mini-
mization. Protein preparation included amino acid residue
repair, hydrogen addition, and water removal using PyMOL
software. The prepared protein structure was then subjected to
energy minimization in the absence of the membrane,
employing the AMBER ff14SB force filed,'*'* using a steepest
descent algorithm wuntil the maximum force was below
1000 k] mol™* nm™*. This minimized structure was subse-
quently used for receptor pharmacophore modeling. The
resulting structure was saved in pdb format for further use.
Since CCR2 is a seven-transmembrane GPCR (G protein-
coupled receptor), constructing a biomolecular membrane
model is essential. The protein was embedded in the membrane
system along with other relevant molecules. This process
involved importing the optimized protein structure, adjusting
the phospholipid membrane orientation, and assembling the
membrane with DOPC as the membrane component, ensuring
that CCR2 correctly spans the two layers of DOPC. Na* and Cl~
ions were added to maintain system charge balance. Finally, the
structure was exported in a format compatible with GROMACS,
with appropriate force fields applied, including AMBER19SB for
proteins, Lipid 17 for phospholipids,” and GAFF2 for
ligands.'®"” The more specific protocols were presented in 2.4.2
section.

2.2.3 Structure-based pharmacophore (SBP) modeling. We
downloaded the SMILES strings and corresponding IC50 values
of small molecules targeting CCR2 from the BindingDB data-
base (https://www.bindingdb.org/bind/index.jsp). The
molecules were classified based on their activity levels,
ensuring the IC50 values spanning 4 orders of magnitude.™®

Optimized protein structures and co-crystallized ligands’
coordination were used to define binding pockets for SBP
modeling. Small molecules were classified into active and
inactive based on their IC50 values and used as a test set for
pharmacophore validation. Compounds with IC50 values =<
10 nM were classified as active, while those with IC50 =
1000 nM were considered inactive. Compounds with interme-
diate potency (IC50 between 10 and 1000 nM) were excluded
from the validation set to ensure a clear distinction between
actives and inactives (Tables S5A and S5B). Excluded volume
pharmacophores were also constructed for the binding region
of small molecules, addressing issues such as molecular size to
ensure that the small molecule is correctly positioned within
the designated binding pocket with Discovery Studio 2019 (DS).
The generated pharmacophores were evaluated based on
scores, sensitivity, and specificity. Additionally, the SBP consists
of certain pharmacophore features, such as hydrogen bond
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donors, hydrogen bond acceptors, hydrophobic features, and
cationic features, etc. The best SBP pharmacophore was selected
for virtual screening. Separate SBP models were created for the
internal and external binding pockets of CCR2, named SBPi and
SBPo, respectively.

2.3 The further optimization of drug design

2.3.1 Ligand-based pharmacophore (LBP) modeling

2.3.1.1 3D-QSAR modeling. The collected small molecule
data were utilized for feature extraction and evaluation (Table
S5C). 3D-QSAR pharmacophores were generated and assessed
based on Maximum Fit (Maximum Fit Value), Total Cost (Total
Cost Function Value), RMS (Root Mean Square Deviation),
Correlation (Correlation Coefficient). The best 3D-QSAR model
was selected after comprehensive evaluation with DS. Using the
training set of small molecules (Table S5C), we performed 3D-
QSAR modeling, selecting pharmacophore features such as
HB ACCEPTOR, HB DONOR, HYDROPHOBIC, RING
AROMATIC, and HBD.

2.3.1.2 Common feature pharmacophore (CFP) modeling.
CCR2 inhibitors in clinical phases I, II, and III were collected
and aligned to identify common structural features (Table S5D).
These features were used to generate CFP pharmacophores.
Active and inactive molecules were imported for validation. The
best CFP model was chosen based on scores, sensitivity, speci-
ficity, and quality with DS. Based on drugs that have entered
clinical trials, we selected HB ACCEPTOR, HB ACCEPTOR lipid,
HB DONOR, HYDROPHOBIC, RING AROMATIC, HBA
PROJECTION, and HBD1 as pharmacophore features to estab-
lish the CFP model.

2.3.1.3 Pharmacophore-based virtual screening (PBVS). We
collected small molecules from the Chemdiv database (https://
www.chemdiv.com/cn/), including Anti-Infective Library, Anti-
Inflammatory Library, Antiviral Concentric Library, Antiviral
Library, Chemokine Receptor Targeted Library, GPCR Targeted
Library, Inmunological Library, and hGPCR Complete, totaling
152 406 molecules. The generated SBPo, SBPi, 3D-QSAR, and
CFP pharmacophores were used for screening with DS. Mole-
cules meeting the pharmacophore criteria were retained for
further ADMET analysis.

2.3.2 ADMET screening. Small molecules were evaluated
using the ADME and Toxicity modules with DS, including
Absorption Level (human intestinal absorption level), Blood-
Brain Barrier Level (BBB Level, indicating the molecule's ability
to cross the blood-brain barrier), Solubility (aqueous solubility
level), CYP2D6 inhibition (cytochrome P450 2D6 inhibition
potential), Hepatotoxicity (liver toxicity potential), Plasma
Protein Binding (PPB, proportion of the drug bound to plasma
proteins), AlogP98 (a measure of lipophilicity based on the
Ghose-Crippen method), and Polar Surface Area 2D (PSA_2D, 2-
dimensional polar surface area reflecting molecular polarity)
were assessed. Toxicity analysis included Mouse Female NTP
probability (National Toxicology Program carcinogenicity
probability for female mice), Mouse Male NTP probability (for
male mice), Rat Female NTP probability (for female rats), Rat
Male NTP probability (for male rats), Weight of Evidence
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probability (WOE probability, indicating overall toxicological
risk), Ames probability (probability of mutagenicity based on
Ames test), and Aerobic Biodegradability probability (environ-
mental biodegradability potential under aerobic conditions).
Molecules passing ADMET validation underwent molecular
docking.

2.3.3 Batch molecular docking. We imported the small
molecules for the internal and external pockets using the Her-
mite® Platform, utilizing its GPU-accelerated molecular dock-
ing and binding free energy calculation capabilities. We
performed batch molecular docking and MM/PBSA binding
energy calculations for both pockets (Fig. 2A).

Protein and ligands were selected for docking in virtual
screening, targeting both external and internal binding pockets.
Docked molecules were exported for MM/PBSA scoring using
parameters like Protein Force Field (amber99sb), Ligand Force
Field (gaff2). The position of docked molecules were used for
molecular dynamics simulations.

Docking calculations were performed using grid boxes
defined for each small molecule. For compound 17, the docking
grid box was centered at X = 5.1935 A, Y = 27.6990 A, and Z =
187.8815 A. For compound 67, the grid box was centered at X =
6.82 A, Y = 26.76 A, and Z = 155.90 A, with box dimensions of
16.721 x 17.450 x 17.253 A® and 18.91 x 18.23 x 24.12 A%,
respectively.

Subsequently, the optimal docking position was validated
using Vina software, and the 3D docking conformation was
visualized with PyMOL (Table S12). Furthermore, the finally
selected small molecules were compared with the correspond-
ing co-crystallized ligands within their binding pockets to
ensure binding plausibility.

2.4 Comprehensive validation and multilevel analysis

2.4.1 Small molecule and protein structure preparation.
We collected a total of 70 inhibitors related to CCR2 from Bi-
ndingDB. The specific classification methods will be detailed in
the subsequent pharmacophore modeling section. The struc-
ture of CCR2 was obtained from RCSB PDB. According to the
article by Zheng Y, CCR2 has two binding pockets: orthosteric
(external) and allosteric (internal). This study indicated that
simultaneous inhibition of both sites results in better stability
compared to single-site inhibition. The authors also provided
molecular coordinates for the two pocket antagonists (Fig. 2A).

Because Zheng Y. et al.'* grafted T4 lysozyme (T4L) onto the
original CCR2 protein structure to improve solubility, we
removed this grafted structure to restore the physiological state
of CCR2.

2.4.2 Molecular dynamics simulations. To explore the drug
action mechanism in more detail and for further screening, we
conducted MD simulations on the CCR2 protein. Considering
that CCR2 is a membrane protein, we performed membrane
addition using the Charmm-gui website (https://www.charmm-
gui.org/)'*?° (Fig. 3A). The CCR2 molecule was positioned in the
center of the complex, embedded in a DOPC bilayer, and placed
in a water box. This structure was prepared for subsequent MD
simulations as a membrane protein.

RSC Adv., 2025, 15, 41648-41666 | 41651
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Using the Charmm-gui website, we generated GROMACS-
compatible files and imported them into GROMACS for
energy minimization, multi-step equilibration, and a produc-
tion MD simulation lasting 100 ns. By analyzing the subsequent
results based on the analysis of PCA results and molecular
docking techniques, we preliminarily identified the optimal
binding mode. Following this, two consecutive 500 ns molec-
ular dynamics simulations were performed. We selected the
best-performing results for presentation in the main text.

These were specific details below. We performed residue
repair and molecular dynamics simulation to extract the stable
structure of the protein, which was used as the original struc-
ture for subsequent operations.

The specific steps are as follows: PDB Reader & Manipulator:
(1) the optimized protein pdb file was imported for pre-
processing and then exported. (2) Membrane builder: the opti-
mized protein was imported, and the protein and small
molecules were selected. The orientation of the phospholipid
membrane relative to the protein was adjusted to form an
“embedded” relationship, ensuring the correct position of the
protein within the membrane. POPC was selected as the
membrane component with a 1:1 ratio of the upper and lower
layers, and the appropriate membrane size was set. (3) Ion
addition: K" and Cl~ ions were added to balance the charge of
the system. (4) Membrane assembly: the membrane was
assembled, and the output structure was checked for accuracy.
AMBER force fields were added, with AMBER19SB used for
proteins, Lipid 17 for phospholipids, and GAFF2 for ligands.
Other settings were kept as default, and the structure was
exported in a format compatible with GROMACS for further
processing.

We collected the sdf files of molecules 17, 41, 62, 64, 67 and
positive control nintedanib. These selected molecules were
hydrogenated using UCSF Chimera (https://www.cgl.ucsf.edu/
chimera/) and saved in mol2 format. Optimization was
performed at the B97-3c level using ORCA,** followed by
single-point energy and molecular surface electrostatic poten-
tial calculations at the B3LYP-D3(BJ)/def2-TZVP level. RESP2
charges and topology files were generated using Multiwfn** and
sobtop  (http://sobereva.com/soft/Sobtop). Processed them
according to the methodology, and then combined the small
molecules with the protein. Integrated the membrane, protein
and ligands to complex system. Simulations were run using
Gromacs2022.1 (ref. 23) with specific settings for energy
minimization, system equilibration, and long-range interac-
tion handling. The TIP3P water model** was used, maintaining
a minimum distance of 1 A between solute atoms and the
periodic box edge. Energy minimization was performed using
the steepest descent method, with a maximum force of
1000.0 kJ] mol™* nm™". The system was equilibrated through
three steps of constrained dynamics for 125 ps and 500 ps, with
time steps of 1 fs and 2 fs, respectively. Temperature and
pressure were controlled using the velocity-rescale thermostat
and Berendesen barostat, set at 298.5 K and 1.01325 bar. Long-
range interactions were handled using the particle mesh Ewald
(PME) method, with a van der Waals cutoff of 10 A. Due to
significant interactions between the ligand and protein, they
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were constrained to a single temperature control group and
a single group for translational and rotational motion elimi-
nation. Molecular dynamics simulations were conducted with
a 2 fs time step for 100 ns. Based on the subsequent analysis, the
optimal binding mode was preliminarily identified. Following
this approach, two consecutive 500 ns molecular dynamics
simulations were conducted.

2.4.3 Stability and conformation analysis. Protein stability
and conformation were analyzed using RMSD (Root Mean
Square Deviation), RMSF (Root Mean Square Fluctuation),
radius of gyration (Rg), and solvent-accessible surface area
(SASA). Post-simulation, periodic correction and trajectory
stability analysis were performed. RMSD is a crucial metric for
assessing system stability and is fundamental for further anal-
ysis of small molecule binding. Hence, the averages and stan-
dard deviations assessed system stability. RMSF measures the
fluctuation of each atom over the 500 ns simulation and is
valuable for identifying active residues, binding pockets, and
detailed interaction relationships. Rg indicates the compact-
ness of a molecule. Smaller Rg values suggest a more compact
molecule. SASA Reflects the surface area of a molecule that is
accessible to solvent molecules. Larger SASA values are typical
of unfolded or partially folded proteins. Rg and SASA evaluated
enzyme conformation changes. Principal Component Analysis
(PCA) identified the lowest potential energy and optimal system
conformation. RMSD and Rg values were fitted, and free energy
landscape maps were plotted to extract the most stable
conformation. Hydrogen bond (H-bond) analysis was conduct-
ed using gromacs through the gmx hbond command. The
hbnum.xvg file plots the number of hydrogen bonds over the
simulation time. This data reflects the dynamic nature of
hydrogen bond formation and breakage. A higher count may
indicate stronger ligand-protein interactions, while fluctua-
tions suggest transient bonding. Additionally, the analysis
considers hydrogen bonds formed within 0.35 nm between
donor and acceptor atoms, reflecting the standard geometric
criteria for H-bond detection. This threshold ensures that both
classical hydrogen bonds and closely interacting atom pairs are
identified. The analysis was performed to quantify hydrogen
bonds between the protein and ligand during MD simulation.
In addition, the combined application of umbrella sampling
molecular dynamics and binding free energy calculations using
molecular mechanics Poisson-Boltzmann surface area (MM/
PBSA) was employed to identify thermodynamically favorable
binding poses of the ligands docked to CCR2. This multi-
methodological approach enabled systematic evaluation of
both binding pathway energetics and site-specific interaction
thermodynamics, revealing preferential binding conformations
within CCR2's dual-pocket architecture.

2.4.4 Umbrella Sampling Analysis. To generate equili-
brated starting structures for the pulling simulations, we
selected the most stable configuration and processed MD
simulations accordingly. The final structures from each trajec-
tory served as the initial configurations for the pulling simula-
tions. For each ligand, the system was placed in a sufficiently
large rectangular box to satisfy the minimum image convention
while allowing ample space for pulling simulations along the z-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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axis. As in previous simulations, TIP3P water was used as the
solvent, and 100 mM NaCl was included in the simulation cell.
Pulling simulations were conducted using GROMACS, taking
advantage of enhanced pull code features implemented during
the project.

Equilibration for the pulling simulations was performed
over 100 ps under a constant-pressure (NPT) equilibration
ensemble, where weak coupling®” was used to maintain
isotropic pressure at 1.0 bar. After equilibration, all protein and
ligands were restrained. Position restraints are commonly used
in protein-ligand simulations to mimic the stability of larger
structures. In this setup, the ligand was pulled away from the
core structure along the z-axis over 500 ps, using a spring
constant of 1500 k] mol ' nm~? and a pull rate of 0.005 nm ps ™"
(0.05 A ps™). This approach, adapted from Justin Lemkul's
study,*® and was slightly changed to apply a faster pulling rate to
expedite data collection while preserving result reliability.

Snapshots from these trajectories were used to generate
starting configurations for umbrella sampling.>° To optimize
sampling resolution, an asymmetric distribution of sampling
windows was applied: a spacing of 0.1 nm was used for COM
(Center of Mass) separations up to 2 nm, while a 0.2 nm spacing
was applied beyond 2 nm. This approach provided finer detail at
smaller COM distances. The weighted histogram analysis
method (WHAM)* was employed to analyze the results.

2.4.5 Binding free energy calculation using gmx_MM/
PBSA. Following periodic boundary condition removal and
trajectory stabilization assessment through RMSD analysis, the
10 ns equilibrium phase trajectories were selected for binding
free energy calculations using the MM/PBSA method. A strong
correlation was observed between the MM/PBSA-calculated
binding free energies and the experimentally determined
binding affinities.®® Within the MM/PBSA framework, the
binding free energy (AGping) is calculated as the difference
between the free energy of the complex and the sum of the free
energies of the unbound receptor and ligand.**** This is
approximated by:

AGbind = AEgas+ AGsolv — TAS,
where AE,, (gas-phase interaction energy), AG,, (solvation
free-energy change), and —TAS (entropic contribution) collec-
tively define the thermodynamic driving forces of binding.

In gmx_MMPBSA, AEs, is derived from molecular
mechanics terms, including bonded interactions (ABOND,
AANGLE, ADIHED) and non-bonded interactions (AVDWAALS,
AEEL, A1—4 VDW, A1—4 EEL). These terms are summed and
reported as AGgas. The solvation free energy (AGsoy,) comprises
polar (AEpg or AEgg, depending on Poisson-Boltzmann or
Generalized Born solvation models) and nonpolar components
(AENPOLAR from solvent-accessible surface area [SASA] calcu-
lations, and optionally AEDISPER for dispersion corrections).

The final output term ATOTAL represents the sum of AGgas
and AGsory, providing an estimate of AGpinq Without entropic
contributions. To obtain the complete binding free energy,
entropy corrections must be subtracted from ATOTAL.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Following MD analysis, one compound was selected from the
orthosteric site and one from the allosteric site as final candi-
dates for chemical synthesis and subsequent experimental
validation.

2.5 Chemical synthesis

The synthetic procedures for compounds 17 and 67 were out-
lined in the SI (Section 1). Their chromatographic purity was
confirmed by quantitative proton Nuclear Magnetic Resonance
(*H NMR) and Liquid Chromatography-Mass Spectrometry (LC-
MS), with compound 17 exhibiting a purity of >99.8% and
compound 67 demonstrating a purity of >99.4%.

2.6 Surface plasmon resonance (SPR)

2.6.1 Experimental principle. SPR**** was performed to
evaluate real-time, label-free molecular interactions. One
binding partner was immobilized on the biosensor chip, and
the analyte was injected over the surface. Binding and dissoci-
ation events were recorded as changes in resonance angle,
allowing kinetic parameters to be determined. The interaction
assay between Mouse CCR2 protein and the substance to be
tested was modeled using the surface plasmon resonance
technique, and the substance provided by us was assayed
(Tables S2A-C).

2.6.2 Experimental material. Details of the experimental
materials used for SPR validation are provided in Table S2.

2.6.3 Experimental methods. Protein immobilization was
performed using the amino coupling method; protein coupling
buffer solution: 1.0 x PBS-P+ (pH 7.4); interaction buffer solu-
tion: 1.0 x PBS-P+ (pH 7.4), 5% (v/v) DMSO.

2.6.3.1 Protein coupling. (1) Placed the running buffer
(200 mL 1 x PBS Bulffer), water bottle, and waste bottle in the
left and right trays, respectively, and inserted the appropriate
feed tubes.

(2) Held the CMS5 chip in hand with the lettered side facing
up. Followed the direction of the arrow on the chip, gently
pushed the chip into the slot, and finally closed the hatch of the
chip compartment.

(3) Activated chip channel 4 with 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide (EDC, GE Healthcare)
and N-hydroxysuccinimide (NHS, GE Healthcare) at a flow rate
of 10 pL min .

(4) Diluted the ligand protein to 50 ug mL™ " with sodium
acetate and immobilized the protein in the 4-channel of the
chip at a flow rate of 10 uL min~" to generate the coupling map.

(5) Closed the channels with ethanolamine at a flow rate of
10 pL min~ ",

(6) Repeated steps (3)—(5) for channel 3 as a reference, with
the difference that protein-free acetate buffer was used in step
(4).

2.6.3.2 Protein-to-be-tested
correction

The 5% DMSO concentration calibration curve was config-
ured by mixing the 4.5% and 5.8% master batches (Table S3).

Determination of the Substance to Be Measured

interaction  tests. Solvent
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(1) Each substance to be assayed was diluted to a range of
concentrations in a 96-well plate and coupled to the target
proteins by microarray from low to high concentrations. The
flow rate was 30 uL min~* for a duration of 150 s.

(2) After each concentration point had flowed, the chip was
regenerated with 10 mM glycine hydrochloride (pH 2.0) solution
for 5 min. This process was repeated until the corresponding
concentrations of all the substances to be measured had been run.

(3) Binding and dissociation constants were obtained by
globally fitting the data to a 1: 1 Langmuir binding model using
the Biacore Insight assessment software (Cytiva, Marlborough,
MA, USA).%

2.7 Cell modeling and viability assay

Initially, 2000 cells were seeded into each well of a 96-well plate.
Human diploid fibroblasts (MRC-5) (iCell Bioscience, Inc.,
China) were induced with TGF-B (10 ng mL™") for 48 hours to
establish a pulmonary fibrosis cell model.’” Subsequently,
compounds 17 and 67 were administered to the model cells.
These drugs were dissolved in DMSO, diluted in DMEM
medium, and applied at gradient concentrations of 0, 1, 1.25,
2.5,5, 10,25, 50, and 100 pmol. In addition, we used nintedanib
as a positive control. Following a 48-hour drug treatment, 10 pl
(10% volume) of CCK8 reagent was added to each well. The 96-
well plate was incubated in the dark within an incubator for 3
hours. Absorbance at 450 nm was measured using a microplate
reader to assess cell viability.

3 Results

3.1 Experimental validation and in-depth analysis

3.1.1 Significant upregulation of CCR2 in idiopathic
pulmonary fibrosis. In this study, we utilized bioinformatics
analysis to examine the expression levels of CCR2 in patients
with IPF. In Fig. 1A, the violin plot reveals that CCR2 gene
expression is significantly higher in the IPF group than in the
normal control group (p < 0.05), suggesting a strong association
between CCR2 upregulation and IPF onset. This finding indi-
cates that CCR2 may actively contribute to the progression of
fibrosis. Survival analysis (Fig. 1B) indicates that patients with
elevated CCR2 expression have significantly lower survival rates
compared to those with lower expression (p = 0.0049). Addi-
tionally, Fig. 1C shows the ROC curve, with an area under the
curve (AUC) of 0.693, suggesting that CCR2 is an independent
diagnostic marker for pulmonary fibrosis. These results
underscore the potential of CCR2 as a negative prognostic factor
for IPF patients, highlighting its value as a clinical biomarker.

After identifying CCR2 upregulation in patient-derived trans-
criptomic data (Fig. 1A-C), we further validated these findings in
a bleomycin-induced mouse model of pulmonary fibrosis.

Four weeks after BLM administration, H&E staining of lung
tissue revealed severe alveolar congestion and exudation, with
localized alveolar wall proliferation of connective tissue,
accompanied by alveolar collapse and loss of alveolar structure.
Inflammatory cell infiltration was observed within the alveolar
spaces and around some bronchioles, with a total inflammation
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score of 10. In contrast, the Control group displayed clear
alveolar structures with intact alveolar walls, without significant
inflammatory cell infiltration or fibrosis, yielding a total
inflammation score of 2 (Fig. 1D and E). Masson's trichrome
staining showed prominent collagen fiber proliferation in the
alveolar walls of the BLM group, with some areas forming
fibrous masses, indicating significant alveolar wall fibrosis. The
calculated average collagen area percentage in the BLM group
was 21.13%, derived from the ratio of collagen pixel area to
tissue pixel area. In the Control group, no significant blue-
stained collagen fibers were observed, with minimal collagen
proliferation or fibrosis, resulting in an average collagen area
percentage of 6.13% (Fig. 1F). Collectively, these findings
confirm the successful induction of idiopathic pulmonary
fibrosis in mice via BLM intratracheal instillation. In the bleo-
mycin (BLM)-induced pulmonary fibrosis mouse model,
hydroxyproline levels were significantly elevated, indicating
enhanced collagen deposition in the lung tissue (Fig. 1G).

To elucidate the expression of CCR2 in idiopathic pulmonary
fibrosis, we examined the mRNA and protein levels of CCR2 in
lung tissues from both the Control group and BLM-induced
idiopathic pulmonary fibrosis mice using RT-qPCR and
western blotting. The results demonstrated that the expression
levels of CCR2 mRNA and protein were significantly elevated in
the BLM group compared to the Control group (Fig. 1H-]).

3.2 Structure-based pharmacophore (SBP) screeing

3.2.1 Membrane protein construction. During membrane
system construction, the CHARMM-GUI web server was used to
generate a membrane-protein system. The appropriate orien-
tation of the CCR2 protein within the lipid bilayer was deter-
mined, the length, width were both 60 A and the protein was
inserted accordingly. To neutralize the system, 84 K' ions and
98 ClI” ions were added. Once the structural setup was
confirmed to be correct, the system was exported in GROMACS
format. After importing into GROMACS, the structures of the
protein, membrane, and small molecules were further inte-
grated and processed.

3.2.2 Structure-based pharmacophore (SBP) modeling. For
the external pocket, we constructed pharmacophore models
and found that SBPo-1 to SBPo-5 shared the same six pharma-
cophore features, characterized by AADHHP, and each scored
12.047 (Table S4A). We validated 10 SBPo pharmacophores
using active and inactive small molecules from the test set
(Table S5), assessing their sensitivity and specificity, and
calculated Youden's J statistic (Table S4B). Specifically, J =
Sensitivity + Specificity — 1.

Sensitivity (true positive rate): the proportion of actual
positives correctly identified by the test.

Specificity (true negative rate): the proportion of actual
negatives correctly identified by the test.

The value of Youden's J statistic ranges from —1 to 1:

1: Indicates a perfect test (100% sensitivity and 100%
specificity).

0: Indicates a test with no diagnostic ability (equivalent to
random chance).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 CCR2 Expression and Pathological Validation in IPF Progression. (A—C) In silico analysis based on patient data from dataset GSE70866. (A)
The violin plot depicts CCR2 gene expression levels in the normal control and IPF groups (GSE70866) (*P < 0.1). (B) The survival analysis plot
outlines survival probabilities over time for groups with high and low CCR2 expression. (C) The ROC curve demonstrates the diagnostic
performance of CCR2 in identifying pulmonary fibrosis. (D-J) In vivo validation using a bleomycin-induced pulmonary fibrosis mouse model. (D)
Representative images of H&E and Masson's trichrome staining of lung tissues 4 weeks after intratracheal instillation of BLM in mice. (E)
Pathological scoring results of H&E-stained lung tissues at week 4 (**P < 0.01). (F) Analysis of collagen area in lung tissues at week 4 (¥**P <
0.001). (G) Hydroxyproline content in lung tissue of bleomycin (BLM)-induced pulmonary fibrosis mice and control mice. The hydroxyproline
level was significantly increased in BLM-treated mice compared to controls (***P < 0.001). (H) RT-gPCR analysis of CCR2 expression levels in
BLM-induced idiopathic pulmonary fibrosis (¥***P < 0.001). (I and J) Western blot analysis of CCR2 expression levels in lung tissues of each group
(**P < 0.01).

Negative values: indicate that the test performs worse than
random chance.

The results showed that SBPo scored 12.047, with a sensi-
tivity of 0.750, a specificity of 0.619, and a J value of 0.369.
Therefore, SBPo-1 was selected as the best SBPo for further
analysis (Fig. 2B). The fitting of the external reference molecule
with SBPo-1 is shown in Fig. 2C.

Similarly, for the internal pocket, we constructed pharma-
cophore models and found that SBPi-1 had six pharmacophore

features, characterized by AAHHHN, and scored 10.582 (Table
S6A). Calculating Youden's J statistic, we found that SBPi-1 and
SBPi-2 had positive J statistic values of 0.006 and 0.176,
respectively (Table S6B). Considering both the score and feature
values, SBPi-1 was selected as the best SBPi pharmacophore
(Fig. 2D). The fitting of the internal reference molecule with
SBPi-1 is shown in Fig. 2E.

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv, 2025, 15, 41648-41666 | 41655
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Fig. 2 Structure-based pharmacophore modeling of CCR2 dual-pocket inhibitors. (A) The optimized 3D structure of CCR2, with binding sites
visualized using Hermite software. The cyran pocket represents the orthosteric (external) site, while the violet pocket represents the allosteric
(internal) site. (B) SBPo-1 pharmacophore model. The purple spheres represent hydrogen bond donors, green spheres represent hydrogen bond
acceptors, light blue spheres represent hydrophobic features, red spheres represent cationic features, and grey spheres represent exclusion
volumes. (C) The fitting of the reference small molecule with SBPo-1. (D) SBPi-1 pharmacophore model. The green spheres represent hydrogen
bond acceptors, light blue spheres represent hydrophobic features, dark blue spheres represent anionic features, and grey spheres represent
exclusion volumes. (E)The fitting of the reference small molecule with SBPi-1. (F) 3D-QSAR pharmacophore model. (G) Molecule with the lowest
activity value, BDBM50088301. (H) Molecule with the highest activity value, BDBM50197912. (I) CFP-1 pharmacophore model. (J) Fitting of the

molecule PF-04136309 with the highest Fit value to CFP1. (K) Fitting of the molecule PF-04634817 with the lowest Fit value to CFP1.

3.3 The further development of drug design

3.3.1 3D-QSAR modeling. We exported the parameters for
10 3D-QSAR models and found that QSAR1 had the highest
correlation between actual and predicted IC50 (0.913), the
highest fit value (16.040), a total cost of 240.708, and an RMS of
3.737 (Table S7).

Based on the predicted and actual activity values of the
training set molecules, we derived a regression curve, with
QSAR1 showing an R value of 0.83 (Fig. S1), indicating excellent
correlation. Analyzing the 3D-QSAR pharmacophore model
(Fig. 2F), the molecule with the lowest activity value was
BDBM50088301, with an IC50 of 0.03 nM and a fit value of
15.492 (Fig. 2G), while the molecule with the highest activity
value was BDBM50197912, with an IC50 of 30 000 nM and a fit
value of 8.908 (Fig. 2H).

3.3.2 Common feature modeling. Analyzing the pharma-
cophore parameters, we found that CFP1 and CFP2 had the
same parameter information: both featured HHA with a rank of
63.731 (Table S8). We then predicted the activity of known active
small molecules (Fig. S4A) and calculated the absolute differ-
ence between the summed active and inactive values for each
pharmacophore, resulting in a discriminative value, DIF
(Fig. S4B) with DS. This analysis showed that CFP1 had a higher
discriminative value than CFP2.

We analyzed the CFP pharmacophore model (Fig. 2I). The
molecule with the best fit, PF-04136309, had a fit value of 3.000

41656 | RSC Adv, 2025, 15, 41648-41666

(Fig. 2J), while the molecule with the worst fit, PF-04634817, had
a fit value of 1.431 (Fig. 2K).

3.3.3 Multi-pharmacophore screening.  After
successfully completing the modeling of SBP, 3D-QSAR, and
CFP pharmacophores, we utilized the ChemDiv database to
perform virtual screening using these three pharmacophores.
The process was as follows: (1) SBPo screening: initially, we used
the SBPo pharmacophore for screening, which resulted in 1722
candidate molecules remaining. (2) SBPi screening: these
candidates were further screened using the SBPi pharmaco-
phore, narrowing down the list to 69 small molecules. (3) 3D-
QSAR screening: the same 69 small molecules were then scre-
ened using the 3D-QSAR pharmacophore, with all 69 molecules
being retained. (4) CFP screening: finally, the CFP pharmaco-
phore was used for screening, and the same 69 small molecules
were retained as the final result of the virtual screening process.

This multi-pharmacophore virtual screening approach
ensured a comprehensive evaluation of potential candidates,
leveraging the strengths of each pharmacophore model.

3.3.4 ADMET screening. We collected the SMILES strings
of the 69 small molecules and analyzed their ADME properties,
including Absorption Level, BBB, Solubility, CYP2D6, Hepato-
toxicity, PPB, AlogP98, and PSA_2D (Tables S9A and S10A).
Additionally, we assessed their toxicity properties, such as
Mouse Female NTP probability, Mouse Male NTP probability,
Rat Female NTP probability, Rat Male NTP probability, WOE
probability, Ames probability, and Aerobic Biodegradability
probability with DS (Tables S9B and S10B).

virtual

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Multidimensional profiling of receptor—ligand complexes via molecular dynamics simulations. (A) Full-atom model of CCR2 receptor
embedded in a phospholipid bilayer (green: protein; gold: lipids; blue: water; grey: ions). (B) RMSD trajectories for 500 ns simulation, compounds
17 (black); 41 (red); 62 (green); 64 (blue); 67 (yellow) and nintedanib (purple). (C). Per-residue RMSF heatmap (the color representation was
consistent with RMSD). (D) Rg reflecting structural compactness (the color representation was consistent with RMSD). (E) SASA quantifying
hydrophobic core exposure (the color representation was consistent with RMSD). (F-J) Hydrogen-bond network dynamics (both bond count
fluctuations and short-range contacts (=3.5 A) and represented compounds 17, 41, 62, 64 and 67). (K—O) Principal component analysis with the
regions highlighting dominant conformational clusters and represented compounds 17, 41, 62, 64 and 67.
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Molecules exhibiting toxic, carcinogenic, or otherwise
undesirable properties were excluded. We retained the
following molecules for further screening and analysis: External
pocket: ligands 17, 40, 68; internal pocket: ligands 41, 62, 64, 67.
These retained molecules will be used in the subsequent steps
of screening and analysis.

3.3.5 Batch molecular docking. The results indicated that
molecules 17, 40, and 68 were the candidates for the external
pocket, while molecules 41, 62, 64, and 67 were the candidates
for the internal pocket (Tables S11A and S11B). However,
considering that the binding free energies (dG) of molecules 40
and 68 were too low, we selected molecule 17 as the binding
molecule for the external pocket. The candidates for the
internal pocket remained unchanged.

View Article Online
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3.4 The further optimization of drug design

3.4.1 Analysis results

3.4.1.1 Root mean square deviations (RMSD). We analyzed
the RMSD over 500 ns for the system (Fig. 3B). The results
showed that all five small molecules exhibited good stability,
with average RMSD values ranging from 4 to 4.5 nm. The mean
RMSD values for molecules 17, 41, 62, 64, 67 and nintedanib
were 0.639, 0.699, 0.443, 0.622, 0.565 and 0.648, respectively.
Based on RMSD analysis, molecules 62 and 67 demonstrated
better stability.

3.4.1.2 Root mean square fluctuations (RMSF). RMSF analysis
revealed six regions with significant amino acid fluctuations.
The mean RMSF values for molecules 17, 41, 62, 64, 67 and
nintedanib were 0.125, 0.128, 0.106, 0.162, 0.118 and 0.174.
These regions may indicate structural conformational changes
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Fig.4 Overview of Molecular Docking and Umbrella Sampling Analysis. (A) Model diagram illustrating the optimal binding conformations of five
small molecules. (B—G) Docking poses of compounds 17, 41, 62, 64, 67 and nintedanib in their optimal binding orientations. (H-1) Molecular
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and suggest potential active pockets. Compounds 64 and 67
exhibited extensive interactions with amino acid residues
within the binding pocket (Fig. 3C).

Further analysis identified and recorded amino acids with
fluctuation values greater than 0.5 nm:

e Molecule 17: residues 182-185

e Molecule 41: residues 19-24

e Molecule 62: residues 182-183

e Molecule 64: residues 11-16, 28-31, 232-234

e Molecule 67: residues 9, 19, 233

These results indicate that the approximate regions around
these residues are critical for structural changes upon interac-
tion with these molecules.

3.4.1.3 Gyration (Rg) and solvent-accessible surface area
(SASA) analysis. The average Rg values for molecules 17, 41, 62,
64, 67 and nintedanib were 2.411, 2.352, 2.185, 2.348, 2.352 and
2.400 nm, respectively. Compound 62 and 64 exhibited smaller
Rg, indicating a relatively stable binding conformation
(Fig. 3D).

All six molecules showed stable SASA fluctuations around
185 nm?. The average SASA values for molecules 17, 41, 62, 64,
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67 and nintedanib were 185.135, 186.624, 184.854, 185.437,
184.744 and 183.480 nm?, respectively. Compounds 62 and 67
exhibited lower SASA values, indicating greater system stability
(Fig. 3E).

3.4.1.4 Hydrogen bond analysis. The average hydrogen bond
number for molecules 17, 41, 62, 64, and 67 were 0.388, 2.728,
1.828, 1.130, 2.153. The average numbers of hydrogen bonds
formed within 0.35 nm for molecules 17, 41, 62, 64, and 67 were
0.373, 1.531, 1.642, 0.643, 1.687. These results indicate that
molecules 41 and 67 may have stronger connection with amino
acids in the pocket (Fig. 3F-]).

3.4.2 Principal component analysis (PCA). We also per-
formed PCA, a dimensionality reduction technique used to find
the lowest energy states of a system. The lowest points on the
free energy landscape represent the most likely stable confor-
mations. We first removed the periodic boundary conditions,
extracted the RMSD and Rg values at the same time scale, and
derived the Gibbs free energy (Fig. 3K-O).

3.4.3 Optimal molecular docking. Based on the PCA anal-
ysis, the protein-ligand complex corresponding to the
minimum energy conformation was extracted (Fig. 4A) and
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Fig. 5 Umbrella sampling analysis. (A) Umbrella sampling results for compound 17: the top panel shows the PMF analysis, and the bottom panel
displays the distribution of sampling windows. (B) Umbrella sampling results for compound 67: the top panel presents the PMF analysis, while the

bottom panel depicts the distribution of sampling windows.
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analyzed for its docking interactions (Fig. 4B-G). Analysis
showed that molecules 41, 62, 64, and 67 interacted more than
twice with the amino acids VAL63, LEU67, LEU81, ALA141,
ARG237, GLU238, TYR305, LYS311, PHE312, ARG138, ALA241,
VAL244 and TYR315. Molecule 17 interacted with amino acids
LYS38, ALA42, LEU45, TYR49, TRP98, ALA102, TYR120, HID121,
VAL187, PRO192, GLN288, GLU291 and THR292.
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Fig. 6 Binding free energy with gmx_MMPBSA. (A) Binding free energy
analysis for compounds 17 and 67, including the energy terms
AVDWAALS, AEEL, AEPB, ABOND, AANGLE, ADIHED, A1-4 VDW, A1—-
4 EEL, AEDISPER, AENPOLAR, AGgas, AGsory, and AGginp. Energy
contributions with a value of zero (i.e., ABOND, AANGLE, ADIHED, A1—
4 VDW, Al-4 EEL, and AEDISPER) were omitted. (B) Amino acid
binding energy contributions within approximately 4 A of the pocket
surrounding compound 17; negative values indicate a spontaneous
binding tendency. (C) Amino acid binding energy contributions within
a 4 A range of the pocket containing compound 67, with negative
values signifying a spontaneous binding trend.
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The molecular docking scores (in kcal mol ") for compounds
17, 41, 62, 64, 67, and nintedanib are as follows, respectively:
—8.480, —8.500, —7.682, —7.570, —8.540 and —8.728, Compared
to the initial binding poses, the binding energies were signifi-
cantly improved. The docking result for validation was pre-
sented as Table S12. Compared with the co-crystallized ligands
in the same binding pocket, both compound 17 and compound
67 exhibited lower binding energies, indicating that the selected
small molecules form more stable interactions than those
observed in the crystal structures.

3.4.4 Final results. Based on the previous analysis,
compound 17 was selected from the orthosteric pocket as it
uniquely met the selection criteria in that site. For compounds
in allosteric pocket, compounds 62, 64, and 67 demonstrated
competitive performance. Although compound 64 showed
promising interactions, it exhibited limitations in hydrogen
bond formation. Compounds 62 and 67 displayed highly
similar behavior; however, considering the number of hydrogen
bonds, RMSF analysis, and subsequent molecular docking
results, compound 67 showed more extensive interactions with
amino acid residues within the pocket. This interaction rich-
ness is advantageous for future target mechanism studies.
Therefore, compound 67 was selected as the final candidate
from the allosteric pocket.

Based on these analyses, we selected molecule 17 for the
orthosteric pocket and molecule 67 for the allosteric pocket as
dual-pocket binders for the CCR2 protein (Fig. 4H and I).

3.4.5 Umbrella Sampling Analysis. The umbrella sampling
simulations were conducted over 27 sampling windows (Fig. 5A
and B), encompassing two ligand systems (17 and 67), with each
window simulated for 10 ns, yielding a total cumulative simu-
lation time of 270 ns. The final center-of-mass (COM) distances
between protein and ligand were determined as 6.562 nm for
system 17 and 6.649 nm for system 67, respectively. The WHAM
confirmed that the sampling process maintained uniform
statistical distribution across reaction coordinates.

The potential of mean force (PMF) profiles revealed distinct
energy landscapes along the reaction coordinate (£), which
quantifies the spatial displacement from initial binding to
complete dissociation. Both systems exhibited similar dissoci-
ation pathways, though with notable energy differences. For
ligand 17, the PMF minimum (—2.2 kcal mol ") occurred at £ =

Table 1 Binding free energy calculation (kcal mol™%)¢

Energy Compound 17 Compound 67
AVDWAALS —51.41 —44.17

AEEL —87.04 —35.48

AEPB 112.75 57.6
AENPOLAR —5.21 —4.05

AGgas —138.45 —79.65
AGsory 107.54 53.54

AGgmp —30.91 —26.11

¢ The energy components ABOND, AANGLE, ADIHED, A1-4 VDW, A1-4
EEL, and AEDISPER exhibited negligible contributions (averaging zero)
and were therefore omitted from the final analysis.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Evaluation of compound 17 and compound 67 in molecular interaction, cell viability, and anti-fibrotic activity in vitro. (A) Mouse CCR2
protein coupling map. (B) Mouse CCR2 protein interaction assay with molecule 17. (C) Interaction assay of molecule 17, molecule 67 alone and
co-injection with Mouse CCR2 protein. (D) The viability of compound 17-treated cells was measured using the CCK-8 assay. (E) The viability of
compound 67-treated cells was measured using the CCK-8 assay. (F) The viability of compound nintedanib-treated cells was measured using the
CCK-8 assay. (G) Hydroxyproline content in MRC-5 cells after TGF-B stimulation and treatment with compounds 17, 67 and nintedanib. (****P <
0.0001). (H) Relative mRNA expression levels of COL1A1 in each group. (****P < 0.0001). (I) Relative mRNA expression levels of ELN in each
group. (***P < 0.001).
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Table 2 The results of the assay with mouse CCR2 protein

Receptor Ligand Kp (M) K, (1 Ms™) Kq(1s™)
Mouse CCR2 protein Molecule 17 3.46 x 10°° 1.05 x 10° 3.63 x 107"

1.5 nm, indicating the most stable binding conformation. In
contrast, ligand 67 demonstrated its global energy minimum
(—1.35 keal mol ") at £ = 2.7 nm.

Critical dissociation thresholds were identified at £ = 4.5 nm
for ligand 17 and ¢ = 4.2 nm for ligand 67, corresponding to
their respective equilibrium points for complete pocket egress.
The PMF profiles revealed that ligand 17 maintains stronger
binding affinity compared to 67, as evidenced by its deeper
energy well (AG = —2.2 vs. —1.35 kcal mol™"). These energy
landscapes provide quantitative guidance for optimizing ligand
binding geometries through targeted modifications of molec-
ular interactions along the dissociation pathway.

3.4.6 Binding free energy calculation using gmx_MMPBSA.
The computed binding free energies revealed significant ther-
modynamic stability for both ligands: —30.91 kcal mol™* for
ligand 17 and —26.11 kcal mol* for ligand 67. These results
confirm strong binding interactions between the ligands and
CCR2's dual binding pockets, with ligand 17 demonstrating
superior orthosteric binding affinity compared to the allosteric
binding mode of ligand 67 (Fig. 6A and Table 1).

Per-residue energy decomposition was performed for amino
acids within 4 A of the ligand binding cores (Fig. 6B and C).
Critical binding contributors (AG < —1 kcal mol ") were iden-
tified as:

Ligand 17 (Table S13A): Trp98 (Chain A), Leu45 (Chain A),
GIn288 (Chain B), Glu291 (Chain B), Val37 (Chain A)

Ligand 67 (Table S13B): Lys71 (Chain A), Phe306 (Chain A),
Leu67 (Chain A), Tyr309 (Chain A), Ile66 (Chain A), Leu81
(Chain A)

Comparative analysis with PCA-derived binding poses
revealed conserved interaction patterns:

Orthosteric site (ligand 17): recurrent residues Leu45, Trp98,
GIn288, and Glu291

Allosteric site (ligand 67): conserved residues Leu67 and
Leu81

Notably, Trp98 (Chain A) in the orthosteric pocket and Lys71
(Chain A) in the allosteric pocket exhibited the strongest
binding contributions (—3.2 keal mol™" and —2.8 keal mol ™,
respectively), suggesting their pivotal roles in ligand-receptor
stabilization. These key residues likely mediate pharmacophore
interactions essential for ligand efficacy, as evidenced by their
consistent appearance across complementary analytical
approaches.

3.5 SPR results

3.5.1 Mouse CCR2 protein coupling. Mouse CCR2 protein
coupling amounted to a total of 5890 RU, of which the coupled
sensing map is shown in Fig. 7A.

3.5.2 Affinity determination. the
substance to be measured was carried out according to the

Determination of

41662 | RSC Adv, 2025, 15, 41648-41666

dissolved concentration, and the results of the determination of
the kinetic fit of the substance to be measured are shown below.

(1) Mouse CCR2 protein and drug 17 in Fig. 7B.

(2) Compounds 17 and 67 were injected separately and co-
injected in Fig. 7C.

3.5.3 Wrap-up. The purpose of this experiment was to
determine the affinity of the to-be-tested substance to interact
with Mouse CCR2 protein using Biacore, which was performed
by using CMS5 chip coupled protein. The results of the assay are
shown in the table below (Table 2).

In result,” the affinity response of 17 + 67 co-injection was
superior to that of 17 or 67 alone.

3.6 Viability assay results

The CCKS8 assay results demonstrated that both compounds 17,
67 and nintedanib effectively suppressed the proliferation of
pulmonary fibrosis cells induced by TGF-B. Additionally, with
increasing drug concentrations, the 48-hour cell inhibition rate
showed a corresponding increase, as depicted in Fig. 7D-F.
Furthermore, it is evident that compound 17 exhibits a stronger
cytotoxic effect on the pulmonary fibrosis cell model compared
to compound 67; whereas, nintedanib demonstrates an even
stronger cytotoxic effect than compound 17.

3.7 Compounds 17 and 67 effectively inhibit TGF-B-induced
pulmonary fibrosis cell model

Finally, we evaluated the inhibitory effects of compounds 17
and 67 on pulmonary fibrosis at the cellular level, using ninte-
danib as a positive control. First, we established a pulmonary
fibrosis cell model by stimulating MRC-5 cells with TGF-p.
Subsequently, we treated the cell model with compounds 17 (50
uM), 67 (100 uM), and nintedanib (10 uM) for 48 hours. The
levels of hydroxyproline, collagen COL1A1, and elastin ELN
were measured in each group. We found that TGF-f stimulation
upregulated the expression of COL1A1 and hydroxyproline in
MRC-5 cells, while elastin ELN expression was downregulated,
indicating successful induction of the pulmonary fibrosis cell
model. Following treatment with compounds 17, 67 and nin-
tedanib, the expression of COL1A1 and hydroxyproline signifi-
cantly decreased (Fig. 7G-I). Moreover, elastin ELN expression
was upregulated upon treatment with compounds 17 and nin-
tedanib. Compound 17 exhibited antifibrotic efficacy similar to
that of nintedanib, while compound 67 demonstrated lower
efficacy in inhibiting pulmonary fibrosis compared to ninteda-
nib. However, the effective concentration of nintedanib for
antifibrotic activity was significantly lower than that of
compounds 17 and 67, indicating a stronger cytotoxic effect in
vitro, which warrants further investigation (Fig. 7D-I). None-
theless, due to its lower effective dose, nintedanib may poten-
tially exert lower systemic toxicity in vivo. Hence, Further

© 2025 The Author(s). Published by the Royal Society of Chemistry
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optimization of compounds 17 and 67 and comprehensive in
vivo evaluations are needed to advance their therapeutic
potential. In summary, the cellular model suggests that
compounds 17 and 67 have inhibitory effects on pulmonary
fibrosis.

4 Discussion

This study presents a comprehensive structure-based approach
for developing both orthosteric and allosteric CCR2 inhibitors
as potential treatments for IPF. By integrating computational
drug discovery with multi-layered pharmacological screening
and molecular dynamics simulations, we systematically
explored both binding sites and their inhibitory mechanisms.

4.1 CADD strategy and virtual screening results

Our computational approach successfully identified promising
CCR2 modulators through a systematic drug discovery pipeline.
The structure-based pharmacophore (SBP) modeling yielded
highly specific models for both binding sites. For the external
(orthosteric) pocket, SBPo-1 demonstrated optimal perfor-
mance with a score of 12.047, sensitivity of 0.750, specificity of
0.619, and Youden's j statistic of 0.369, characterized by
AADHHP pharmacophore features. The internal (allosteric)
pocket pharmacophore SBPi-1 scored 10.582 with AAHHHN
features and aJ statistic of 0.176, indicating good discriminative
ability.

The 3D-QSAR modeling further validated our approach, with
QSAR1 showing excellent predictive capability (correlation
coefficient of 0.913, fit value of 16.040, total cost of 240.708, and
RMS of 3.737). The regression analysis yielded an R> value of
0.83, demonstrating strong correlation between predicted and
actual IC50 values across a 4-order magnitude range (from
0.03 nM for BDBM50088301 to 30 000 nM for BDBM50197912).

The multi-pharmacophore virtual screening of 152406
molecules from the ChemDiv database was highly efficient:
SBPo screening retained 1722 candidates, subsequent SBPi
screening narrowed this to 69 molecules, and both 3D-QSAR
and CFP screening maintained all 69 candidates. Following
ADMET filtering, we identified 7 promising compounds
(external pocket: ligands 17, 40, 68; internal pocket: ligands 41,
62, 64, 67) for further analysis.

4.2 Molecular dynamics simulation insights

The 500 ns molecular dynamics simulations provided compre-
hensive insights into ligand-receptor interactions and stability.
RMSD analysis revealed excellent system stability for all tested
compounds, with mean values ranging from 0.443 nm
(compound 62) to 0.699 nm (compound 41), indicating stable
binding conformations. Notably, compounds 62 and 67
demonstrated superior stability compared to other candidates.

RMSF analysis identified six critical regions of amino acid
fluctuations, with mean values ranging from 0.106 nm
(compound 62) to 0.174 nm (nintedanib). The analysis revealed
specific residue regions crucial for binding: compound 17
affected residues 182-185, compound 41 influenced residues

© 2025 The Author(s). Published by the Royal Society of Chemistry
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19-24, compound 62 impacted residues 182-183, compound 64
affected multiple regions (11-16, 28-31, 232-234), and
compound 67 influenced residues 9, 19, and 233.

Radius of gyration analysis showed that compound 62
exhibited the most compact binding (Rg = 2.185 nm), followed
by compounds 64 and 41 (both 2.348 nm), while compound 17
showed slightly higher compactness (2.411 nm) compared to
nintedanib (2.400 nm). SASA analysis demonstrated stable
fluctuations around 185 nm?> for all compounds, with
compounds 62 (184.854 nm?) and 67 (184.744 nm?) showing the
lowest values, indicating greater system stability.

Hydrogen bond analysis revealed significant differences in
binding interactions: compounds 41 (2.728 bonds) and 67 (2.153
bonds) formed the most extensive hydrogen bond networks, while
compound 17 showed moderate interaction (0.388 bonds). The
short-range contact analysis (<3.5 A) confirmed these patterns,
with compound 67 (1.687 contacts) and compound 62 (1.642
contacts) demonstrating strong local interactions.

4.3 Principal component analysis and binding mode
optimization

PCA analysis successfully identified the lowest energy confor-
mations for each compound, providing crucial insights into
optimal binding geometries. The free energy landscape analysis
revealed distinct binding preferences and conformational
stability patterns, guiding our final compound selection.

The optimized molecular docking based on PCA-derived
conformations showed significantly improved binding scores
compared to initial poses. Final docking scores (in kcal mol ™)
compound 17 (—8.480), compound 41 (—8.500),
compound 62 (—7.682), compound 64 (—7.570), compound 67
(—8.540), and nintedanib (—8.728). Interaction analysis
revealed that compounds targeting the allosteric site (41, 62, 64,
67) frequently interacted with key residues including VAL63,
LEU67, LEUS1, ALA141, ARG237, GLU238, TYR305, LYS311,
PHE312, ARG138, ALA241, VAL244, and TYR315, while
compound 17 at the orthosteric site primarily engaged LYS38,
ALA42, LEU45, TYR49, TRP98, ALA102, TYR120, HID121,
VAL187, PRO192, GLN288, GLU291, and THR292.

Wwere:

4.4 Thermodynamic validation and binding energetics

Umbrella sampling analysis provided detailed thermodynamic
profiles for the dissociation pathways. The potential of mean
force (PMF) calculations revealed that compound 17 achieved
its most stable binding conformation at £ = 1.5 nm with a PMF
minimum of —2.2 keal mol~?*, while compound 67 reached its
global energy minimum (—1.35 kcal mol ') at ¢ = 2.7 nm.
Critical dissociation thresholds were identified at £ = 4.5 nm
for compound 17 and £ = 4.2 nm for compound 67, indicating
compound 17's stronger binding affinity.

MM/PBSA calculations revealed exceptionally strong binding
free energies: —30.91 kcal mol ' for compound 17 and
—26.11 kecal mol™* for compound 67, confirming thermody-
namically favorable interactions. Per-residue energy decompo-
sition identified critical binding contributors (AG <
—1 keal mol™"): for compound 17, Trp98 (—3.2 kcal mol %),
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Leu45, GIn288, Glu291, and Val37; for compound 67, Lys71
(—2.8 kcal mol ™), Phe306, Leu67, Tyr309, Ile66, and Leu81. The
consistency between PCA-derived binding poses and MM/PBSA
analysis, particularly the conservation of key residues (Leu45,
Trp98, GIln288, Glu291 for compound 17; Leu67 and Leu81 for
compound 67), validates our computational approach.

4.5 Experimental validation and therapeutic efficacy

SPR analysis confirmed compound 17's direct binding to
murine CCR2 with a dissociation constant (Kp) of 3.46 uM (K, =
1.05 x 10° M™' s7', K4 = 3.63 x 10~ " s™'), demonstrating
strong binding affinity consistent with computational predic-
tions. The observed synergistic effect when compounds 17 and
67 were co-administered supports our dual-pocket inhibition
strategy, with enhanced suppression compared to individual
treatments.

In the BLM-induced IPF mouse model, CCR2 expression was
significantly upregulated (p < 0.001 for both mRNA and protein
levels), with hydroxyproline content substantially increased (p <
0.001), confirming the pathophysiological relevance of CCR2 in
pulmonary fibrosis progression. Survival analysis revealed that
patients with elevated CCR2 expression had significantly lower
survival rates (p = 0.0049), with ROC analysis yielding an AUC of
0.693, supporting CCR2's role as a diagnostic biomarker.

Cellular efficacy studies in TGF-B-induced MRC-5 fibrosis
models demonstrated concentration-dependent antifibrotic
effects for both compounds. Treatment with compound 17 (50
uM) and compound 67 (100 pM) significantly reduced hydrox-
yproline content (p < 0.0001) and COL1A1 expression (p <
0.0001) while upregulating ELN expression (p < 0.001 for
compound 17). Notably, compound 17 exhibited antifibrotic
efficacy comparable to nintedanib (10 pM), while requiring
higher concentrations, suggesting potential for optimization to
achieve therapeutic efficacy at lower doses.

4.6 Clinical implications and future perspectives

The structural simplicity and lower development costs of
compounds 17 and 67 position them as promising candidates
for affordable IPF treatment, particularly valuable for resource-
limited settings where current therapies like nintedanib and
pirfenidone remain prohibitively expensive. The dual-pocket
targeting strategy offers a novel therapeutic paradigm that
could potentially overcome resistance mechanisms associated
with single-site inhibition.

However, several limitations warrant consideration. The
higher effective concentrations required compared to ninteda-
nib indicate the need for structural optimization to enhance
potency while maintaining selectivity. The absence of compre-
hensive in vivo pharmacological validation leaves questions
regarding bioavailability, tissue distribution, and long-term
safety unresolved.

5 Conclusions and future directions

Our integrated computational-experimental approach success-
fully identified compounds 17 and 67 as promising dual-pocket
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CCR2 modulators with demonstrated antifibrotic efficacy. The
comprehensive CADD strategy, validated through rigorous MD
simulations and experimental studies, provides a robust
framework for CCR2-targeted drug development. While current
efficacy profiles require optimization, the cost-effectiveness
potential and novel dual-site mechanism of action make these
compounds attractive candidates for further development.

Future research priorities include: (1) structural optimization to
enhance binding affinity and reduce effective concentrations, (2)
comprehensive in vivo pharmacokinetic and toxicity studies, (3)
development of nanomaterial-based delivery systems to improve
bioavailability, and (4) integration of multi-omics approaches for
personalized therapeutic strategies. The ultimate goal remains the
development of cost-effective, accessible CCR2-targeted therapies
for IPF and related fibrotic diseases.
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