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This research examines the corrosion inhibition efficiency of two novel compounds, AEPA and DOCA, on

carbon steel in 1.0 M hydrochloric acid. Both AEPA and DOCA demonstrated excellent electrochemical

performance as corrosion inhibitors, with inhibition efficiencies exceeding 93% at a concentration of

10 mM, as confirmed through potentiodynamic polarization (PDP), electrochemical frequency

modulation (EFM), and electrochemical impedance spectroscopy (EIS) techniques. EIS analysis revealed

a marked increase in charge transfer resistance (Rct), reaching 387.55 U cm2 for AEPA and 345.80 U cm2

for DOCA, indicating the formation of a robust protective layer on the carbon steel surface. Adsorption

studies confirmed that both inhibitors follow the Langmuir isotherm model, suggesting monolayer

chemisorption. The calculated adsorption equilibrium constants with corresponding Gibbs free energy

values of −29.53 kJ per mol (AEPA) and −29.30 kJ per mol (DOCA), respectively, indicating spontaneous

and strong adsorption interactions. Theoretical insights from density functional theory (DFT) calculations

revealed that AEPA possesses a higher HOMO energy (−5.65 eV) and a lower LUMO energy (−1.12 eV)

compared to DOCA (HOMO: −6.70 eV, LUMO: −0.85 eV), resulting in a smaller energy gap (DE =

4.53 eV for AEPA vs. 5.85 eV for DOCA). This suggests that AEPA has a greater electron-donating ability

and stronger interaction with the metal surface. The integration of experimental and theoretical

approaches provides a comprehensive understanding of their inhibition mechanisms and highlights their

potential for practical applications in corrosion protection.
1. Introduction

Corrosion is an inherent and oen undesirable process that
occurs when metals, like carbon steel, interact with their envi-
ronment.1 Themost common formof deterioration, called rust in
the case of iron and steel, results from the oxidation of the metal
when it comes into contact with oxygen and moisture.2 The
deterioration of steel alloys has become a signicant topic in
academic and research elds because of its impacts on society
and the economy.3,4 Steel alloys are widely used in various
industrial and construction applications.5,6 Many devices rely on
this material because of its affordability and strong structural
properties.7–9 Additionally, the acidic solutions used in various
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industrial processes, such as cleaning, scale removal, pickling,
and oileld acidizing, are highly corrosive, which accelerates the
rate at which they corrode materials.10–12 Consequently, corrosion
of steel and other metals has become a common issue in today's
industrial world.13 Carbon steel is a fundamental building
material widely used across various key industries, especially in
the nuclear, petroleum, energy, food production, medical,
chemical, and electrochemical sectors.14–17 Carbon steel is
vulnerable to specic types of corrosion in certain environ-
ments.18 Hydrochloric acid (HCl) is oen used as a corrosive
solution in labs and industries due to its numerous benets.19,20

These include its high reactivity, integration (which is usually
smart and widely available, making it a cost-effective choice),
ease of use (which makes it simple to control and store, ideal for
labs and factories), and effective reactivity for control.21–23 The
primary and most common methods to prevent corrosion
include using surface coatings, developing the best metal alloys,
utilizing pure metals, altering the environment, applying inhib-
itors, and employing cathodic protection.6,19,24,25 Scientists are
working on a wide range of chemical inhibitors to reduce metal
corrosion.26–29 The most effective inhibitors usually have many
aromatic bonds and rings, along with nitrogen, sulfur, and
oxygen.30 However, traditional inhibitors have issues like
© 2025 The Author(s). Published by the Royal Society of Chemistry
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toxicity.31 As a result, research on environmentally friendly and
sustainable corrosion inhibitors has mainly focused on chem-
icals that are cheaper, more effective, and less harmful to the
environment.32–34 The most common synthetic corrosion inhibi-
tors are heterocyclic organic compounds with conjugated double
bonds, polar functional groups, and more electronegative atoms
such as sulfur, nitrogen, phosphorus, and oxygen.35,36

In our recent studies, we have explored a wide range of
organic compounds as corrosion inhibitors for steel in acidic
environments. We reported penicillanic acid derivatives CDOT
and IDOT achieving inhibition efficiencies of 95.51% and
95.14%, respectively, with adsorption energies of −39.2 and
−37.8 kJ mol−1, indicating strong chemisorption.37 Similarly,
we synthesized DOP and ADO, which reached efficiencies of
80.76% and 72.49% at 10 mM, supported by SEM/EDX and DFT
analyses.38 We also introduced tri-thiosemicarbazones HBC and
HAC, achieving up to 98.8% efficiency and Rct values of 4930 U

cm2, with Monte Carlo simulations conrming strong surface
interactions.39 In another study, we evaluated benzimidazole
derivatives (BIT, BIY, BIH) with efficiencies up to 93.43%, while
a coumarin-based surfactant reached 97.93% efficiency and
DGads values around −38.6 kJ mol−1. In our green chemistry
approaches, we used bellerica extract, achieving 91.79% effi-
ciency, with DFT band gaps ranging from 4.81 to 7.56 eV.40

Schiff bases have a broad range of uses, especially inmedicine
and pharmacology, where they serve as corrosion inhibitors and
exhibit properties like analgesic, anti-inammatory, antibacte-
rial, anticancer, and antioxidant effects.41 Researchers have per-
formed many studies on new Schiff base derivatives to enhance
their inhibitory efficiency.9,42 Schiff bases are created through
condensation, which happens when an amine or aldehyde reacts
with a ketone.43 They provide better corrosion inhibition than
other aldehydes and amines of a similar type because Schiff
bases contain the R1N]CR2R3 group.32,44,45 The derivatives of 6-
amino penicillinic acid and 4-amino acetophenone are effective
at preventing corrosion. These compounds contain polar groups
that help them adhere better to metal surfaces, especially under
harsh conditions. Additionally, the many p-electrons and lone
electron pairs in the oxygen and nitrogen atoms interact with the
d-orbitals of metal to form a protective layer. Two novel
compounds, (S,E)-2-((1-(4-minophenyl)ethylidene)amino) (3-(4-
hydroxyphenyl)propanoic acid), “AEPA”, and (2S,5R,6R)-3,3-
dimethyl-7-oxo-6-propionamido-4-thia-1-azabicyclo[3.2.0]
heptane-2-carboxylic acid, “DOCA”, are synthesized. The critical
improvement of this work lies in the synergistic integration of
experimental electrochemical techniques with advanced
quantum chemical modeling, providing a deeper mechanistic
understanding and predictive capability for corrosion inhibition.
This positions AEPA and DOCA as next-generation inhibitors
with both practical and theoretical signicance in the eld of
corrosion science.

2. Methodologies
2.1. Materials and instruments

This investigation used high-quality Sigma-Aldrich 6-amino
penicillinic acid, propanoyl chloride, tyrosine, and ethyl
© 2025 The Author(s). Published by the Royal Society of Chemistry
acetate. The Scharlau Company supplied sodium hydrogen
carbonate and hydrochloric acid. The IR spectra were taken
using potassium bromide discs on a Shimadzu “FTIR-8400S”
spectrophotometer, ranging from 400 to 4000 cm−1. Compound
electronic spectra were measured with a Shimadzu “UV-1800”
spectrophotometer. The 1H and 13C nuclei were mixed with D2O
for analysis on a Bruker “DPX-300” NMR spectrometer. The 13C
and 1H NMR spectra were recorded at frequencies of 150 and
600 MHz, respectively, using a method to reduce interference
from 1H nuclei. The Flash EA112 elemental analyzer was used to
analyze carbon, hydrogen, and nitrogen. Aer immersing
carbon steel samples in 1.0 M hydrochloric acid, with or without
AEPA and DOCA, their surface microstructure was examined
using a ZEISS Sigma FESEM. Images were captured for EDX
analysis, and maps were created for further analysis.

2.2. Synthesis of DOCA and AEPA inhibitors

Propanoyl chloride (1 mmol) was mixed with 30 mL of acetone
and then added to a solution containing 1 mmol of 6-amino
penicillinic acid dissolved in 40 mL of a 2% sodium bicarbonate
solution. Themixture was stirred for 2 to 4 hours at zero degrees
celsius. Aerwards, the solution was concentrated by evapora-
tion. The water layer was then acidied with 0.1 M hydrochloric
acid, and the solid was extracted using 25 mL of ethyl acetate.46

It was washed with distilled water and dried over anhydrous
Na2SO4. The ethyl acetate was evaporated, and the resulting
precipitate was collected. The melting point of the synthesized
DOCA was then measured (Scheme 1). But for the AEPA
compound, follow these steps: dissolve 1 mmol of 4-
aminoacetophenone in 10 mL of methanol with continuous
stirring until fully dissolved. Then, add two drops of glacial
acetic acid as a catalyst. Next, dissolve 1 mmol of the amino acid
tyrosine in 15 mL of methanol. Slowly add the amino acid
solution to the aromatic ketone (Scheme 2).34 Heat the mixture
at 65 °C in a water bath for 8 to 10 hours. Aer cooling, lter the
precipitate, wash it with methanol, and air-dry for two hours.

2.3. Corrosion inhibition methodology

The composition of the carbon steel samples (weight percentage)
included C (0.18%), Mn (1.40%), Si (0.36%), Ni (0.04%), Cu
(0.33%), Cr (0.02%), Mo (0.02%), and Fe (balanced). Precise
measurements were necessary for constructing the working
electrode. Mechanical methods were used to obtain uniform
sizes with a thickness of approximately 1 cm. The exposed area of
1 cm2 was manually abraded before applying epoxy glue to cover
the parts. Distilled water was used to thoroughly clean the elec-
trode, and acetone and hot benzene were employed to remove
grease, followed by drying at room temperature. Electrochemical
experiments were conducted at 30 °C using a potentiostat, and
the data were analyzed with appropriate soware. In the
electrochemical cell, the working electrode was made of carbon
steel, the reference electrode was a mercury–mercury sulfate
electrode, and the counter electrode was a platinum plate. All
three electrodes were fully immersed in a 1.0 M hydrochloric acid
solution. To ensure a stable open circuit potential (OCP), the
carbon steel sample was subjected to spontaneous corrosion for
RSC Adv., 2025, 15, 28666–28688 | 28667
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Scheme 2 Synthetic pathway and the suggested mechanism of AEPA inhibitor.

Scheme 1 Synthetic pathway and the suggested mechanism of DOCA inhibitor.
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30minutes before the experiments without applying any external
current or voltage. The electrochemical impedance spectroscopy
(EIS) and potentiodynamic polarization (PDP) methods used in
this study were previously described in our research. The exper-
iments were conducted with and without DOCA and AEPA
inhibitors. The electrochemical potentials of carbon steel
samples were measured using the PDP method, which involves
a scan rate of 2 mV s−1 and a potential range of ±0.6 V. Eqn (1)
presents all the electrochemical parameters used to evaluate the
inhibitory efficiency derived from Tafel plots for the polarization
study. Eqn (1) shows the inhibition efficiency (hp %) which
compares the corrosion current densities with (icorr) and without
(i0corr) the presence of DOCA and AEPA.

hP% ¼ 100

�
1� icorr

i0corr

�
(1)

The impedance test, with amplitude of ±10 mV, utilized
a frequency response range of 1 Hz to 100 kHz. A similar design
28668 | RSC Adv., 2025, 15, 28666–28688
was employed to match the impedance range. It is important to
clearly understand the charge transfer resistance (Rct), solution
resistance (Rs), and inhibition efficiency (hz %). Bode and
Nyquist plots were used to illustrate the impedance range.
Using the provided data, eqn (2) was applied to calculate the
corrosion inhibition rate, which is (hz %). The charge transfer
resistances for both DOCA and AEPA inhibitors (Rct) and in the
absence of these inhibitors (R0

ct) are presented.

hz% ¼ 100

�
Rct � R0

ct

Rct

�
(2)

The electrochemical frequency modulation (EFM) require-
ments are satised with a potential disturbance signal that has
an amplitude of 10 mV. It consists of two sine waves at 0.2 and
0.5 Hz, totaling 16 cycles. The full parameters are determined
using the most prominent peaks. Eqn (3) can be used to
calculate the efficiency (hEFM %).
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 FT-IR spectra of the investigated inhibitors (DOCA and AEPA).
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hEFM% ¼ 100

�
1� icorr

i0corr

�
(3)

To ensure the data obtained were accurate, electrochemical
experiments were conducted for each concentration of DOCA
and AEPA inhibitors.

2.4. Computational methods

To explore the electronic structure and reactivity of the studied
organic molecules, we employed density functional theory
(DFT) calculations using the unrestricted B3LYP functional with
the 6-31G basis set implemented in Gaussian 16 package.47

Solvent effects were incorporated using the polarizable
continuummodel (PCM) with water as the solvent, specied via
the scrf=(solvent=water) keyword. To simulate acidic environ-
ments, we protonated the molecules by adding a hydrogen atom
near the amino group, which is a likely site of protonation
under such conditions. Geometry optimizations were per-
formed using the geom=connectivity keyword, and Hirshfeld
population analysis (pop=hirshfeld) was used to evaluate
charge distribution. The calculations were carried out with
a maximum disk allocation of 8 GB to ensure computational
efficiency. Both alpha and beta spin molecular orbitals were
analyzed to capture the full spin-resolved electronic structure.
However, for consistency and clarity in comparing frontier
molecular orbitals (FMOs), we focused on the beta spin orbitals
when reporting HOMO and LUMO energies. The HOMO–LUMO
gap, along with the individual orbital energies, was used to
assess the chemical reactivity of the investigated inhibitors.
Finally, we calculated the density of states (DOS) using Gauss-
Sum soware.48 To simplify the visual representation, hydrogen
atoms were excluded from the images.

3. Results and discussion
3.1. DOCA and AEPA inhibitor characterization

3.1.1. Chemical and physical properties of DOCA and AEPA
inhibitors. We examined the physicochemical properties of
DOCA and AEPA inhibitors, including their color, melting
point, and elemental composition. The DOCA compound
appears as a yellowish-white powder. It has a melting point
range of 206–208 °C and an 82% yield. The AEPA compound
melts between 210 and 212 °C and has a 93% yield. The AEPA
compound also has an orange color. DOCA contains 9.71%
nitrogen, 33.11% carbon, 17.24% sulfur, and 2.99% hydrogen.
AEPA consists of 4.37% nitrogen, 38.20% carbon, and 4.55%
hydrogen.

3.1.2. FT-IR analysis. Compound DOCA (Fig. 1) showed
a signicant spectrum: a broad absorption band at 3300 cm−1

due to the stretching of the (O–H) bond of the carboxylic acid,
and an absorption band at 780 cm−1 due to the stretching of the
(C–S) bond. It also showed an absorption band at 2960 cm−1

due to the stretching of the (sp3C–H) bond. Additionally, it
exhibited an absorption band at 1631 cm−1 due to the stretch-
ing of the (C]O) bond of the amide, and a band at 1713 cm−1

due to the stretching of the beta-lactam (C]O). A band at
© 2025 The Author(s). Published by the Royal Society of Chemistry
973 cm−1 due to the stretching of the (C–N) bond of the amide,
and an absorption band at 998 cm−1 due to the stretching of the
(C–O) bond of the acid. Likewise, compound AEPA (Fig. 1) di-
splayed a broad absorption band at 1973 cm−1. The band at
3209 cm−1 is due to the bending of the alcoholic (O–H) bond,
while a broad absorption band at 3394 cm−1 results from the
bending of the amino (N–H) bond. Additionally, a broad band at
3116 cm−1 corresponds to the bending of the (CO–OH) group in
the carboxylic acid, and an absorption band at 1635 cm−1 is due
to the bending of the (C]N imine group). An absorption band
at 1900 cm−1 reects the bending of the (C]O) bond in the
carboxylic acid. For bending vibrations, the compound exhibits
a band at 1650 cm−1, a band due to the bending of the amino
(N–H) bond, absorption at 1357 cm−1 from the bending of the
alcoholic (O–H) bond, and another at 1434 cm−1 due to the (O–
H) bending of the carboxylic acid. The AEPA compound also
shows an absorption band at 2968 cm−1 attributable to the
(sp3C–H) bond, and another at 1731 cm−1 due to the (C]N)
bond.

3.1.3. 1H and 13C NMR analysis. The 1H and 13C NMR
spectra are shown in Fig. 2 and 3. The 1H NMR spectrum of the
DOCA molecule in deuterium oxide (D2O) displayed clear
signals at specic chemical shis (d) in parts per million (ppm).
These signals appeared at d = 4.2 (C–H2, singlet), 1.56 (C–H12
and C–H18, singlet), 5.5 (C–H6, doublet), 4.9 (C–H19, doublet),
and 1.44 (C–H13 and C–H17, doublet). The AEPA molecule
exhibits distinct signals at d (ppm) = 3.4 (singlet, C–H15), 3.9
(doublet, C–H3), 4.7 (singlet, C–H2, C–H12, C–H17, C–H21, and
C–H22), 5.8 (singlet, C–H17, C–H8, C–H10, and C–H20), and 7.8
(multiple, C–H11 and C–H7). Furthermore, as shown in Fig. 3,
the 13C NMR (D2O) spectra of DOCA and AEPA displayed
distinct signals at d (ppm) = 26 (C12), 30 (C17 and C18), 73 (C5
and C2), and 56 (C6 and C3) for DOCA. The AEPA shows
chemical shis of 114 for (C20, C218, C10, and C8) and 131 for
(C21, C17, C11, C7, and C6).
RSC Adv., 2025, 15, 28666–28688 | 28669
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Fig. 2 1H NMR spectra of the investigated inhibitors (DOCA (a) and AEPA (b)).
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3.1.4. UV-visible analysis. To determine the UV-visible
spectra of DOCA and AEPA, a wavelength range of 200–
600 nm was used for measurement. Quantication of the DOCA
and AEPA compounds was performed in the lab at room
temperature, with concentrations from 3.5 × 10−4 M. Fig. 4
shows the UV spectrum of compound DOCA. The strongest
absorption occurs near 228 nm, while the weakest is at 216 nm.
28670 | RSC Adv., 2025, 15, 28666–28688
This is due to n–p* and p–p* electronic transitions. It is clear
that a carbonyl group (C]O) exists in the lactam ring, along
with heteroatoms such as nitrogen and sulfur. The hypo-
chromic effect causes the change in absorbance intensity. Fig. 4
also displays the UV spectrum of compound AEPA. The peak
maximum is at l max = 229 nm, with additional peaks at 247 nm
and 361 nm. These peaks result from n–p* and p–p* electronic
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 13CNMR spectra of the investigated inhibitors (DOCA (a) and AEPA (b)).
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transitions of the imine group (C]N) and aromatic ring
transitions.
3.2. Electrochemical measurements

3.2.1. Potentiodynamic polarization. The electrochemical
behavior of carbon steel in 1.0 MHCl solution in the presence of
varying concentrations (0–10 mM) of AEPA and DOCA has been
investigated using potentiodynamic polarization (PDP). The
resulting electrochemical parameters like corrosion current
density (icorr), corrosion potential (Ecorr), Tafel slopes (ba, bc),
corrosion rate (k), surface coverage (q), and inhibition efficiency
© 2025 The Author(s). Published by the Royal Society of Chemistry
(h) are collected in Table 1, and polarization curves are given in
Fig. 5. In the absence of inhibitors, the density of the corrosion
current (icorr) was found to be 684 mA cm−2, indicating a rapid
dissolution of carbon steel in strongly acidic media.49 However,
the addition of AEPA and DOCA signicantly decreased icorr,
demonstrating their effectiveness as corrosion inhibitors. With
the concentration of 1 mM, the icorr value fell to 167 mA cm−2 for
AEPA and 168 mA cm−2 for DOCA. Increasing the concentration
further to 10 mM caused a notable drop to 65.5 mA cm−2 and
67.7 mA cm−2 for both compounds. The trend agrees with that of
earlier studies on organic corrosion inhibitors, in which the
RSC Adv., 2025, 15, 28666–28688 | 28671
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Fig. 4 UV spectra of the investigated inhibitors (DOCA and AEPA).

Fig. 5 Potentiodynamic polarization curves for the corrosion of
carbon steel in 1.0 M HCl in absence and presence of different
concentrations of AEPA (a) and DOCA (b) compounds at 30 °C.
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higher inhibitor concentrations favor greater surface coverage
via enhanced adsorption processes.50–52 The corrosion potential
(Ecorr) moved to more negative values with the addition of both
inhibitors, indicating a prevailing control over the cathodic
reaction. In particular, at 10 mM concentration, Ecorr shied
from −630 mV vs. MSE in blank solution to −653 mV vs. MSE
and −700 mV vs. MSE for both AEPA and DOCA. The cathodic
shi indicates that the inhibitors function primarily to suppress
hydrogen evolution by forming a barrier on the cathodic sites of
the metal surface.53,54 The anodic (ba) and cathodic (bc) Tafel
slopes were slightly changed at all the concentrations exam-
ined, showing that the mechanisms of hydrogen evolution and
iron dissolution were not altered in the presence of the inhib-
itors.11,55 Instead, the decrease observed in icorr can be explained
by physical blocking of the active sites on the metal surface
through inhibitors' adsorption.56 The measured corrosion rates
had the same trend as that of icorr as the value reduced from
360.5 mpy in the blank solution to 34.52 mpy and 35.65 mpy at
Table 1 Electrochemical parametersa for carbon steel dissolution in 1.0
DOCA) inhibitors obtained from polarization measurements at 30 °C

Inhibitor
name

Conc.
(mM)

Ecorr vs..MSE
(mV)

icorr
(mA cm−2)

ba
(mV dec−1

Blank — −630 684 189.1
AEPA 1 −694 167 182.9

3 −676 137 170.0
5 −703 121 172.1
7 −720 83.5 170.3

10 −653 65.5 157.7
DOCA 1 −679 168 177.3

3 −717 144 184.5
5 −689 131 171.7
7 −694 119 174

10 −700 67.7 149.9

a Ecorr, is the corrosion potential; icorr, is the corrosion current density: ba a
rate; q, is the surface coverage; hp, is the inhibition efficiency.

28672 | RSC Adv., 2025, 15, 28666–28688
10 mM concentration for both AEPA and DOCA. These results
further validate the strong inhibitory effect displayed by the
investigated compounds. Surface coverage (q) increased with
increasing inhibitor concentration to a maximum of 0.904 at
10 mM corresponding to an inhibition efficiency of 90.42%. The
high inhibition efficiency is a pointer to the ability of AEPA and
DOCA to effectively cover the reactive surface and inhibit the
M HCl solution containing different concentrations of the (AEPA and

)
−bc
(mV dec−1) Rp U cm2 k (mpy) q hp %

176.9 58.02 360.5 — —
161.4 222.93 87.72 0.756 75.58
151.9 254.26 72.16 0.800 79.97
151.3 288.94 63.51 0.823 82.31
155.2 422.26 48.99 0.878 87.79
137.8 487.52 34.52 0.904 90.42
154.4 213.31 88.37 0.754 75.44
167.9 265.07 75.85 0.789 78.95
151.3 266.59 68.84 0.808 80.85
153.2 297.27 62.90 0.826 82.60
167.4 507.23 35.65 0.901 90.10

nd bc are Tafel constants for both anode and cathode; k, is the corrosion

© 2025 The Author(s). Published by the Royal Society of Chemistry
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corrosion process.57 DOCA and AEPA exhibited high electro-
chemical inhibition behavior, possibly owing to the presence of
electron-rich nitrogen and sulfur atoms, which result in exten-
sive interaction with the metal interface via chemisorption or
coordination bonding.58 The presence of these functional
groups facilitates the adsorption ability of the molecules,
resulting in the creation of a stable protective layer.59 In general,
the results of PDP analysis conrm that AEPA and DOCA are
effective mixed-type inhibitors, the action of which is mainly on
the cathodic reaction path. They perform better with an
increase in concentration to achieve outstanding inhibition
efficiencies greater than 90%.

3.2.2. Electrochemical frequency modulation. In order to
further elucidate the corrosion inhibition mechanism of AEPA
and DOCA for carbon steel in 1.0 M HCl solution, electro-
chemical frequency modulation (EFM) tests were carried out.
EFM is a highly effective non-destructive technique in which the
corrosion current density (icorr), causative factors (CF-2 and CF-
3), and intermodulation spectra measured without pre-
polarization of the electrode.34 The resulting (EFM) spectra are
presented in Fig. 6 for AEPA, whereas the respective electro-
chemical parameters obtained from these measurements are
listed in Table 2. For the case without inhibitors (blank solu-
tion), the spectrum exhibited high current amplitude for the
Fig. 6 Intermodulation spectra for carbon steel in 1.0 M HCl in absence a

© 2025 The Author(s). Published by the Royal Society of Chemistry
whole frequency range, suggesting active dissolution of carbon
steel through vigorous acid attack.60 Introduction of AEPA and
DOCA brought about a remarkable decrease in the intermodu-
lation current response with increasing concentration of the
inhibitors, indicating gradual improvement in surface coverage
and improved protection. Both compounds produced a signi-
cant reduction in current amplitude at a concentration of 1 mM,
which signals the start of adsorption and partial inhibition. In
5–10mM, the spectra were signicantly attened, particularly at
lower frequencies, revealing the formation of a thick protective
lm that highly suppressed charge transfer processes at the
metal/solution interface.60,61 In Table 2, icorr value in the blank
solution, was 451.1 mA cm−2. The introduction of AEPA and
DOCA resulted in a consistent reduction from this value. At
10 mM, icorr decreased to 30.6 mA cm−2 for AEPA and 31.7 mA
cm−2 for DOCA. These decreases conrm the effectiveness of
both compounds in reducing the general rate of corrosion by
creating a protective lm on the metal surface.62 Both the
cathodic and anodic Tafel slopes showed regular behavior over
varying concentrations, i.e., the mechanisms of iron dissolution
and hydrogen evolution were not changed. Changes in bc and ba

values, propose to have an inuence on the cathodic and anodic
reaction mechanism, most probably through physical blocking
of active sites by inhibitor molecules that are adsorbed.63 Both
nd presence of different concentrations from AEPA compound at 30 °C.

RSC Adv., 2025, 15, 28666–28688 | 28673
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Table 2 Electrochemical kinetic parametersa obtained by EFM technique for carbon steel in the absence and presence of various concentrations
of (AEPA and DOCA) inhibitors in 1.0 M HCl at 30 °C

Inhibitor
name

Conc.
(mM)

icorr
(mA cm−2)

ba
(mV dec−1)

−bc
(mV dec−1) CF-2 CF-3 Rp mU k (mpy) q hEFM %

Blank — 451.1 38.45 68.73 1.826 2.909 34.08 209.1 — —
AEPA 1 82.3 71.52 89.82 1.899 3.129 210.1 38.1 0.818 81.76

3 67.6 66.88 83.38 1.967 3.174 246.7 31.3 0.850 85.01
5 60.2 79.19 100.00 1.986 3.302 318.6 27.9 0.867 86.65
7 38.3 75.49 105.40 2.040 3.324 407.4 17.8 0.915 91.51

10 30.6 58.84 82.21 1.691 2.903 498.5 14.2 0.932 93.22
DOCA 1 93.3 80.68 94.75 1.843 2.457 202.9 43.2 0.793 79.32

3 68.0 105.50 128.20 2.144 2.797 238.4 31.5 0.849 84.93
5 62.6 65.00 78.57 1.469 2.490 304.3 29.0 0.861 86.12
7 56.5 65.89 99.31 1.952 3.151 369.6 26.2 0.875 87.48

10 31.7 54.02 65.94 1.881 2.948 487.3 14.7 0.930 92.97

a Ecorr, is the corrosion potential; icorr, is the corrosion current density: ba and bc are Tafel constants for both anode and cathode; k, is the corrosion
rate; q, is the surface coverage; hEFM, is the inhibition efficiency.
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CF-2 and CF-3 values were within the theoretical limit of ±10%
throughout, ensuring the accuracy of EFM measurements. The
slight deviations of CF values with rising concentration may
indicate a shi in the dominant electrochemical mechanism in
accordance with the nature of inhibition and adsorption
behavior.46,64 Surface coverage was increased by inhibitor
concentration up to a maximum of 0.932 for AEPA and 0.930 for
DOCA at 10 mM. These were equivalent to inhibition efficien-
cies of 93.22% and 92.97%, respectively, conrming the good
inhibitory performance of the two compounds.65 The noted
decrease in icorr and the rise in surface coverage provides
powerful evidence for an inhibition mechanism through
Fig. 7 Nyquist plots, Bode and phase angle plots for steel in 1.0 M HCl so
DOCA (b and d) compounds at 30 °C.

28674 | RSC Adv., 2025, 15, 28666–28688
adsorption. The fact that AEPA and DOCA contain electron-rich
nitrogen and sulfur atoms enables them to coordinate strongly
with the iron surface via chemisorption or electrostatic attrac-
tion.66 The reaction therefore results in the creation of a stable
adsorbed layer, which suppresses both anodic and cathodic
reactions and hence lowers the overall rate of corrosion.67 The
EFM results affirm that AEPA and DOCA are good corrosion
inhibitors of carbon steel in 1.0 M HCl solution. These ndings
validate the results of potentiodynamic polarization studies and
reveal that AEPA and DOCA show potential for practical appli-
cations in the inhibition of acid corrosion.
lution without and with different concentrations of AEPA (a and c), and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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3.2.3. Electrochemical impedance spectroscopy. Electro-
chemical impedance spectroscopy (EIS) was used to examine
the corrosion inhibition performance of AEPA and DOCA for
carbon steel in 1.0 M HCl solution. EIS gives useful information
about the protective ability of inhibitors through measurement
of the impedance behavior of the metal/solution interface
across a wide frequency range.8,68 Fig. 7 represents the Nyquist
plots, the Bode modulus and phase angle plots of AEPA and
DOCA; in addition to this, the related EIS parameters are given
in Table 3. In the absence of inhibitors (blank solution), the
Nyquist plot (Fig. 7a and b) consisted of one capacitive loop with
a relatively low charge transfer resistance (Rct). This suggests the
presence of active corrosion mechanisms due to the aggressive
acid environment, in which the dissolution of carbon steel is
not greatly inhibited.69 At the minimum concentration of 1 mM
AEPA, the Nyquist plot (Fig. 7a) revealed a noticeable increase in
the diameter of the capacitive loop with respect to the blank
solution, signaling the initiation of inhibition. This implies that
AEPA starts to accumulate on the metallic surface, thereby
creating a protective layer.70 On increasing the concentration to
5–10 mM, the capacitive loop increased further, indicating
enhanced surface coverage and improved protection effects.
The parameters listed in Table 3 indicate a remarkable increase
in Rct from 171.62U cm2 at 1mM to 387.55U cm2 at 10mM. The
trend agrees with the progressive formation of a denser and
more protective layer at increasing inhibitor concentration.71

The same trends were found for DOCA (Fig. 7b): at the
concentration of 1 mM, the Nyquist plot (Fig. 7b) revealed the
initial rise in the diameter of the capacitive loop, revealing the
onset of inhibition. Raising the concentration to 5–10 mM
DOCA led to a further widening of the capacitive loop, in
accordance with a higher surface coverage. Fitted parameters in
Table 3 reveal a signicant rise in Rct from 138.93 U cm2 at
1 mM to 345.80 U cm2 at 10 mM, providing the increased
protective function of DOCA at higher concentrations.72 The
Bode phase angle and modulus plots (Fig. 7c and d) give further
information on the impedance behavior. In the absence of any
inhibitor, the Bode modulus plot reveals a signicant reduction
in impedance magnitude at lower frequencies, revealing a quick
charge transfer through the metal/solution interface.
Conversely, the phase angle plot displays a steep decline,
revealing the highly capacitive nature of the system.73,74 Addi-
tion of AEPA and DOCA provides Bode modulus plots that
exhibit an increase in impedance values throughout the whole
frequency range, more so at low frequencies.55 The observation
indicates that the inhibitors oppose charge transfer mecha-
nisms and lead to a decrease in the overall corrosion rate.75 The
phase angle plots also depict a more negative values, corre-
sponding to a shi towards more resistive behavior, typical of
good corrosion inhibition.76,77 The EIS data were analyzed using
an equivalent circuit model composed of solution resistance
(Rs), charge transfer resistance (Rct), lm formation resistance
(Rf), and constant phase elements (CPEs) for the double-layer
capacitance and the adsorbed inhibitor lm. The tting
parameters are given in Table 3. For AEPA, Rct increased from
171.62 U cm2 at 1 mM to 387.55 U cm2 at 10 mM. For DOCA, Rct
RSC Adv., 2025, 15, 28666–28688 | 28675
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increased from 138.93U cm2 at 1mM to 345.80U cm2 at 10mM.
These improvements in Rct demonstrate a direct correlation
with the formation of a protective lm on the metallic surface,
thus effectively preventing electron transfer processes.78 Both
the AEPA and DOCA both showed a decrease in Cdl. The
increase in concentration implies the formation of a dense and
small-sized protective layer, which reduces the surface area
available for charge transfer.79 Surface coverage (q) also
increased with inhibitor concentration to attain maximum
values of 0.9554 for AEPA and 0.9499 for DOCA at 10 mM. Such
high surface coverage agrees with inhibition efficiencies greater
than 94%, which obviously reects the high adsorption capacity
of both compounds.80 The inhibition efficiencies calculated
from EIS data (hz) exceeded 94% at 10 mM for AEPA and DOCA.
The rise in Rct and Rf and the decrease in Cdl and Cf suggest that
both compounds adsorb onto the surface of the carbon steel to
form a protective lm, which inhibits ingress of corrosive
species (e.g., H+) to the metal.81 The structural features of AEPA
and DOCA, such as the nitrogen and sulfur atoms, are likely to
interact with iron atoms at the metallic surface, thus enhancing
the strength and stability of adsorption.82
3.3. Adsorption isotherm

To gain further insight into the interaction of AEPA and DOCA
molecules with the carbon steel surface in 1.0 M HCl solution,
adsorption isotherm studies were conducted based on electro-
chemical data. These studies are extremely valuable in
furnishing details about the nature and strength of inhibitor
adsorption and hence corrosion inhibition efficiency.83,84

Besides the Langmuir model, the adsorption data were also
analyzed using various isotherm models such as Freundlich,
Frumkin, Temkin, Flory–Huggins, and kinetic-thermodynamic
models. The results are represented in Fig. 8 and Table 4.
From linear regression analysis, high correlation coefficients
(R2 > 0.99, closet to z1), indicating that the Langmuir model
best describes the adsorption process.85 This model considers
monolayer coverage without any lateral interaction between the
adsorbed molecules and is mathematically expressed as:86,87
Fig. 8 The Langmuir adsorption model for AEPA and DOCA
compounds on the steel surface in 1.0 M HCl using data obtained from
PDP measurements at 30 °C.

28676 | RSC Adv., 2025, 15, 28666–28688
C

q
¼ 1

Kads

þ C (4)

where C is the inhibitor concentration, q is the surface coverage,
and Kads is adsorptive capacity is directly connected with the
equilibrium constant. Fig. 8 shows the Langmuir plots for both
inhibitors at 30 °C. From these plots, the values of Kads and the
standard Gibbs free energy of adsorption (DGads) were calcu-
lated88 and are given in Table 4.

DGads = −RT ln 55.5 Kads (5)

The calculated Kads values were 2222 M−1 for AEPA and 2030
M−1 for DOCA. These values indicate enhanced adsorption
affinity among the inhibitor molecules and the metal surface.89

The calculated DGads values were −29.53 kJ mol−1 for AEPA and
−29.30 kJ mol−1 for DOCA. The values obtained conrm that
the adsorption mechanism is spontaneous and exothermic in
nature.90 Values between −20 and −40 kJ mol−1 are normally
representative of a mixture of physisorption and chemisorp-
tion;91 however, the appreciable magnitude in this case points
towards a predominance of chemisorption. The presence of
lone-pair electrons in nitrogen and sulfur atoms enables the
atoms to donate electron density to empty d-orbitals of iron,
thereby creating stable chemical bonds and increasing surface
protection.92

For Freundlich model that accounts for heterogeneous
surfaces and multilayer adsorption, the slopes (1/n) were found
to be less than 1, indicating good conditions for adsorption.
Specically, 1/n = 0.07729 for AEPA and 1/n = 0.06695 for
DOCA, indicating moderate heterogeneity and easiness of the
adsorption process.93 The Frumkin model incorporates inter-
actions between adsorbed species. The slopes' negative values
(−2.99560 for AEPA and −3.10908 for DOCA) indicate repulsive
interactions between adsorbed species, as is typical for organic
corrosion inhibitors.94
3.4. FE-SEM/EDX analysis

For 24 hours, carbon steel samples were immersed in 1.0 M
hydrochloric acid and examined using a scanning electron
microscope (SEM). This analysis was carried out on polished
samples treated with DOCA and AEPA inhibitors. Fig. 9a shows
the polished carbon steel before exposure to the corrosive acid.
Removing rust with silica carbide plates damages the surface of
the carbon steel, causing inevitable roughening. Fig. 9b shows
an SEM image of the metal and carbon surface in 1.0 M
hydrochloric acid. Without an inhibitor, the corrosion damages
the surface. The carbon steel surface exposed to acid corrosion
displays several visible voids of different sizes and depths,
indicating signicant material loss. The corrosive liquid
dissolves the surface, making it rough. A dense, porous layer of
corrosion residues, including oxide coatings, covers the metal
surface and causes damage.95 Adding 10mMDOCA and AEPA to
the corrosive solution, as shown in Fig. 10a and b, signicantly
reduced damage to the sample surface. Pits and cracks were less
severe than those in Fig. 9b. SEM images of carbon steel in
1.0 mM hydrochloric acid with 10 mM DOCA showed numerous
© 2025 The Author(s). Published by the Royal Society of Chemistry
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areas with smoother surfaces and fewer cracks. AEPA appears to
form a protective layer on the carbon steel, unlike the uniform
DOCA inhibitor, which directly adheres to the metal surface.96

DOCA and AEPA protect metal surfaces from corrosion in
1.0 mM hydrochloric acid by forming a barrier. They improve
the steel's surface and prevent contact with the corrosive solu-
tion, halting corrosion. According to EDX analysis, DOCA
contains a small amount of nitrogen by weight and 0.2% sulfur.
The AEPA inhibitor contains 71.4% iron, while the DOCA
inhibitor contains 71.5% iron, along with some additional
elements.

Based on these ndings, it appears that carbon steel can
naturally develop protective layers. The EDX mapping images
illustrate the spatial arrangement of the elements, as shown in
Fig. 10a and b. By incorporating and displaying nitrogen, sulfur,
and oxygen atoms on the steel's surface, the inhibitors'
composition prevents corrosion.97
3.5. Theoretical calculations

3.5.1. Optimization and frontier molecular orbital analysis
(FMOs). The compounds were rst optimized, as shown in
Fig. 11. Based on the FMO theory, we hypothesized that the
corrosion inhibition efficiency could be assessed through an
analysis of their electronic properties. Energy of HOMO
demonstrate molecule's tendency to donate electrons, while the
energy of LUMO displays its capability to accept electrons. A
good corrosion inhibitor typically demonstrates the higher
HOMO energy and a lower LUMO energy. The higher HOMO
energy indicates a better tendency to donate electrons to metal
surface, which eases the formation of a shielding layer.98,99 A
lower LUMO energy shows a reduced tendency of the inhibitor
to accept electrons from metal surface, which helps in sup-
pressing the corrosion process. So, an inhibitor with a higher
energy gap is typically considered more efficient in preventing
corrosion.100,101 The computed HOMO values for AEPA and
DOCA are −5.65 eV and −6.70 eV, respectively (see Fig. 12).
AEPA exhibits a higher HOMO energy compared to DOCA. As
shown in Fig. 2, AEPA has a LUMO energy of −1.12 eV, while
DOCA has a LUMO energy of −0.85 eV. This suggests that AEPA
has lower LUMO.

Lowering the energy gap between the HOMO and LUMO (DE)
is crucial to improving the efficiency of the corrosion inhibi-
tions of these compounds. The lower the DE, the easier is
electron transfer, which is important for the formation of
protective lms on a metal surface.102,103 As shown in Fig. 12,
AEPA is with energy gap of 4.53 eV where asDOCA is with energy
gap of 5.85 eV. This means that AEPA possess a lower DE, which
is indicative of a greater potential to adsorb onto the metal
surface, owing to its better electron transfer ability.104,105 The
FMO results are conrmed by the DOS results as well (see Fig.
13). DOS is a measure of the available electronic states within
a specic energy range.106,107 It is useful in understanding
contributions of molecular fragments to molecular orbitals and
can be estimated by the distribution of states in energy.
Examinations in terms of the FMOs, their compositions and the
DOS near HOMO and LUMO levels reveal that the variation of
RSC Adv., 2025, 15, 28666–28688 | 28677
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Fig. 9 SEM and EDX images of the steel surface (a) polished and (b) after 24 hours immersion in 1.0 M HCl.

Fig. 10 SEM and EDX images of the steel surface after 24 hours immersion in 1.0 M HCl containing 10 mM of AEPA (a) and DOCA (b).
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Fig. 11 Optimized structures of AEPA (a) and DOCA (b).
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electron-withdrawing abilities of the acceptor groups mainly
inuences the electron densities in the orbitals. In the DOS
map, positive energy represents the bonding orbitals, negative
Fig. 12 Frontier molecular orbitals and energy gap of AEPA (a) and DOC

© 2025 The Author(s). Published by the Royal Society of Chemistry
energy is represented by antibonding states, and zero by no
bond interaction states. The DOS results are consistent with the
FMO analysis. Thus, DOS spectra can be used as a quantitative
A (b).

RSC Adv., 2025, 15, 28666–28688 | 28679
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Fig. 13 Density of states of compounds AEPA (a) and DOCA (b).
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tool to study electronic interactions in the system. Furthermore,
the FMOs are used to calculate the global reactivity descriptors,
which contribute to understand the chemical reactivity of AEPA
and DOCA. These descriptors serve to relate energy levels,
molecular structure, and reactivity and include ionization
potential, electron affinity, electronegativity, chemical hard-
ness, soness, and dipole moment (m) among the parameters.
These descriptors have been obtained from the Koopmans'
theorem (see Table 5).108 Generally, the lower value of electro-
negativity means that the inhibitor has a high tendency to give
electrons to the metal surface. Conversely, molecules with
higher electronegativity are more susceptible to accept electrons
from the steel surface (back-donation) and develop a stronger
interaction with the metal. It can be seen from Table 5 that
AEPA and DOCA show a higher electronegativity, which tends to
Table 5 The calculated global reactivity indices of AEPA and DOCA inh

Molecular parameters

AEPA

Gas phase

ELUMO −1.12
EHOMO −5.65
DE 4.53
Ionization potential (I) 5.65
Electron affinity (A) 1.12
Electronegativity (c) 3.385
Chemical potential (m) −3.385
Chemical hardness (h) 2.265
Chemical soness (s) 0.442
Global electrophilicity index (u) 2.529
Fraction of electron transferred (DN) 1.35
m (debye) 4.74

a IP (Ionization Potential) = − EHOMO, EA (Electron Affi

electronegativityðcÞ ¼ ðIPþ EAÞ
2

, DEback-donation ¼ �h
4
.

28680 | RSC Adv., 2025, 15, 28666–28688
back-donate and lead to strong adsorption at the metal inter-
face. Similarly, the soness (S) and hardness (h) are important
parameters to estimate the stability and reactivity of inhibitor
molecules. So molecules are better corrosion inhibitors than
hard molecules because of their higher degree of electron
transfer to the metal surface upon adsorption.109 It can be seen
from Table 5 that AEPA has a higher inhibition efficiency
compared with DOCA due to its low soness and high hardness
values. The electron-donating and accepting tendencies of the
inhibitor are further evaluated through the concept of back-
donation. A negative DE back-donation value indicates that
the molecule extracts electrons from metal surface atoms.
Sequentially, electron-decient metal atoms attempt to regain
electrons from the molecule via back-donation. This reciprocal
electron exchange is dynamically favourable and strengthens
ibitors in different mediuma

DOCA

Aqueous Gas phase Aqueous

−0.376 −0.85 −1.079
−5.514 −6.7 −6.365
5.139 5.85 5.287
5.514 6.7 6.365
0.376 0.85 1.079
2.945 3.775 3.722
−2.945 −3.775 −3.722
2.569 2.925 2.643
0.389 0.342 0.378
1.688 2.436 2.62
1.276 0.979 1.093
19.4 5.00 8.09

nity) = − ELUMO, hardnessðhÞ ¼ ðIP� EAÞ
2

, softnessðSÞ ¼ 1

h
,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 MEP maps of compounds AEPA (a) and DOCA (b).
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the interaction between inhibitor and metal surface. Table 5
shows that AEPA and DOCA exhibit negative DE back-donation
values, signifying that back-donation is a favourable mecha-
nism contributing to strong bonding at the metal interface.110

The m is an additional signicant factor in assessing corrosion
inhibition performance. A higher dipole moment characteris-
tically enhances the molecule's capability to adsorb onto the
metal surface and upsurges the associated distortion energy.
Thus, greater dipole moments are oen linked to more effective
corrosion protection. According to Table 5, DOCA exhibits
a notably higher dipole moment (5.00 debye) than AEPA (4.74
debye), signifying a stronger tendency for adsorption onto the
metal surface and, possibly, better inhibition efficiency.

3.5.2. Molecular electrostatic potential (MEP). MEP maps
are valuable tools for classifying the reactive regions within
a molecule, highlighting the possible sites for electrophilic and
nucleophilic attacks. MEP maps show the interaction energy
between a molecule's electron distribution and a hypothetical
positive test charge. The colour gradient ranges from red, blue,
to green, demonstrating regions of negative, positive, and
neutral potential, respectively. Red areas denote regions with
strong nucleophilic character, making them favourable for
electrophilic attack, whereas dark blue areas suggest an elec-
trophilic nature, possible to attract nucleophiles. Yellow and
light blue areas specify less intense nucleophilic and electro-
philic regions, respectively, and green signies zones of neutral
electrostatic potential.111–120 For AEPA, a red zone seems around
the O2 atom, blue over the hydroxyl hydrogen, and green
spreads over the whole (4-aminophenyl ethylidene amino-3-
hydroxypropyl)phenol moiety. Likewise, DOCA shows a red
region near the O2 atom, a blue region over the hydroxyl
hydrogen, and a green area extending across the trimethyl-N-
propyl-4-thia-1-azabicyclo[3.2.0]heptan-6-amine group. The
electrostatic potential values for AEPA and DOCA are −5.887 ×

10−2 and −7.006 × 10−2, respectively. These results, as shown
in Fig. 14, specify that DOCA possesses a more electronegative
surface potential than AEPA.
4. Conclusion

The current research illustrates that the prepared AEPA and
DOCA, are highly efficient corrosion inhibitors for carbon steel
© 2025 The Author(s). Published by the Royal Society of Chemistry
in exposure to 1.0 M HCl solution. The following conclusions
can be drawn:

Electrochemical measurements (PDP, EFM, and EIS)
revealed that both compounds effectively reduce the corrosion
current density, with the highest inhibition efficiencies above
93% at 10 mM concentration. Adsorption studies showed that
the inhibitors follow the Langmuir isotherm, indicating
monolayer formation through chemisorption by nitrogen and
sulfur donor atoms. Thermodynamic factors like the standard
Gibbs free energy change (DG0

ads) favored both the spontaneity
and exothermicity of the adsorption process. Both of the
compounds exhibited amixed-type inhibition prole, effectively
blocking both anodic and cathodic processes.

The analysis of AEPA and DOCA, based on Frontier Molec-
ular Orbital (FMO) theory and Density of States (DOS) analysis,
revealed that AEPA exhibits better corrosion inhibition proper-
ties due to its smaller HOMO–LUMO energy gap, higher HOMO
energy, and lower LUMO energy compared to DOCA. These
properties suggest that AEPA has a greater propensity for elec-
tron donation, facilitating its adsorption onto metal surfaces
and forming protective layers that inhibit corrosion. Addition-
ally, AEPA's lower soness and higher hardness further
enhance its stability and reactivity as a corrosion inhibitor.
While DOCA exhibits a higher dipole moment, suggesting
strong adsorption potential, AEPA demonstrates overall supe-
rior performance in preventing corrosion. The global reactivity
descriptors and MEP analysis reinforce these ndings, indi-
cating that AEPA is more effective in protecting metal surfaces
against corrosion due to its favorable electronic properties and
molecular structure.
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3 F. Kaya, R. Solmaz and İ. H. Geçibesler, Adsorption and
corrosion inhibition capability of Rheum ribes root extract
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