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Micro- and nanoplastics (M/NPs) are widespread environmental pollutants arising from the increased use of
plastics, presenting significant threats to human health and freshwater ecosystems. These particles are
derived from both secondary and primary sources, including the breakdown of larger plastic debris and
industrial abrasives, and cosmetics. After being released, M/NPs move through the air, water, and soil,
where they persist, bioaccumulate, and interact with biological systems, potentially causing toxicity,
inflammation, and oxidative stress. This study thoroughly addresses the origins, environmental routes,
and health impacts of M/NPs, as well as the most current remediation strategies. Physical, chemical,
biological, and hybrid therapeutic techniques are evaluated critically, with adsorption receiving special
attention due to its efficiency and simplicity of usage. Graphene oxide (GO), a potential carbon-based
adsorbent with a large surface area, several oxygen-containing functional groups, and a remarkable
removal capability (up to 617.28 mg g~ for polystyrene microplastics), receives special attention. Along

R 4 9th July 2025 with a comparison with other adsorbents, the review discusses GO's structural properties, synthesis
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Accepted 16th September 2025 procedures (including the Hummers' process), and adsorption mechanisms. This study contributes to the

development of cutting-edge, environmentally friendly water treatment technologies by combining new

DO 10.1039/d5ra04896f research and emphasising the potential of GO-based materials for effective M/NP remediation in aquatic
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1. Introduction

Plastics are polymeric materials characterised by a high
molecular mass composite. These hybrid materials are made by
adding additives to a base polymer to enhance its properties.*
These materials are utilised in various industries, such as
buildings, food packaging, medical equipment, transportation,
and electrical insulation.” This is because plastics are afford-
able, robust, lightweight, and adaptable. Global data indicate
that plastic production reached 367 million tons in 2020, with
the rate of output increasing steadily.® Plastic is a synthetic
substance that was created for human luxury, but its use is
becoming increasingly problematic daily. Presently, the
consumption of plastic has surged from 5 million tons in 1950
to 100 million tons today, marking a 20-fold increase. It was
produced as a result of the 50% increase in single-use

“Department of Chemistry, COMSATS University Islamabad, Park Road, Tarlai Kalan,
Chak Shahzad, Islamabad, Pakistan. E-mail: Sadullahmir@comsats.edu.pk; Tel:
+9203336781744

*Chemistry Department, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi
Arabia

“Biology Department, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi
Arabia

36670 | RSC Adv, 2025, 15, 36670-36703

throwaway plastics.® Although plastic materials have many
benefits in daily life, their limited biodegradability, improper
use, and ineffective disposal contribute to environmental
degradation.®” Furthermore, many plastics are buoyant in fresh
and marine waters and have low density analogously, which
makes it easy for currents to carry them.*** Plastic garbage finds
its way into aquatic environments where it is broken down
physically, chemically, and biologically through various types of
processes such as abrasion, UV light, hydrolysis, oxidation, and
microbial breakdown. It is well accepted that exposure to
sunshine, air, and water, which together generate an infinite
amount of microplastics, triggers photooxidation and hydro-
lysis, which starts the breakdown process. Plastic objects may
degrade into microplastics, which may subsequently degrade
into nanoplastics under the influence of chemical, biological,
physical, and environmental factors.**"” Micro- and nano-
plastics are generally classified into two main groups: primary
and secondary.”® The major sources of microplastics include
synthetic fabrics, industrial blast cleaning, and cosmetics
wastewater.’**" Both human activity and natural weathering
produce secondary microplastics. Through atmospheric depo-
sition, marine fisheries, and treatment plant effluent, micro-
plastics can find their way into aquatic habitats.?>** Because of
their enlarged surface area and enhanced adsorption capacity,
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http://crossmark.crossref.org/dialog/?doi=10.1039/d5ra04896f&domain=pdf&date_stamp=2025-10-02
http://orcid.org/0009-0005-2982-4462
http://orcid.org/0000-0002-6684-0286
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra04896f
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA015044

Open Access Article. Published on 03 October 2025. Downloaded on 1/24/2026 10:08:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

the smaller particles, such as micro and nanoplastics, exhibit
a greater ability to interact with additional pollutants, encom-
passing pathogens and heavy metals. Based on their chemical
makeup, microplastics persist in the aquatic environment for
an extended period after they enter aqueous environments.>**
Microplastics can manifest in various forms such as pellets,
fibres, fragments, film foams, etc. Moreover, they can either
float on the water's surface or attach to plants, rocks, and
sediments. Microplastics can also range in size up to 5 mm.
They can reach organisms through many entrance points and
move up the food chain, which can harm aquatic life in many
ways, including through growth, development, reproduction,
and survival.**** Among all plastic trash materials, micro- and
nanoplastics pose the greatest threat and need to be
addressed.***®* Human health and the environment are under
serious threats due to single-use PPE (personal protective
equipment) made of nonbiodegradable materials, which arises
from the generation of micro- and nanoplastics.>***> One current
area of study is the removal of microplastics from aquatic
habitats. For their removal from the environment, various
degradation methods have been employed.*** Researchers
have discovered the use of ultrahigh-temperature composting,
microbial decomposition, and photocatalytic degradation as
ways to eliminate microplastics from water bodies. Microbial
degradation occurs at a moderate rate, whereas photocatalytic
degradation necessitates a prolonged irradiation period.***’
Composting at extremely high temperatures works well, but
there are still safety issues. Aquatic ecosystems are colonised by
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microplastics, which create persistent biofilms that improve the
adsorption and break down organic contaminants.*®
Removing micro- and nanoplastics is difficult; wastewater
treatment removes only 98.41% of plastics. Nonetheless, 83% of
drinking water samples are contaminated by 65 million
microplastic particles that persist every day. Effective tech-
niques for removing microplastics, including membrane
devices and filtration, are being studied by researchers. Most
microplastics are eliminated by tertiary treatment, although
secondary treatment is problematic. There is an immediate
need for high-efficiency and reasonably priced techniques to
remove microplastics.*>*® One popular technique for treating
microplastics in water is adsorption. Adsorption is a common
technique for eliminating tiny molecules from water and is
inexpensive, accessible, and highly effective in terms of purifi-
cation. New materials such as graphene, TiO, (titanium
dioxide), and CNTs (carbon nanotubes) have been produced to
address the issue of wastewater treatment.”*> Graphene has
been utilised extensively as an adsorbent due to its great
modifiability, abundant oxygen functional groups, and enor-
mous surface area.”®** Xu et al. employed graphene for the
disinfection of bisphenol from water and achieved an efficient
adsorption capacity of 182 mg g '.***° However, two-
dimensional (2D) graphene tends to agglomerate in an
aqueous solution due to the robust m-m stacking contact
between sheets. When built into a three-dimensional (3D)
structure, graphene offers help for separating the mixture of
solid and liquid after adsorption, avoiding agglomeration, and
enhancing the diffusion and adsorption of contaminants.®*

i )
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Fig.1 Primary and secondary sources of micronanoplastics.
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Fig. 2 Global sources of microplastics.

To eliminate microplastics, a common kind of plastic pollution,
researchers are employing 3D GO as an adsorbent. Nowadays,
3D RGO adsorbents exhibiting a remarkable maximum
adsorption capacity of 617.28 mg g~ have gained significance
for the elimination of polystyrene (PS) microplastics. As far as
the researchers are aware, no relevant review papers have yet
been published for the remediation of micro- and nanoplastics
from aqueous environments by employing a graphene oxide-
based adsorbent. To provide context, the following section
offers a brief overview of the sources, transport pathways, and
environmental and health impacts of micro- and nanoplastics.

1.1 Overview of micro- and nanoplastic pollution

Microplastics (MPs), or plastic particles smaller than 5 mm in
size, were detected in phytoplankton samples, including
microfibers and microbeads, in 1960. They exhibit a wide range
of surface characteristics, colours, polymer kinds, and
morphologies.®*~*” MPs are derived from primary sources, which
are purposely manufactured particles such as plastic nurdles,
industrial abrasives, and microbeads in cosmetics, and
secondary sources, which are formed when larger polymers
degrade due to oxidation, UV radiation, and mechanical
forces.®®*”° While secondary MPs account for 70-80% of all
microplastics worldwide, primary MPs are regularly generated
as a result of tire wear, washing, and industrial discharge.>*”*
Nanoplastics (NPs), which are typically less than 1000 nm in
size, can adsorb hazardous chemicals and penetrate biological
systems more deeply than MPs.”>”° Their ingestion can disrupt
aquatic creatures' growth, development, and hormonal balance,
raising the ecological danger.””””* M/NPs reach the environment
through primary sources (such as abrasive and cosmetic
leaching) and secondary microplastic degradation, as illus-
trated in Fig. 1.*** These particles commonly accumulate in
aquatic settings after flowing through wastewater systems.***
Fig. 2 shows that the primary sources of MP pollution are
synthetic textiles (34%), tire wear (29%), urban dust (24%), road
markings (7%), marine coatings (4%), microbeads (2%), and

plastic pellets (0.3%).7%%%%%% However, because of the
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overlapping properties of primary and secondary particles,
identifying and quantifying sources is challenging, stressing the
need for more research into their origins, behaviour, and
environmental destiny.***°

1.2 Pathways and persistence of M/NPs across ecosystems

M/NPs originate from several sources, including synthetic
fabrics, urban runoff, tire wear, and wastewater treatment
facilities (WWTPs), which both filter and accidently release M/
NPs into the environment.””**> These particles move through
soil, freshwater systems, and the atmosphere, and their distri-
bution in terrestrial and marine ecosystems is affected by
deposition and resuspension processes.®>*'** Because poly-
mers disintegrate when exposed to sunshine and oxygen,
synthetic fibres and polystyrene (PS) particles are prevalent in
maritime habitats.’**'* While sewage sludge and agricultural
runoff pollute the land, WWTP biosolids and effluents are
significant entry routes into aquatic systems. Their endurance
in soil and food systems is proven by detection techniques such
as Coulter counters and nanoparticle tracking, particularly for
PS, the fourth most prevalent MP."***> Their persistence in soil
and food chains is demonstrated by detection techniques such
as Coulter counters and nanoparticle tracking, particularly for
PS, the fourth most common MP in agricultural soils
Fig. 3.7 Successful mitigation methods need an under-
standing of their environmental transport.

1.3 Ecotoxicological and health impacts of micro- and
nanoplastics

The consequences of micro- and nanoplastics (M/NPs) on
aquatic life, terrestrial ecosystems, and human health are wide
and diverse. M/NPs concentrations in terrestrial contexts are
often 4-20 times greater than in aquatic systems, affecting soil
bulk density, water retention, and plant physiology, and there-
fore altering crop development, nutrient dynamics, and soil
structure in Fig. 4."'*° Numerous critical investigations have
examined the concept that microplastics significantly transmit
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Fig. 3 Transport of M/NPs in the environment.
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Fig. 5 Pathways and health impacts of micro- and nanoplastics in humans, from environmental exposure to biological effects and associated

disorders.

maritime settings.'** M/NPs accumulate in sediments and biota
in marine settings due to oxidative stress and enzyme inhibi-
tion, compromising feeding, immunity, and neurological
functions in animals such as nematodes and zebrafish.*>">>
Furthermore, through trophic transfer and contaminated food,
these plastics can bioaccumulate from phytoplankton to
people, potentially causing organ toxicity and DNA
damage."”>'*'% Humans are mostly exposed through the
consumption of contaminated food and water (such as salt,
honey, and vegetables), which can accumulate in organs such as
the liver, brain, and lungs, causing long-term inflammatory and
cellular damage as illustrated in Fig. 5.°*""* These findings
highlight the critical importance of comprehensive M/NP

pollution monitoring and mitigation in all environmental
compartments.

2. Comparative study and publication
analysis

Ali Imran, et al. provided a comprehensive analysis of filtration
technology for the removal of microplastics, particularly
emphasising the filter media characteristics and other envi-
ronmental factors on removal efficacy.'”> Wang Xiaojie, et al.
investigated the degradation of micro- and nanoplastics by
focusing on advanced oxidation processes like photolysis,
photocatalysis, and ozone oxidation.'”® Sutrisna Putu Doddy,
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Fig. 6 Publication analysis of research articles dated 18 Aug 2025.
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et al. discussed the membrane technology, particularly
addressing membrane bioreactors for efficient removal of
nanoplastics.””* Yu Tingting, et al. highlighted the use of
nanomaterials as adsorbents, catalysts, and membranes in the
removal of micro- and nanoplastic and their potential hazards
and limitations in the research.'” In contrast to the above
studies represented here, our review focuses on the application
of 2D nanomaterials, specifically graphene oxide (GO), as an
adsorbent for the removal of micro- and nanoplastics (MNPs).
By representing the superior adsorption capacity of GO for
binding with microplastics for efficient removal. We high-
lighted a novel, more efficient approach for micro nanoplastic
degradation studies. The publication analysis chart of research
articles is shown in Fig. 6.

3. Remediation of micro- and
nanoplastics by distinct methods

In this critical analysis, the economic and environmental
viability of many physical, chemical, and biological remediation
techniques, including cutting-edge hybrid technologies,
primarily microbial fuel cells and electrolysis cells for the
elimination of M/NPs from aqueous solution, is covered.'”*"7® It
also looks into how sustainable these technologies will be in the
long run.'”® Based on performance efficiency, techno-economic
analysis (TEA), and life cycle assessment (LCA), various tech-
nologies are compared (Fig. 7).

In addition, the removal procedures of different technologies
have been explained. This information focuses on which tech-
nology mineralises, degrades, or phases out MNPs completely,
offering insight into the process of choosing the best technology
for M/NP elimination.'®® Additionally, the advantages, disadvan-
tages, and difficulties of the present and prospects for various MP
removal methods have been discussed. Fig. 8 shows the various
physical, chemical, biological, and hybrid treatment methods
employed for the removal of M/NPs.%%

3.1 Physical treatment methods: adsorption, density
separation, and filtration

Adsorption is a well-studied physical approach for M/NP elim-
ination due to its simplicity and efficacy. Granular and

View Article Online
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powdered adsorbents, such as Zn-Al layered double hydroxides
(LDH), have been found to remove MPs from deionised water by
up to 96%.'8>"%* Despite repeated application, chitin-graphene
oxide (ChGO) sponges have achieved 90% clearance. Further-
more, biobased adsorbents such as aerogels and magnetic bi-
ochar are gaining popularity.'®#* Nii Ashitey Anuwa-Amarh,
et al. (2024) examined carbon-based adsorbents such as gra-
phene, activated carbon, biochar, and carbon nanotubes for the
removal of microplastics in wastewater. They discussed how
interactions such as m-1 and electrostatic forces promote
adsorption, emphasising the relevance of surface area, porosity,
and chemical characteristics. In laboratory testing, improved
adsorbents typically achieved removal rates over 90%.'*
Adsorbents usually lose their efficiency in complicated water
matrices, and the disposal of saturated materials can cause
secondary contamination. Furthermore, regeneration and reuse
are difficult to do on an industrial scale.'®

Density separation is based on particle density changes. M/
NPs generally have densities of 0.8-1.4 g cm . Lighter poly-
mers can float and be separated by adding salts such as NaCl
and Nal, which create density gradients.'”**%¢'%¢ Crutchett et al.
used ZnCl, solutions to separate dense microplastics such as
PA, PVC, and PET from sediments, recovering almost 95% of the
total. The approach had an average recovery rate of 96%, indi-
cating good efficiency and repeatability.’® When the densities
of microplastics match those of sediments or solution, density
separation is restricted, resulting in partial recovery to the
enormous volumes of salt required; the technique is not
economically viable for high-density polymers such as PET or
PVC.****> Common salt solutions can also be costly, hazardous,
and ineffective, and the technique is often laborious and time-
consuming.'**'%*

M/NPs are frequently removed from environmental water
and liquid food matrices using disc, sand, and membrane
filtration systems. Sand filtration alone can remove up to 73% of
the material; when pre-coagulation is used, this number rises to
about 90%. Depending on the system configuration and particle
properties, membrane-based filtration systems, such as ultra-
filtration and nanofiltration, have shown removal efficiencies of
up to 96.77% for MPs and approximately 90% for NPs. "5
According to Mishra Sunanda et al.,, membrane bioreactor
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Fig. 7 Various remediation technologies for treatment of micro- and nanoplastics contaminated water.
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Fig. 8 Flowsheet of physical, chemical, biological, and hybrid
methods used for the remediation of micro- and nanoplastics.

filtration offers great promise for reducing microplastics in
treatment systems. It removed microplastics from wastewater
with 96% efficiency, mostly by size exclusion and mechanical
straining.>®® Despite their great efficiency, filtration processes
provide significant operating hurdles. Membrane fouling is an
ongoing issue that increases maintenance frequency and energy
usage. Physical and chemical stresses can also damage filters,

coagulants

Coagulation
rapid mixing

Flocculation
moderate mixing
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particularly in long-distance water transport systems. Back-
washing may return microplastics if not properly handled,
whereas coagulation can improve removal but adds cost and
complexity.>**>*

3.2 Chemical treatment methods: advanced oxidation
reactions, coagulation, flocculation, sedimentation, and
ozonation

Advanced oxidation processes (AOPs) generate reactive oxygen
species (ROS) like "OH and SO,"~ that degrade MPs. Photo-
catalysis using TiO, and ZnO has proven effective, while per-
sulfate and Fenton oxidations have shown varying degrees of
success.'952°208216 Kaswan Vipin et al. reviewed advanced
oxidation strategies for wastewater treatment, focusing on
photocatalytic ozonation, the Fenton process, and TiO,-based
photocatalysis. They discussed the advantages and disadvan-
tages of each strategy, as well as the processes, catalysts, and
influencing variables.”*” AOPs typically fail to fully decompose
a wide range of organic pollutants. Combining AOPs improves
hydroxyl radical production and therapeutic efficacy. Nonethe-
less, the total oxidation performance may be influenced by the
chemistry of the water, including competing ions.***
Coagulation, flocculation, and sedimentation (CFS) uses
chemical flocculants to destabilise and aggregate M/NPs as
shown in Fig. 9. Coagulants based on aluminium have proven to
be very effective.””***” Hofman-Caris et al. investigated the
removal of metallic nanoparticles and nanoplastics with stan-
dard treatment procedures such as CFS, RSF, and GAC. The
results showed that particle size, surface charge, water matrix,
and cation presence all influence removal effectiveness, with
GAC performing better for smaller particles and CFS favouring
bigger ones. Negatively charged NOM impeded removal,
whereas Ca®>" and Mg”* facilitated it.?*® The CFS process can
effectively remove nano-CuO, but its efficiency is limited by the
high coagulant demand and inconsistent performance of single
metal coagulants. Not all M/NPs react equally to flocculants,
and this process produces a lot of sludge. Additionally,
synthetic chemicals may be toxic.******** While mixing organic

® M/NPs

flocs

Sedimentation
no mixing

Fig. 9 The coagulation, flocculation and sedimentation method to remove M/NPs. This figure has been reproduced from ref. 195 with

permission from Elsevier, copyright 2025.
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and inorganic agents enhances removal, but adds complexity
and expense. Floc formation is pH and stirring speed-
dependent.***

Ozonation is an ozone-based oxidation procedure that
reduces MPs to smaller fragments. The removal efficiencies vary
from 53.8% to 89.9%.'79?15233236 According to Wang Jie et al.,
flocculation following ozonation pretreatment significantly
enhanced microplastic removal from 40% to 91%. Ozonation
altered the properties of microplastics by increasing the
number of hydroxyl and carbonyl groups on their surfaces,
boosting flocculation efficiency. Nonetheless, unoxidized
floating microplastics persisted, demonstrating the importance
of surface hydroxylation.*®” Ozonation's usage for microplastic
cleanup is limited due to its high operating costs and energy
consumption. It may create hazardous byproducts like ketones
and aldehydes. Its appeal is lessened by high running costs and
the capacity to produce smaller, more mobile NPs. Because of
its volatility, ozone must be generated locally. It may also reduce
microplastics into smaller, possibly dangerous particles that are
more bioavailable.?*®

3.3 Biological treatment methods: activated sludge method,
microorganism aggregation, constructed wetlands

The activated sludge process (ASP) treats M/NPs as organic
materials and adsorbs them with aerobic microbial pop-
ulations. However, the technique does not mineralise
plastics.?**2%> Odunola et al. (2024) investigated the removal of
microplastics in CAS and AGS systems, discovering that more
EPS contact resulted in better efficiency at lower OLRs (96% in
CAS and 94% in AGS). Confocal imaging indicated adsorption at
the floc and granule surfaces, indicating that bigger micro-
plastics were removed more effectively.*** Microplastics can be
trapped in sludge using activated sludge processing (ASP),
posing disposal and environmental risks. These microplastics
enhance toxicity and reduce microbial diversity. Biological
degradation in ASP remains mostly unsuccessful because of
plastic recalcitrance and short retention durations. MPs accu-
mulate in sludge, which is toxic and can remain in the envi-
ronment for a long period.***

Microorganisms promote aggregate formation by binding to
M/NPs. EPS from cyanobacteria and Pseudomonas aeruginosa
has been shown in Fig. 10 to be effective at removing MP.>*>>%°

. %_
/ I .
£ 3
Reversible Formation of
attachment Microcolonies

Fig. 10
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Liu et al. utilised Pseudomonas aeruginosa for effective aggre-
gation of MPs within its matrix, having a sticky nature, EPS, that
is reversible and strongly associated with copper bi-
oaccumulation on MPs.>* Romero et al. (2024) investigated
interactions between polystyrene microplastics and Pseudo-
monas aeruginosa, showing that Psl exopolysaccharide promotes
adhesion but not colloidal stability. MP aggregation was influ-
enced by bacterial motility and water flow, preventing early
sedimentation. Surprisingly, MP-PA aggregates remained
motile, enhancing transport compared to passive diffusion.”*
Environmental variability and biofilm growth conditions can
limit the scalability and consistency of results. Since aggrega-
tion depends on c-di-GMP signalling, external stressors di-
srupting this pathway may reduce effectiveness. Environmental
factors influence both microbial activity and EPS production.
Not all polymers bond nicely.>*

Constructed wetlands (CWs) use physical straining and bi-
ofilm formation to get rid of M/NPs, as shown in Fig. 11.
Horizontal systems can remove up to 100% of MPs, whereas
vertical flow CWs can remove up to 96%.>**%® Compared to
surface flow systems, Chen et al. (2023) demonstrated that
horizontal subsurface flow constructed wetlands (HSF-CWs)
effectively cleaned up to 100% of microplastics. Microplastic
size, shape, and substrate qualities all had an impact on
retention, with biofilm filtering and adhesion playing a signifi-
cant role.?** MPs have little influence on carbon removal, but
they interfere with microbial activity and plant intake, di-
srupting the nitrogen cycle. There is a detrimental influence on
phosphorus elimination, indicating that CW-MP interactions
warrant additional exploration to alter the phase of plastics
rather than breaking them down. Other issues include bi-
oaccumulation in wetland species and land requirements."’

3.4 Hybrid treatment methods

By maximising the benefits and reducing the drawbacks of any
individual treatment approach, a combination of multiple
approaches can be used to remove M/NPs, as discussed in
Table 1. The use of a membrane bioreactor, an electrochemical
technique, and a bioelectrochemical method are the three most
common approaches.

In 2024, Corpuz et al. evaluated a novel electrochemically
enhanced living membrane bioreactor (e-LMBR) for removing

Dispersal

Illustration of microplastic aggregation facilitated by microorganisms through biofilm formation.
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Fig. 11 Remediation of micro- and nanoplastics by constructed Wetlands.

Table 1 Comparison of hybrid methods

Membrane bioreactor

Electrochemical method

Bioelectrochemical method

Micro-nanoplastics are efficiently removed
from wastewater by membrane bioreactors;
however, because of their high
concentration of MNPs, additional
treatment is required, which raises
operating costs and presents problems with

membrane fouling®*°~2% 77,264-267

particles

polyethene microplastics from wastewater. Despite the pres-
ence of MP, the e-LMBR retained high COD, NH,-N, and PO,-P
removal rates while reducing MP by up to 95%. Electrochemical
improvement outperformed typical MBRs made of less costly
materials by stabilising effluent quality and minimising
fouling.””* Its long-term viability and cost-effectiveness are
jeopardised by excessive energy consumption and frequent
electrode repair. Furthermore, the study did not conduct a full
evaluation of performance in complex actual wastewater
matrices.”***”?

A complete assessment of removal efficiency, cost, sustain-
ability, and environmental safety reveals that no single
approach is uniformly superior. Although chemical and phys-
ical approaches are effective, they frequently consume a large

36678 | RSC Adv, 2025, 15, 36670-36703

By producing hydroxyl radicals, electrochemical
treatment methods such as electro-Fenton and
electrochemical oxidation improve MP removal
efficiency. On the other hand,
electrocoagulation yields metal cations and
achieves 58 + 21% mineralisation of PS

Acetaminophen and 4-aminophenol are
two new micropollutants that
bioelectrochemical systems (BESs) can
remove. By comparing treatment
technologies, best practices for field-
scale removal of these pollutants can be
determined®*?”!

amount of energy and generate secondary waste. Biological and
hybrid systems, while requiring more research and field vali-
dation, provide long-term solutions. Techno-economic analysis
(TEA) and life-cycle assessment (LCA) remain critical method-
ologies for determining the optimal technology for micro/
nanoplastic cleanup.

4. Remediation of micro- and
nanoplastics by adsorption

Researchers are currently looking for practical and cost-efficient
ways to remove micro/nanoplastics (M/NPs) from water.>”*
While classic flocculation and ultrafiltration are less effective in

removing  polyethene  microplastics, = membrane-based

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Comparison of different adsorbents for MNPs removal
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M/NPs Adsorption efficiency/
Adsorbents M/NPs type concentration Mechanism amount References
RGO PS 600 mg L* Electrostatic and 7- interaction 617.28 mg g~ " 53
ZIF-8@aerogel PVDF, PS 05gL" Electrostatic and hydrophobic 91.4%, 85.8% 287
interactions, H-bonding and
van-der-Waals forces
Chitin-GO sponge PS 1mgL™! 72.4-89.8% 288
Fe;04 nanoaggregates Ps 4 mg mL H-bonding 100% or 7.9 mg 289
Fe-kaolin PVC, PS, PET 0.01 g mL ™" Electrostatic interaction 13.68 mg g " 290
Cellulose fibres PVAc 2 mg mL™* Electrostatic interaction 99% 291
Zn-Al LDH PS 250 mg L* Electrostatic interaction 100% or 164.49 mg g~ ' 182
Cellulose/Mg-Al LDH PS 5mgL" Hydrogen bonding, electrostatic 6.08 mg g " 292
interactions
Fe-modified FA PS 30mg L " Electrostatic attraction, 89.9 mg g " 286
complexation, -7 interactions
ZIF-67 PS 5mgL" 92.1% 61
Granular activated PS 40 mg L " Electrostatic interactions 2.20mg g ! 284
carbon (GAC)
CuNi@C PS 10mgL ! Physical adsorption, electrostatic 99.18% or 38 mg g~ " 283
attraction
Magnetic CNTs PE,PET,PA 5gL’ 85.8% 285
Iron-modified biochar (FB) PS 10mgL™* Electrostatic interaction, -1 99.5% or 206 mg g~ ' 282
conjugation, hydrophobic interactions
Coffee grounds PS 100 mg L™ Electrostatic interactions, hydrogen 74% or4 mgg ' 293
bonding
Polydopamine-enhanced PET, PE,PS 300 mg L ™" 97.3, 94.6, 92.3 285

magnetic chitosan (PDA-MCS)

approaches and algal bloom management measures show some
promise.””*?”¢ Although secondary and tertiary treatment
methods have shown some success in studies conducted in
Sweden and California.”””*”®* Adsorption has emerged as
a popular technique due to its ease of use, affordability, and
energy efficiency.”” This approach is especially effective at
removing small plastic particles from wastewater. Novel mate-
rials such as graphene oxide (GO), titanium dioxide, carbon
nanotubes (CNTs), and biochars are increasingly being explored
for improved adsorption performance.

Table 2 compares the various microplastic-removal adsor-
bents based on their removal efficiencies, adsorption capacities,
and processes. Graphene oxide (GO) has the highest adsorption
capacity for polystyrene (PS) microplastics (617.28 mg g '),
attributed to electrostatic and 7-m interactions.>®***' Other
materials offer significant potential as well. Iron-modified bi-
ochar (FB) had an adsorption capacity of 206 mg g~ ' and
effectively removed 99.5% of PS via hydrophobic, ©-m conju-
gation, and electrostatic interactions.”®* CuNi@C nano-
composites achieved a removal efficiency of 99.18%, or a PS
capacity of 38 mg g™, using physical adsorption and electro-
static attraction.?®® At low concentrations, ZIF-67, a metal-
organic framework, has a 92.1% removal rate for PS micro-
plastics.”®*  Polydopamine-enhanced magnetic chitosan
composites had excellent removal efficiencies of 97.3% (PET),
94.6% (PE), and 92.3% (PS).*®** Magnetic carbon nanotubes
(CNTs) performed similarly well at higher doses, removing
85.8% of mixed microplastics such as PE, PET, and PA.**
Granular activated carbon (GAC) had a lower adsorption

© 2025 The Author(s). Published by the Royal Society of Chemistry

capacity of 2.20 mg g ' for PS,>® whereas coffee grounds,
despite being inexpensive and environmentally friendly, ach-
ieved only 74% removal or 4 mg g~ * adsorption capacity for PS
via electrostatic interactions and hydrogen bonding.>*

Many of these materials have disadvantages, such as poor
adsorption capabilities, the need for greater doses, or restricted
reusability, despite the fact that some of them have good
removal effectiveness. In contrast, GO is a very attractive option
for practical water treatment applications due to its multi-
functional surface chemistry, large surface area, strong affinity
for various micro/nanoplastics, and remarkable adsorption
efficiency.

4.1 Graphene oxide as an adsorbent

The novel adsorbent material graphene has drawn interest
because of its strong modifiability, abundant oxygen functional
groups, and enormous specific surface areas, as shown in
Fig. 12.*°*?%° It is a popular alternative for treating water
contaminants because of its inexpensive cost and easy prepa-
ration method.*” According to previous studies, at pH = 6.5,
magnetically reduced graphene oxide (RGO) has a far better
adsorption capacity than activated carbon. Moreover, graphene
oxide adsorbs Cu”" in water, which is ten times greater than that
of activated carbon. According to research, graphene has the
greatest potential for carbon adsorption on BPA ?3280,298.299

4.2 Structure of graphene oxide

Early structural models of graphene oxide (GO) often over-
looked carbon radicals and hydrogen bonding, resulting in CH

RSC Adv, 2025, 15, 36670-36703 | 36679
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and CH, groups without hydrogen atoms. This omission is
critical for understanding GO's reactivity.***°> The widely used
Lerf-Klinowski (LK) model, proposed in the late 1990s, gave
a more realistic depiction of GO sheets by introducing two
distinct domains: aliphatic (oxidized six-membered rings) and
aromatic (non-oxidized benzene rings) was projected to
describe the assembly of graphite oxide (GO) as shown by
Fig. 13(a).>* While carboxyl and carbonyl groups are normally
located on sheet edges, GO has a flat carbon structure with
double bonds, aromatic regions, epoxide, and hydroxyl groups
scattered across the basal plane.****** Advanced solid-state NMR
investigations and "*C-labelled GO revealed fresh information
on bonding topologies and 2D connectivity, while a Claisen-type
rearrangement revealed the existence of allylic alcohols on GO
surfaces.®®® Tamas Szabd et al. extended the LK model by
proposing a modified Scholz-Boehm structure for highly oxi-
dised GO, complete with oxo groups and more diverse func-
tional areas.®*”**® Tamas Szabo concept works better for most
kinds of GO and is more universal.**” This improved model
considers the effect of synthesis factors, including temperature,
PH, and hydration, on GO structure. Furthermore, Cai and Gao
revealed the spatial segregation of carbonyl and carboxyl
groups, revealing distinct reactivity areas within GO. However,
Patrick P. Brisebois et al. reported that the Diels-Alder reaction
has been successfully extended with graphene oxide. This

Properties
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Fig. 12 Structure, properties, and functional roles of graphene oxide.
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reaction provides fundamental information for understanding
the exact structure and chemical nature of graphene oxide.?**?*°
High-resolution TEM identified nanopores (<5 nm?) as shown
in Fig. 13(b) generated during oxidation and exfoliation, as well
as the release of CO and CO, gases. XPS spectra®"*"> suggest
that these holes are surrounded by carbonyl groups.*****> These
structural features have a direct impact on GO's adsorption
properties: functional groups such as carboxyl, hydroxyl, and
epoxide groups are required for surface contact with M/NPs via
electrostatic, van der Waals, and hydrogen bonding interac-
tions. Understanding these structure-function correlations
enables tailored GO production with greater selectivity for
distinct plastic types.

4.3 Properties of graphene oxide

The mechanical characteristics of a pure single sheet of gra-
phene, including 42 N m of break strength, and 1.0 TPa Young's
modulus, with an intrinsic value of 130.5 GPa tensile
strength.'*>*"* These attributes are due to the combination of
GO and rGO because of surface groups and defects. GO itself
and its derivatives are excellent fillers for polymer nano-
composites, in which a polyvinyl alcohol film with a 20% GO
filler content has 59.6 MPa of tensile strength which is attrib-
uted to the GO filler strength and the matrix/filler interface due
to the hydrogen bonding of OH group of polyvinyl and oxygen of
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(a) Summary of structural models of GO (top: Lerf-Klinowski and Dékany models) (bottom: early structures examples, Nakajima-Matsuo

model, Hofmann, Ruess, and Scholz—Boehm models) (b) high-resolution TEM image of suspended GO single sheet (A) a 1 nm? extended region
showing oxidized area of material (B) atomic structure for hydroxyl and (1,2) epoxy functionalities (C) 1 nm? graphitic region from the exit plane.
This figure has been reproduced from the ref. 309, 311 and 313, with permission from Elsevier, copyright 2025.

GO.*"?" Jiang et al. described a blend of polyurethane con-
taining GO and GO-reinforced carbon fibres, which increased
the elastomer's tensile strength by 16.4% as shown in
Fig. 14(a).>***' The electrically conductive material graphene
can improve the polymer conductivity at low filler concentra-
tions. However, throughout the production process, the sp>
bonding orbitals are disrupted, making the material electrically
resistive.’*>??* To produce rGO, which retains residual sp®
linking carbon to oxygen but can improve electrical conduc-
tivity, researchers have experimented with reducing tech-
niques.*****® RGO is a substance that can potentially be used as
a conductive filler in polymer matrices due to its improved
properties.®***® Graphene possesses a higher thermal conduc-
tivity in-plane, but its low thermal conductivity makes it a poor
choice for most applications.>***** However, the graphene
content needs to be reduced before it can be incorporated into
polymers. Generating rGO coatings can significantly boost in-
plane thermal conductivity, which is useful in particular
circumstances.**"*** Furthermore, GO improves the flame-
retardant characteristics of polymer nanocomposites as depic-
ted in Fig. 14(b). SEM images of the nano-composite foam
exhibit very aligned and arranged pores in tubular form. When
these were exposed to a vertical flame test, the self-propagation
of the spark stopped in the foam, resulting in a 25% lower peak
heat release rate (pkHRR) compared with the bare CNF
foam.***% Superparamagnetic magnetic nanoparticles on gra-
phene nanostructures are utilized in drug delivery, hyper-
thermia, and biosensing, and hydrogen peroxide detection is
achieved through functionalization with amine groups at
terminal positions in poly dendrimers and Palladium nano-
particles for the determination of selectivity of hydrogen
peroxide as shown in Fig. 14(c).****”

4.3.1 Functional groups. Graphene oxide (GO) has a wide
range of oxygen-containing functional groups, most notably

© 2025 The Author(s). Published by the Royal Society of Chemistry

hydroxyl, carboxyl, and epoxy moieties, which facilitate elec-
trostatic attraction, hydrogen bonding, and coordination
interactions. Because of these features, GO may form stable
complexes with a wide range of metal ions and organic pollut-
ants, making it an adaptable adsorbent for use in environ-
mental applications.*® Graphite is often oxidised with strong
oxidising chemicals such as KMnO,, HNO;, and H,SO, to
produce GO. Following oxidation, the material is exfoliated in
water or other suitable organic solvents to form GO nano-
sheets.****** By adding reactive oxygenated functional groups
over the surface, the oxidative procedure significantly enhances
the physicochemical features of GO, including mechanical
strength, electrical conductivity, chemical reactivity, and
optical, thermal, and electrochemical behaviour. These surface
functional groups operate as chemically active spots that may
be changed or functionalized, either covalently or non-
covalently, to tailor GO's surface chemistry to specific applica-
tions.** Non-covalent interactions can be used to functionalize
GO with organic moieties such as amine-based ligands or a,-
unsaturated carbonyl compounds, improving dispersion
stability and structural integrity.*** Furthermore, heteroatom
doping (such as N, S, and P) may be utilised to chemically
change the surface of GO, creating novel functional sites such as
C-S, C-P, and C-N groups. These doped variants make GO more
helpful in a range of domains, including energy storage and
catalysis, while also enhancing its adsorption properties.
Notably, using codoping methods, phosphorus-doped graphene
oxide (P@GO) has been developed as a promising super-
capacitor electrode and efficient counter electrode material for
solar cells.>**3*** These alterations improve GO's surface reac-
tivity and adsorptive affinity through electrostatic, hydrophobic,
and -7 stacking interactions, making it more effective in
removing new pollutants like micro- and nanoplastics.

RSC Adv, 2025, 15, 36670-36703 | 36681


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra04896f

Open Access Article. Published on 03 October 2025. Downloaded on 1/24/2026 10:08:34 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

CF-GO multiscale reinforced

View Article Online

Review

0
) 10
o Z“
-
2 0
] z
5 .S 0.05
I =t
» 30 I
2
k4
:’ M
_f_ & 160 pM
v
e
£
.. 43 2 a1 00l
L E(V)

Fig. 14 Properties of graphene oxide (GO) (a) mechanical properties; effect of carbon fibres reinforced with GO on polyurethane elastomer
tensile strength (b) thermal properties; (i) SEM image of cellulose nanofibres, GO, sepiolite clay nanorods, and boric acid nanocomposite foam
(BA); (i) vertical burn test of a nanocomposite foam after application of a methane flame; (iii) CNF and CNF/GO/BA/SEP nanocomposite foams
during the cone calorimetry test (c) magnetic properties; hydrogen peroxide selective detection by Pd NPs decorated magnetic GO. This figure
has been reproduced from ref. 320, 333, 336 and 338 with permission from Elsevier, copyright 2025.

4.4 Synthesis of graphene oxide

We reviewed the processes developed by Staudenmaier, Brodie,
and Hummer, and modified Hummers' method for the chem-
ical oxidation of GO as depicted in Fig. 15.** The impacts of
several synthesis techniques, including the Brodie, Stau-
denmaier, Hummers, and Modified Hummers procedures, on
graphite are discussed herein. Three graphite pretreatments
were used: ultrasonication for five minutes to prevent structural
flaws, and preheating for three hours at 200 °C to protect the
bonding structure. The main purpose was to evaluate how
numerous pre-treatments affect the synthesis techniques and
quality standards for graphene oxide.**®

4.4.1 Brodie's method. In 1859, Brodie published the first
method for creating graphene oxide (GO) by employing the
chlorate pathway, using potassium chlorate as an oxidising
agent. In his study, graphite was treated with strong oxidising
agents such as potassium chlorate and fuming HNO; at
a temperature of 60 °C for 4 days to prepare GO and compre-
hend its structure.**” Brodie's method produces nanosheets that
are rigid, having perfect microstructures.**® Korucu reported the
formation of small quantities of oxidant by dumping of fuming
nitric acid onto a combination of graphite and sodium/
potassium chlorate.®*® Feicht et al. prepared GO with a highly

36682 | RSC Adv, 2025, 15, 36670-36703

intact graphene lattice by successive oxidation of graphite, by
dropping fuming HNO; onto the blend of graphite and potas-
sium or sodium chlorate. The carbon structure is maintained by
varying the temperature of the reaction, leading to the
production of graphene (oxo-G) functionalized with an oxo
group, called a low-definition GO. Reductive defunctionaliza-
tion can be used to transform this type of low-defect back into
graphene.**® Talyzin et al. carried out graphite oxide synthesis
employing the Brodie oxidation (BGO) method with one step,
which produced GO flakes with a comparatively greater quantity
of OH functional groups, whereas these groups are regularly
distributed on the planar surface.**® Graphene oxides produced
through the Brodie method result in exfoliation at 50-100 °C,
higher temperatures and phase transitions among solvate
phases of one and two layers. Among the two solvate phases,
reversible phase transitions were observed by varying the
temperature.>*”3%351

A smaller amount of oxygens are introduced in Brodie's
method as compared to the Hummers' method, but Brodie's
method favours conjugated epoxy and hydroxyl groups. These
stable groups prevent the C sp” structure's full recovery within
the carbon lattice, while the Hummers oxidation method ach-
ieves a greater revival of the 2D structure of pure graphite.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Synthesis of graphene by various methods, Preprint with permission. This figure has been reproduced from the ref. 346, with permission

from Elsevier, copyright 2025.

Exfoliated GOs obtained via the Hummers' method (GO-H)
exhibit the characteristic peaks for GO in UV-vis adsorption
spectra at 230 nm and 300 nm, which are due to the transitions
from p-p orbitals of aromatic carbon to carbon and carbon to
oxygen bonds, respectively. In contrast, GOs obtained through
the Brodie method (GO-B) exhibit multi-peak formation over
300 nm, as illustrated in Fig. 16(a). The SEM and TEM figures
reveal a greater quantity of monolayers obtained from GO-H
shown in Fig. 16(b) and (c) The TGA/DTG curves of GO-H in

© 2025 The Author(s). Published by the Royal Society of Chemistry

Fig. 16(d) show that it starts losing weight at temperature below
150 °C and the maximum loss in weight occurs at temperature
of 200 °C (40% weight loss). Whereas loss in weight reaches
54% at 800 °C temperature. Whereas no loss in weight occurs in
GO-B until 200 °C temperature, while maximum loss in weight
occurs at 250 °C (27% weight loss). Weight loss occurs up to the
temperature of 900 °C, and afterwards a second maximum loss
of weight (about 20%) up to a temperature of 900 °C. Subse-
quently, there is a secondary peak in weight loss (approximately

RSC Adv, 2025, 15, 36670-36703 | 36683
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(a) UV-vis spectra of GO obtained through the Hummers' method and GO obtained through the Brodie method at different sonication

times (b) SEM image of GO-H-5 h (shown at top right) and (c) SEM image of GO-B-5 h (bottom left) (d) TGA/DTG analysis of GO-H and (e) TGA/
DTG analysis of GO-B, preprint with permission. This figure has been reproduced from the ref. 352, with permission from Elsevier, copyright

2025.

20%) observed between 900 °C and 1000 °C, as illustrated in
Fig. 16(e). This implies that GO-B exhibits greater stability,
indicating a lower quantity of oxygen-containing functional
groups.352—354

Brodie oxidation improves hydrogen bonding and electro-
static interactions with negatively charged microplastics by
introducing epoxy and hydroxyl functional groups. GO-B's
selective adsorption performance and thermal stability are
attributed to its reduced oxygen concentration and more
organised structure. On the other hand, GO-H's enhanced
surface area and functional group availability as a result of its
greater oxygen content and defect density improve its overall
adsorption capability. As a result, in water treatment applica-
tions, the synthesis technique has a direct influence on the
structural and adsorption properties of GO.

4.4.2 Staudenmaier method. Today's techniques for syn-
thesising graphene oxide (GO) are improvements above those
used by Brodie (1859), and Staudenmaier modified Brodie's
method approximately 40 years later (in 1898) by altering the
method of adding chlorate and sulfuric acid to the mixture to
synthesise graphene oxide.*** Potassium perchlorate (KClO,) is
the oxidising agent used in both procedures.**® The Stau-
denmaier technique synthesises graphene oxide from graphite

36684 | RSC Adv, 2025, 15, 36670-36703

by adding graphite, fuming HNO;, and H,SO, to a glass reactor,
followed by gradually adding KCIO;.**® This technique relies on
the use of strong acids and oxidising agents for the oxidation of
graphite. The process employed, the conditions of the reaction,
and the characteristics of the graphite all affect the degree of
oxidation.*” However, the methods utilised to generate gra-
phene oxide (GO) require the use of harmful chemicals, and
during this process, toxic gas is produced.**® Sheshmani &
Fashapoyeh employed the modified Staudenmaier process for
the preparation of GO using concentrated HNO;/H,SO,ina1:3
volume ratio, resulting in an improved degree of exfoliation.**
Sali et al. prepared GO by employing the Staudenmaier method,
which produced a high content of highly polar carbonyl groups,
resulting in an increase in the membrane's permeability and
hydrophilicity in comparison with GO prepared by the
Hummers and Tour methods. The hydrophilicity, adsorption
affinity, and electrostatic interactions of GO with pollutants
such as microplastics are directly caused by oxygen-containing
functional groups (such as hydroxyl, carboxyl, and carbonyl)
tailored by the oxidation process, which also influences the
extent of exfoliation. For example, compared to hummer-
derived GO, Staudenmaier-synthesized GO often has a larger

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) BET nitrogen adsorption/desorption isotherms and BJH plots of GO from different coals and graphite (b) TEM images of AC-GO and

BC-GO (c) mechanical properties; tensile strength and tensile modulus of AC-GO-based GFRP nanocomposites. This figure has been repro-

duced from the ref. 363, with permission from Elsevier, copyright 2025.

density of polar carbonyl groups, which improves water
permeability and selective adsorption capabilities.**

4.4.3 Hummer's method. The Hummers' method is
a conventional and effective procedure used for the synthesis of
GO. This process was established by W. S. Hummers and R. E.
Offeman.*** Hummers and Offeman enhanced their procedures
by substituting excess potassium permanganate (KMnO,) for
KClO,, sulfuric acid, and a small quantity of sodium nitrate.
The time for the reaction ranged between 8 to 12 h.*** This
approach is very safe because it avoids the production of
explosive ClO, Moreover, this method produces sheets of GO
with large sizes, and it is more efficient at improving the
mechanical characteristics of synthesised polysulfone (PSf)
membranes. The high oxygen content and surface area of GO
generated with this technology improve its interaction and
dispersion in aquatic environments, hence enhancing adsorp-
tion and membrane-based water filtration efficiency.**

© 2025 The Author(s). Published by the Royal Society of Chemistry

Grag et al used the Hummers process for the one-pot
preparation of graphene oxide employing HNO;. Fig. 17(a)
shows the BET nitrogen adsorption-desorption isotherms and
BJH plots for the GO acquired from multiple coals; the meso-
porous nature of the samples and precursors was confirmed
through BJH plots. The H1 hysteresis loop obtained in the case
of BC-GO confirms the mesoporous nature of BC-GO. The TEM
images show a multilayer structure for graphene oxide from AC-
GO (semi-anthracite coal) and BC-GO (bituminous coal)
samples, Fig. 17(b). The maximum level of mechanical proper-
ties was obtained when loading of GFRP nanocomposites at
0.125 phr with AC-GO (referred to as A-EGF, 1,5) was carried out,
compared to the GFRP composite with no loading (GFRP,). The
tensile strength was increased by 18.3%, while tensile modulus,
flexure strength, and flexure modulus were enhanced by 30.9%,
22.7%, and 25.1%, respectively, as shown in Fig. 17(c).*** Ven-
katesan et al. used a typical procedure for making graphene
from sub-bituminous coal.*** Das et al. obtained graphene oxide
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from demineralised coal by combining concentrated H,SO,4 and
NaNO,, and sonicating for a full day, and then HNO; was added.
Following treatment with NH,OH and ethanol, the remaining
portion was dehydrated in a vacuum oven. The powdered form,
which was obtained through grinding and scraping the flask's
bottom phase.** This study presents a different approach for
synthesising graphene and GO from coal resources, offering the
potential for energy storage and ecosystem preservation.**
Unfortunately, the Hummers' method is not environmentally
friendly because of the evolution of NO, during the reaction.
Zhou et al employed an eco-friendly and cost-effective
Hummer's method for synthesising graphene oxide (GO),
without H,O, by regulating the temperature and time of reac-
tion and the amount of H,SO,4. GO possesses a higher degree of
oxidation, and it is rich in oxygen-containing groups in
comparison to traditional methods.** The importance of the
synthesis process to water treatment operations is underscored
by the fact that such oxygen-rich GO not only promotes
increased adsorption of pollutants such as dyes and metal ions,
but also improves compatibility and performance in membrane
matrices.

4.4.4 Modified Hummers' method. Numerous adjustments
to Hummers' technique have been made to enhance yield and
GO characteristics while minimising or eliminating draw-
backs.*® To reduce the generation of hazardous gases, some
investigations have employed a 9:1 acid mixture without
NaNOj;. According to another study, a 9:1 combination of
KMnO,, H,SO,, and H;PO,, and no sodium nitrate increased
the GO yield and oxidation. It was discovered that GO made
with K,Cr,0; and a 2-hour reaction time had the lowest oxygen
content.**®** Chiang et al. predicted a novel technique for the
production of graphene oxide from carbonised cellulose
employing the modified Hummers' method.*”® Chandio et al.
synthesised GO by oxidising the graphite with potassium
permanganate oxidising agent through modified Hummers'
method after ozone treatment, which produced multilayer
graphene oxide with variable thickness.””> The enhanced
oxidation and multilayer structure improve GO adsorption
effectiveness by increasing the density of oxygenated groups,
improving interaction with ionic pollutants, and allowing for
robust anchoring in membrane composites.

Guerrero-Contreras &  Caballero-Briones investigated
graphite oxidation to produce graphene oxide (GO) with
different compositions of oxygen and ratios of oxygen to carbon.
They employed different iterations of the Hummers' approach,
altering the reactant ratio, reaction temperature, and reaction
duration.’”” These parameters have a significant impact on GO
defect density and interlayer spacing, which are critical for
modifying permeability, surface area, and pollutant-binding
efficacy in water treatment membranes. Sierra et al. employed
a modified Hummers' method using three cokes of petro-
chemical and carbon chemical sources to produce graphene
oxide having crystalline structures of dissimilar sizes as raw
materials.**® Purwandari et al. used Sawahlunto-Sijunjung coal
and produced graphene using the modified Hummers Method,
which is suggested to be an inexpensive and plentiful source of
graphite.*® When wused in membrane applications, the
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structural diversity of the resulting GO aids in the selective
removal of contaminants while also providing differential water
permeability. Graphene oxide synthesis methods were assessed,
and minimum anticipated faults and low ratios of oxidation
and structural defects were discovered. The most popular
synthetic methodology, modified Hummers' method, has more
structural flaws and oxygenated groups. The updated Hummers
process better satisfies graphene oxide quality criteria and is
economical and environmentally benign.**

Graphene oxide (GO) may be produced via a variety of
oxidation processes, each of which has an effect on the mate-
rial's oxygen concentration, adsorption capacity, and structural
integrity. Strong oxidants are utilised in traditional techniques,
like as Brodie's and Staudenmaier's, which produce GO with
high thermal stability and well-preserved microstructures but
take time and emit toxic gases. The later-developed Hummers
process is more successful and popular due to higher oxidation
levels and a quicker reaction time, but its NOx emissions
continue to create environmental The modified
Hummers approach, on the other hand, employs safer acid
combinations and avoids hazardous chemicals such as sodium
nitrate, resulting in improved oxidation, surface functionaliza-
tion, and increased GO output. According to the literature, the
modified Hummers technique is most suited for producing GO
as an effective adsorbent in micro/nanoplastics remediation
because it offers the best mix of performance, scalability, and
environmental safety.

issues.

5. Mechanism of adsorption of M/NPs
with graphene oxide

There are essentially five ways for graphene oxide to interact
when employed as an adsorbent to remove micro and nano-
plastic pollution: (i) pi-pi stacking interactions, (ii) van der
Waals interactions, (iii) hydrophobic interactions, (iv) hydrogen
bonding (v) electrostatic interactions, as shown in Fig. 18. When
in contact with water, stable colloidal dispersions can form and
interact with water through a hydration mechanism. Graphene
oxide, which is derived from graphene, is hydrophilic and
contains carboxyl, hydroxyl, epoxy, and functional groups,
including oxygen.*”*

First, pi-pi stacking interactions occur when aromatic
domains form when m-electrons are delocalized in GO's gra-
phene basal plane. Aromatic moieties of plastic polymers, such
as polystyrene (PS) and polyethene terephthalate (PET), can
interact with m-electrons. The m-m stacking interaction
between GO's aromatic rings and plastic polymers promotes
significant affinity and stable adsorption of aromatic-rich
microplastics onto the GO surface.*”>*”” Another type of van
der Waals interaction occurs when weak and non-specific
interactions occur between nonpolar polymer chain segments
and hydrophobic portions of the GO sheets. van der Waals
forces are enhanced by the size of the polymer molecules, their
accessible surface area, and the physical closeness of the poly-
mer surfaces to GO. These characteristics contribute to the
physical trapping and adhesion of microplastic impurities on

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 18 Mechanism of M/NPs adsorption on GO.

GO surfaces.*”®*”” GO is hydrophilic due to its oxygenated
groups, although there are hydrophobic patches in the sp®
hybridised areas with graphitic carbon domains. Nonpolar
microplastic pieces preferentially cling to hydrophobic GO
patches, reducing their the aqueous
environment.?***!

In hydrogen bonding, oxygen-containing functional groups
in GO sheets include hydroxyl (-OH), epoxy (-O-), and carboxyl
(-COOH), which can form hydrogen bonds with polar func-
tional groups on micro/nanoplastics (e.g., -OH, -NH,, ~-COOH).
This promotes strong directed interactions and selective
adsorption, especially when the surface of microplastics is
functionalized or oxidised.*®* In electrostatic interaction, the
ionisation of its oxygenation groups gives GO a negative surface
charge in aqueous environments. This allows GO to interact
electrostatically with micro/nanoplastic regions that are nega-
tively or positively charged. The stability of GO dispersion and
adsorption efficiency are affected by these interactions, which
change dynamically with environmental parameters such as pH
and ionic strength.”*** Finally, due to its hydrophilic nature
and colloidal stability in water, GO may form homogenous
dispersions that improve surface contact with pollutants via
hydration and interfacial interactions. These combined
methods highlight GO's broad-spectrum affinity, making it one
of the most adaptable and effective materials for water micro/
nanoplastic cleanup. In addition to these generic adsorption

exposure to

© 2025 The Author(s). Published by the Royal Society of Chemistry

pathways, the adsorption of M/NPs onto GO is mainly governed
by a balance between chemisorption and physical adsorption
processes; the interaction strength depends strongly on both
the plastic type and the surrounding aqueous conditions.
Chemisorption mechanisms, such as surface complexation,
hydrogen bonding, and covalent-like interactions, play
a particularly important role in securing stable attachment of
plastics onto GO. For example, polar polymers such as nylon
(polyamide) and oxidised polyethene terephthalate (PET)
interact strongly through hydrogen bonding between amide or
ester groups and the hydroxyl or carboxyl functionalities of GO.
In acidic media, protonated amine groups in nylon further
interact electrostatically with deprotonated GO carboxylates,
while in saline conditions, cation bridging may stabilise PET-
GO complexes. These chemisorptive interactions are accompa-
nied by physical adsorption pathways, including van der Waals
forces, m-m stacking, hydrophobic association, and pore filling.
In particular, aromatic polymers such as polystyrene (PS) and
PET exhibit strong m—m stacking with the graphitic domains of
GO, facilitating stable immobilisation of these polymers under
neutral pH." Nonpolar plastics such as polyethene (PE) and
polypropylene (PP), which lack aromatic or polar groups,
depend mainly on hydrophobic interactions with the sp®
domains of GO. However, ageing and photooxidation can
introduce polar moieties (-OH, -COOH) to PE and PP surfaces,
enhancing their affinity via hydrogen bonding and electrostatic
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attraction. Halogenated polymers such as PVC, although less
interactive, can adsorb through electrostatic interactions
between the negatively charged oxygenated groups of GO and
the partially polarised C-Cl bonds.***

Beyond polymer chemistry, the structural characteristics of
GO significantly influence adsorption efficiency. The high
surface area and heterogeneous pore structure of GO provide
abundant binding sites where both electrostatic forces and
hydrophobic attractions can occur simultaneously. Micropores
enhance the overall adsorption capacity by increasing acces-
sible surface area, while mesopores promote faster diffusion of
polymer fragments, thereby accelerating adsorption kinetics.
This dual pore system ensures that both small nanoplastics and
larger microplastic fragments are effectively captured. In water
matrices, the polarity and heterogeneity of GO's surface are
critical, as they facilitate ion-dipole interactions and electro-
static attraction of charged plastic surfaces. Importantly, while
physical adsorption processes such as pore filling and van der
Waals forces contribute to initial capture, they are relatively
weak compared to chemisorption, which ensures more stable
and selective removal of M/NPs under variable environmental
conditions.*”® The interplay of these mechanisms highlights
that GO adsorption is not governed by a single process but
rather by a spectrum of interactions modulated by polymer type,
water chemistry (pH, ionic strength, and natural organic
matter), and the textural properties of the adsorbent. Having
described the adsorption mechanisms in detail, the following
section reviews experimental demonstrations of GO-based
materials in M/NP remediation.

6. Graphene oxide as adsorbent for
M/NPs remediation

Graphene oxide (GO)-based materials have shown considerable
potential in the remediation of micro/nanoplastics. For
example, Uoginté et al. reported that GO-metal oxide nano-
composites degraded polyethene microplastics under UV light
by up to 50.46%, as validated by FTIR and following pseudo-
first-order kinetics.*®** A multifunctional SA/GO/CS membrane
cleaned oils, dyes, and nanoplastics with over 99% efficiency
and great reusability via adsorption, sieving, and charge inter-
actions.*® Molecular docking revealed strong GO binding to
BPA and PET through hydrogen bonding and m-m stacking.**®

View Article Online
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Yan et al. developed a 99.9%-efficient reduced GO (S-rGO)
membrane for 200 nm MPs, displaying high water flow and
mechanical stability.>*® Ko et al. developed a reusable GO/CS/
Genipin sponge capable of removing up to 73% of nano-
plastics via hydrophobic and electrostatic interactions.*®
Vijayshanthy et al.'s PVA/GO membrane eliminated 84% of MP
from WWTPs via IoT-based monitoring while also reducing
turbidity, BOD, and other pollutants, as shown in Table 3.3
According to the study, the 3D RGO surface morphology
includes more surface area, multiple pore structures, a high
degree of peeling, and a fluffy look. Microplastic adsorption
increases as pH rises, and its removal efficiency and adsorption
capacity also increase, highest at pH 6. The isoelectric points of
the PS microplastics were acidic. In this study, PS microplastics
and 3D reactive glass (RGO) zeta potential are investigated at
various pH levels, as shown in Fig. 19(b). These findings
demonstrated the positive charge of 3D RGO, which limited its
adsorption capacity and removal efficiency. However, the
modest negative charge of the polystyrene microplastics
enhanced their ability to adsorb. A higher negative charge at pH
6 led to enhanced adsorption capacity and removal efficiency.
However, negatively charged PS microplastics lost their
adsorption capability and effectiveness at pH 7.>*° At various
starting concentrations, the process of adsorption of 3D RGO on
PS microplastics is shown in Fig. 19(a). A 600 mg L ™" concen-
tration was the ideal concentration. Following the adsorption of
PS microplastics, SEM and XRD studies examined the surface
conformation of 3D reactive glass (RGO). The strength of the -
7 interlinkage between the aromatic ring of the polystyrene
microplastics and the carbon ring of 3D RGO was found to be
enhanced due to adsorption. In the initial 30 minutes, the
microplastics’ elimination efficiency surged from 28.71% to
54.35%, and between 30 to 120 minutes, it reached 66.10%. The
removal efficacy and adsorption capacity of 3D RGO exhibited
stability beyond the 120-minute mark, indicating equilibrium,
as depicted in Fig. 19(c). The movement method of PS micro-
plastics onto the surfaces of 3D RGO was further investigated
using the intraparticle diffusion model. Particle internal diffu-
sion and membrane dispersion are the two categories of
adsorption processes. With increasing temperatures, the
removal effectiveness of microplastics has risen from 66.83% to
72.63%. Simultaneously, the adsorption capacity of 3D RGO has
increased from 534.60 mg g~ to 580.98 mg g~ *. These results

Table 3 Overview of graphene oxide-based adsorbents for micro/nanoplastics (M/NPs) remediation

Type of plastic GO form used pH range Removal efficiency (%) References
Polyethylene GO-Cu,0 3-5 48.06% 384
Polyethylene GO-MnO, 3-5 39.54% 384
Polyethylene GO-TiO, 3-5 50.46% 384
Nanoplastics Sodium alginate/GO/chitosan Not specified 97.10% 385
Microplastics (200 nm) Reduced graphene oxide membrane Not specified 99.9% 380
26 nm nanoplastics GO/chitosan/genipin sponge 5.5-7 73.0% 387
Polystyrene MPs GO/chitosan/genipin sponge 5.5-7 41.5% 387
Mixed microplastics PVA/graphene oxide membrane 6.90-7.95 84% 388
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indicate that elevated temperatures enhance the adsorption
efficiency of 3D RGO toward microplastics.*® Yesilay et al. con-
ducted a study exploring the utilisation of graphene oxide (GO)
as a coating material. They evaluated its effectiveness in miti-
gating the toxicity of polystyrene nanoparticles (PS NPs) on
microalgae that had been treated with GO. The TEM image is
shown in Fig. 19(d) zeta potential was found to be —35.7 mV,
and PS NPs had a diameter of 20 nm. However, TEM imaging of
GO displayed sheets that are 1.5 um in diameter. Results show
that the toxicity of PS NPs was reduced by the treatment of
microalgae with GO. The highest growth inhibition rate (IR%)
values were observed at 50% for the algae + GO + PS group on
a particular day and 26% for the algae + PS + GO (3d) group,
shown in Fig. 19(e).*** These findings confirm GO's versatility
and reusability, which serve as the foundation for evaluating
practical challenges and future directions.

7. Current challenges and future
perspective

Graphene oxide (GO) shows tremendous potential as an
adsorbent for the remediation of micro- and nanoplastics due
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to its enormous surface area, abundance of functional groups,
and strong pollutant attraction. Nonetheless, several concerns
remain unsolved. While GO can be synthesised on a large scale
at relatively low cost, uncertainties remain regarding its long-
term stability, regeneration, and reusability in practical water
treatment systems. Furthermore, major concerns remain con-
cerning GO's potential toxicity and environmental impact after
usage. Future studies should focus on optimising GO synthesis
strategies to boost yield and functionalization while lowering
environmental impact. Furthermore, GO's performance and
recovery may be enhanced by combining it with other technol-
ogies such as membrane filtration, photocatalysis, or magnetic
separation. The development of GO-based nanocomposites
containing metal oxides, carbon-based materials, or biopoly-
mers has a high potential for synergistic effects, which might
improve M/NP adsorption capacity and photocatalytic degra-
dation. Bridging the gap between effective laboratory-scale
operations and realistic field-scale deployment requires inter-
disciplinary initiatives focused on eco-friendly synthesis, life-
cycle evaluation, and pilot-scale testing. With these discov-
eries, GO and its derivatives may give realistic and scalable
solutions to minimise microplastic pollution in aquatic
ecosystems.
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(a) Effect of different initial concentrations on the adsorption of PS microplastics on 3D RGO. (b) Zeta potentials of 3D RGO and PS

microplastics at different pH values. (c) Effect of different adsorption times on the adsorption of PS microplastics on 3D RGO (d) TEM image of
NPs removal by GO (e) effect of GO and 20 nm PS NPs on Picochlorum sp. microalgae on a viable cell concentration as a function of time, this
figure has been reproduced from ref. 390 with permission from Elsevier, copyright 2025.
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7.1 Selectivity and limitations in complex matrices

In real-world systems such as wastewater treatment plants
(WWTPs), the adsorption performance of GO towards M/NPs is
considerably more complex than under controlled laboratory
conditions. While laboratory studies consistently highlight
strong m-7 stacking, electrostatic, and hydrophobic interac-
tions driving M/NP adsorption onto GO, the presence of natural
organic matter (NOM), salts, and diverse co-contaminants in
wastewater significantly modulates these interactions. NOM,
particularly humic and fulvic acids, competes with plastic
surfaces for GO's oxygenated functional groups, while also
imparting steric hindrance that reduces effective surface
contact. High ionic strength environments, common in
municipal and industrial effluents, compress the electrical
double layer around GO, diminishing long-range electrostatic
attraction with charged plastics such as polyamide or oxidised
PET.**® Multivalent cations (Ca>*, Mg®*, Fe**), abundant in real
wastewater, can further shield GO's surface charges or induce
cation bridging, leading to aggregation of GO-M/NP complexes
that alter adsorption pathways. This aligns with findings from
WWTP surveys across Iran, Australia, and Europe, where poly-
ethene, polypropylene, and polyester fibres were detected even
after secondary treatment, indicating that hydrophobic plastics
in particular face strong competition from oils, surfactants, and
colloidal organics for GO's hydrophobic binding domains.
Moreover, particle size introduces another layer of selectivity:
nanoplastics (<100 nm) can diffuse into GO mesopores, while
larger microplastic fragments (>500 pm) rely primarily on
surface adhesion, a process strongly influenced by wastewater
turbulence, suspended solids, and biofilm formation.***%*
Evidence from WWTP studies further demonstrates that
smaller MPs are enriched during treatment due to mechanical
fragmentation, thus increasing the fraction of particles most
likely to interact with GO but also exacerbating analytical
challenges in separation and recovery.**®

Compared with conventional adsorbents such as activated
carbon and biochar, GO offers unique advantages in terms of
surface functionality and tunable interactions. Activated carbon
mainly relies on physical adsorption through van der Waals
forces and pore filling, processes that are strongly dependent on
surface area and pore distribution but often lack selectivity
towards specific polymer types. In contrast, GO provides
a chemically heterogeneous surface with abundant carboxyl,
hydroxyl, and epoxy groups capable of engaging in hydrogen
bonding, electrostatic interactions, and even covalent bonding
under oxidative conditions. This enables stronger and more
selective affinity for functionalized or aromatic plastics such as
polystyrene and PET. However, while activated carbon and bi-
ochar display robust stability and reusability under complex
effluent conditions, GO's performance is more sensitive to pH
fluctuations, ionic strength, and NOM fouling, which can
diminish its adsorption capacity.’® These comparative insights
underscore that although GO exhibits superior mechanistic
versatility and higher removal efficiencies under controlled
conditions, its application to full-scale wastewater treatment
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requires composite designs or hybrid systems that combine the
selectivity of GO with the stability of conventional adsorbents.

8. Conclusion

This review highlights the various sources, pathways of micro-
and nanoparticles (M/NPs) in the environment, with a partic-
ular emphasis on wastewater and the toxicological effects of
these particles. Furthermore, this study provides a detailed
summary of the several approaches that the scientific commu-
nity has recently employed to reduce MNP pollution in waste-
water through bioremediation. The effects of plastic particles,
especially microplastics, and remediation methods, including
chemical, biological, and hybrid approaches, were thoroughly
discussed. In this review, several MNP remediation techniques
and technologies have been systematically described. We have
discussed the adsorption method for our primary investigation
by using graphene oxide as an adsorbent. To achieve optimal
results, both graphene oxide and 3D reduced graphene oxide
can be exploited. We deliberated on the mechanism of gra-
phene oxide interacting with micro nanoplastic-polluted water,
encompassing electrostatic forces, m-m stacking, hydrogen
bonding, hydrophobic interactions, and van der Waals forces.
Overall, GO-based strategies show strong potential for scalable
and efficient microplastic remediation in future.
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