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modular phosphine—oxazoline ligands for
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decarboxylative allylation
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A novel class of chiral and modular P,N-ligands featuring an indolizine core (Indol-PHOX) has been
developed,
decarboxylative allylation of various a-fluoro-B-ketoesters to access valuable a-allyl-a-fluoro ketones

successfully enabling the highly efficient and enantioselective palladium-catalyzed

with yields up to 99% and 96% ee. This process exhibits a broad substrate scope, demonstrating good
tolerance for both electron-withdrawing and electron-donating groups, as well as substitution patterns
of the substrates. The reaction is scalable to the gram level, and subsequent post-functionalization
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Introduction

The development of numerous single-enantiomer drugs, along
with a broad spectrum of other biologically active substances—
including  agrochemicals, pheromones, flavors, and
fragrances—has been driven by significant advancements in
asymmetric catalysis conducted over the past decades." Central
to this progress is the design and synthesis of cost-effective
ligands that are readily prepared and can be swiftly tailored
for a specific chemical transformation. Among the plethora of
reported ligands,” chiral P,N-ligands, in particular, have gained
particular prominence due to their dual functionality,
combining the benefits of both phosphorus and nitrogen
coordinating atoms.> One significant example is the chiral
phosphine-oxazoline (PHOX) ligands, which were introduced
independently by Pfaltz,* Helmchen,” and Williams® in 1993.
These ligands coordinate to transition metals through both
electronically hard nitrogen and soft phosphorus atoms. They
have demonstrated remarkable efficacy as chiral inducers
across a wide range of transition metal-catalyzed reactions.
Moreover, their modular design allows for easy fine-tuning of
geometric, steric and electronic properties by modifying various
components of the ligand scaffold, such as the phosphine
group, oxazoline ring, or backbone moiety. With their easy
accessibility and the virtually limitless selection of readily
available precursors, it is not surprising that, since the initial

“PSL University, Chimie ParisTech, CNRS UMR 8060, Institute of Chemistry for Life
and Health Sciences, CSB2D Team, 75005 Paris, France. E-mail: phannarath.
phansavath@chimieparistech.psl.eu

*ICGM, Univ. Montpellier, ENSCM, CNRS Montpellier, France. E-mail: david.virieux@
enscm.fr

34334 | RSC Adv, 2025, 15, 34334-34339

reactions proceed successfully without erosion of enantiopurity.

studies on phosphinooxazolines, a remarkable array of new
linkers—only a few major classes of which are shown in Fig. 1
—connecting the oxazoline ring to the phosphine backbone has
been developed and successfully employed in various asym-
metric catalytic transformations.”

Nevertheless, despite these significant advancements, it is
important to recognize that no universal ligand exists, and that
the scaffold plays a determining role in profoundly influencing
catalytic performance. As a result, the quest for novel ligands
with unique backbones to enhance the selectivity, activity, and
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Fig. 1 Representative examples of phosphine—oxazoline (PHOX)
ligands (R, R, R? = alkyl, Ar = aryl).
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THF, -78 °Cto RT, 2 h NN “R The streamlined synthesis pathway for the preparation of
Yy P y prep
Al A ligands 5 is outlined in Scheme 1. The reaction of commercially
5a:Ar=Ph, R=Ph, 82% available and cost-effective ethyl bromopyruvate 1 with 2-ben-
A :g’;ﬂﬁ;‘jgfg(ﬁk zylpyridine in refluxing acetone for 72 h, followed by alkaline
gg 52If§'éc(?ﬁ.cf*é“'HR =RijU;B‘?J4°éW hydrolysis of the resulting product 2 under microwave irradia-
5f:Ar=funyl, R= BU,70% tion, afforded 3-phenyl-indolizine-2-carboxylic acid 3 on

a multi-gram scale.

Condensation of 3 with enantiomerically pure (S)-z-leucinol
or (S)2-amino-2-phenylethan-1-ol in the presence of
benzotriazol-1-yloxytripyrrolidinophosphonium hexa-
fluorophosphate (PyBOP) and diisopropyethylamine in di-
chloromethane, yielded the corresponding amide. Without
further purification, these amides were converted to the oxa-
zolines 4a and 4b via treatment with triethyl amine and
methanesulfonyl chloride in dichloromethane, in 86% and 60%
isolated yields, respectively. Finally, target ligands 5a-5f were
obtained in yields ranging from 64% to 82% through a standard
directed  ortho-lithiation process using lithium di-
isopropylamide at —78 °C, followed by reaction with readily
accessible chlorodiarylphosphines bearing electron-rich and
electron-poor substituents or chlorodifurylphosphine.

Scheme 1 Synthesis of Indol-PHOX ligands.

reactivity of transition metal catalysts still remains a formidable
challenge. To address this, we have recently initiated a new
program dedicated to the design and synthesis of ligands
featuring heteroaryl scaffolds, which are underexplored in the
realm of chiral ligand design.® As part of this effort, we have
chosen to focus on the indolizine motif for several compelling
reasons, as we believe it holds great promise as a framework for
the synthesis of P,N-ligands. Indolizines are electron-rich
heteroaromatic compounds that belong to the family of N-
fused 5/6-membered heterocycles. They can be easily synthe-
sized on a gram-scale using highly efficient and cost-effective

Table 1 Optimization of the reactions conditions for the enantioselective decarboxylative allylation®

0.0 Y [Pdy(dba)sliLigand 5

o o}
(2.5 mol%/6.25 mol% " F
0" or 5.0 mol%/12.5 mol%) d w
THF, T (°C), t (h)

6a 7a 8a
Entry [Pd]/L (mol%) T (°C) t (h) Conv. (%) 7 : 8 ratio® Yield? (%) ee’ (%)
1 [Pd]/5a (2.5/6.25) 25 48 45 91:9 25 14
2 [Pd]/5b (2.5/6.25) 25 48 45 91:9 25 14
3 [Pd]/5¢ (2.5/6.25) 25 48 33 85:15 20 76
4 [Pd]/5¢ (5.0/12.5) 25 15 100 93:7 85 80
5 [Pd]/5d (5.0/12.5) 30 30 36 78:22 25 87
6 [Pd]/5e (5.0/12.5) 30 30 59 88:12 52 76
7 [Pd)/5e (5.0/12.5) 40 24 100 83:17 65 80
g [Pd]/5e (5.0/12.5) 40 3 100 100:0 95 88
9o [Pd]/5f (5.0/12.5) 40 3 100 100:0 99 94
10" [Pd]/5f (2.5/6.25) 40 3 100 100:0 99 94

“ Conditions: 6a (0.11 mmol), [Pd,(dba);] (2.8 or 5.5 pmol, 2.5 or 5.0 mol%), ligand 5 (7.0 or 14.0 umol, 6.25 or 12.5 mol%), THF or MTBE (0.05 M),
25-40 °C, 3-48 h. ? [Pd] refers to [Pd,(dba)s]. © Determined by "H NMR spectroscopy of the crude product. ¢ Isolated yield. ¢ Enantiomeric excess for
7a was determined by HPLC analysis.” The reaction was run in MTBE (0.05 M).
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Scheme 2 Substrate scope of the enantioselective decarboxylative
allylation.? “Conditions: 6 (0.13 mmol), [Pdx(dba)s] (3.3 pmol, 2.5 mol%,
3.0 mg), ligand 5f (8.3 umol, 6.25 mol%, 4.0 mg), MTBE (0.05 M, 2.6
mL), 40 °C, 3 h. Isolated yields. Enantiomeric excesses were deter-
mined by HPLC analysis. “Reaction time of 20 h. °X-ray crystallography
of 7n. Displacement ellipsoids are shown at the 30% probability level.

We chose to evaluate these new series of Indol-PHOX ligands
in the palladium-catalyzed enantioselective decarboxylative
allylation®*” of a-fluoro-p-ketoesters aiming to access valuable
a-allyl-a-fluoro ketones. Compound 6a served as a model
substrate for the optimization of the reaction parameters for the
enantioselective decarboxylative allylation (Table 1). The reac-
tion was first carried out at 25 °C in THF in the presence of
2.5 mol% of [Pd,(dba);] and 6.25 mol% of ligand 5a for 48 h
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(Table 1, entry 1). Under these conditions, a conversion of 45%
was achieved and the desired product 7a was isolated in 25%
yield and 14% ee alongside the by-product 8a resulting from the
protonation of the enolate generated during the reaction (with
a 7a/8a ratio of 91:9). The reaction carried out under the same
conditions with ligand 5b produced identical results in terms of
yield and enantioselectivity (Table 1, entry 2). However,
a significant increase in enantioinduction was observed with
ligand 5c¢ bearing a tert-butyl substituent on the oxazoline ring
instead of the phenyl substituent present in ligands 5a and 5b.
Indeed, although a lower conversion of 33% with a 7a/8a ratio of
85:15 was achieved, the enantiomeric excess of 7a could be
improved to 76% (Table 1, entry 3). Increasing the catalyst
loading to 5 mol% for [Pd,(dba);] and 12.5 mol% for 5¢, allowed
to reach a full conversion within 15 h, with a 7a/8a ratio of 93 : 7
(85% yield and 80% ee for 7a) (Table 1, entry 4). When the
reaction was run with ligands 5d and 5e, incomplete conver-
sions of 36% and 59%, respectively, were observed even at
a higher temperature of 30 °C (Table 1, entries 5 and 6, 25% and
52% yield respectively for 7a). However, when the trans-
formation was operated at 40 °C using ligand 5e, a complete
conversion was achieved and 7a was isolated in 65% yield with
80% ee and a 7a/8a ratio of 83:17 (Table 1, entry 7). Interest-
ingly, the formation of by-product 8a could be prevented by
using MTBE as a solvent. In that case the rearrangement
product 7a was obtained in 95% yield and 88% ee using ligand
5e within a shorter reaction time of 3 h (Table 1, entry 8),
whereas ligand 5f allowed both a higher yield of 99% and
a better enantioselectivity of 94% ee (Table 1, entry 9).

Notably, we found that the catalyst loading could be
decreased to 2.5 mol% for [Pd,(dba);] and 6.25 mol% for 5f with
no detrimental effect (Table 1, entry 10). However when the
catalyst loading was further lowered to 1.0 mol% of [Pd,(dba);]
and 2.5 mol% of the ligand, a 7a/8a ratio of 95 : 5 was observed
with an isolated yield of 90% for 7a even though the enantio-
selectivity of 94% ee remained unaffected. On the other hand,
a short solvent screening confirmed MTBE as the more suitable
solvent for the reaction since 7a was obtained in 85% yield with
88% ee (7a/8a =100 : 0) in toluene, and in 69% yield and 90% ee
in diethyl ether (7a/8a = 95:5). The use of protic solvents
significantly lowered the reaction rate, with MeOH affording
only 15% conversion (7a/8a = 40:60) and iPrOH giving 18%
conversion (7a/8a = 50:50) at 40 °C after 3 h. Thus, the opti-
mized reaction conditions were set as follows: 2.5 mol% of
[Pd,(dba);], 6.25 mol% of ligand 5f in MTBE (0.05 M) at 40 °C
for 3 h. It should be noted that when the commercially available
(8)-i-Pr-PHOX ligand was used instead of ligand 5f, the reaction
led to a 7a/8a ratio of 90 : 10 and the rearrangement product was
isolated in 87% yield and 84% ee. When [Pd(allyl)Cl], or
Pd(OAc), were employed as alternative palladium sources, the
reaction proceeded with only 13% conversion in the case of
[Pd(allyl)Cl], and 3% conversion with Pd(OAc),.

With the optimized reaction conditions in hand, the scope of
the enantioselective decarboxylative allylation using the newly
developed ligand 5f was evaluated using the previously
synthesized family of substituted B-ketoesters 6a-6t (Scheme 2).
Allyl 1-ox0-1,2,3,4-tetrahydronaphthalene-2-carboxylate

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scale-up experiment:
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Scheme 3 Scale-up experiment and post-functionalization reactions.

derivatives bearing electron-donating groups such as a methoxy
or a methyl substituent on the phenyl ring led to high yields
(94-97%) of the rearrangement products 7b-7d that were
formed with excellent enantioinductions of 94-96% ee. In the
same manner, the parent substrates having halogen atoms such
as bromine, chlorine or fluorine at various positions of the
phenyl ring were obtained in 90-95% yield and 93-94% ee (7e-
7i). The more sterically hindered derivative 7j having a naphthyl
ring instead of the benzene ring was isolated in a lower yield of
52% whereas the enantioselectivity remained similar (91% ee).
On the other hand, the enantioselective decarboxylative allyla-
tion carried out with the tetralone substrate bearing an iso-
prenyl substituent failed to give any conversion into 7k whereas
the reaction of a 7-membered carbocycle led to (R)-6-allyl-6-
fluoro-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one 71 in 97%
yield and 92% ee. Indanone derivatives were also suitable
substrates for this transformation giving products 7m-7s in
yields ranging from 66% to 95% and high enantiomeric
excesses of 84-94%. As previously observed for the tetralone
series, the enantioselectivity of the reaction with indanone
derivatives was not dependent on either the electronic nature or
the positions of the substituents present on the benzene ring.
Indeed, electron-withdrawing substituents such as chlorine or
trifluoromethyl (7n-70) led to the same levels of enantio-
induction than electron-donating groups such as methoxy or
methyl (7p-7r). On the other hand, the sterically hindered
derivative 7s bearing a naphthyl ring was formed in 79% yield
with an excellent enantiomeric excess of 94%. The reaction was
also extended to a heterocyclic substrate, affording the fluori-
nated thiochromanone 7t which was obtained in 48% yield and
92% ee. The absolute configuration of compounds 7a, 71 and
7m were assigned by comparison of the optical rotation values
with those reported.'® Additionally, the absolute configuration
of compound 7n was unambiguously assigned as (R) by X-ray

© 2025 The Author(s). Published by the Royal Society of Chemistry
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crystallographic analysis, and by analogy, we conjectured that
the remainder of the rearrangement products followed the
same trend.

The efficiency of the new ligand 5f in the enantioselective
decarboxylative allylation was further supported by a scale-up
experiment performed with substrate 6a on a gram scale.
Under the optimized reaction conditions, the desired product
7a was obtained in 92% yield and 94% ee (Scheme 3).
Furthermore, the rearrangement products 7 can serve as useful
intermediates for further post-functionalization reactions.
Thus, aryl bromide 7h was engaged in a Suzuki-Miyaura
coupling reaction with 4-methoxyphenylboronic acid using
Pd(OAc), as a catalyst, cataCXium A as a ligand, and K,CO; as
a base, affording the corresponding binaphthyl 9 in 93% yield
while maintaining the 94% ee. On the other hand, a cross-
metathesis  reaction  between  (R)-2-allyl-2-fluoro-3,4-di-
hydronaphthalen-1(2H)-one 7a and styrene in the presence of
5.0 mol% of the Grubbs catalyst 2nd generation afforded the
corresponding alkene (E)-10 in 70% yield and 94% ee.

Conclusions

In summary, we have developed a new, efficient and modular
series of chiral P,N ligands, termed Indol-PHOX ligands, rep-
resenting the first examples of chiral oxazolidinyl indolizine-
based ligands. We also demonstrated their successful applica-
tion in palladium-catalyzed enantioselective decarboxylative
allylation. The reactions proceed smoothly under mild reaction
conditions and accommodate a wide substrate scope providing
valuable o-allyl-a-fluoro ketones that bear an o-quaternary
stereocenter. Such compounds were isolated in high yields (up
to 99%) and with excellent enantioselectivities (up to 96% ee).
The scalability of the process was confirmed through a gram-
scale experiment, and the synthetic utility of the resulting
chiral o-allyl-o-fluoro ketone products was further demon-
strated through successful post-functionalization reactions
(Suzuki-Miyaura coupling and cross-metathesis) without
erosion of enantiopurity.
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