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Heterostructures composed of graphene (G) and WS, have recently been proposed as a promising new
two-dimensional carbon allotrope for an anode material in sodium-ion batteries. Actively controlling
material defects by substituting sulfur (S) atoms on the surface of WS, with alternative dopants is
anticipated to be a potential strategy for enhancing the electrochemical performance of WS,/G
heterostructures. Here, we employ first-principles density functional theory (DFT) calculations to
systematically investigate the impact of boron (B) and carbon (C) doping on the sodium intercalation and
diffusion mechanisms within the heterostructures. The results reveal that doped WS,/G heterostructures
show electronic characteristics of metallic materials, which are beneficial for their application as high-
performance anode materials. The introduction of B/C dopants significantly enhance the binding affinity
for sodium intercalation at active sites, both on the surface and at interfacial region, with binding
energies reaching up to —-1702 eV, which can mitigate sodium dendrite formation during
electrochemical cycling. Notably, the presence of B/C dopants can create energetically favorable
diffusion pathway both on the surface and in the interfacial region of the WS,/G bilayers for sodium ions
with energy barriers ranging from 0.091 to 0.494 eV, underscoring their potential to support high-rate
charge/discharge processes. Additionally, B/C-doped WS,/G heterostructures exhibit inconsiderably
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in batteries with high cycling stability. Our findings provide valuable insights into the effect of the
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structural degradation during the Na-ion insertion process is
necessary.’

Developing and optimizing advanced anode materials for
SIBs has been an area of growing interest. Previous research
indicates that WS, monolayer (ML) possesses several attractive
properties for SIBs, including high stability, reversibility, and
a suitable adsorption environment for sodium-ions, thanks to
the tuneable dimensions of interfacial spacing and the precise
nanostructure.® Despite these advantages for SIBs, WS, ML
exhibits low-rate capability, low electronic conductivity, slow
diffusion of Na ions, and considerable volume expansion
during sodiation/desodiation processes, leading to quick
capacity fading.”

Vertically stacking on graphene to form heterostructures has
been proposed as a promising strategy to enhance the perfor-
mance of transition metal dichalcogenide (TMD) ML as anode
materials in SIBs.”® This approach enhances electrical
conductivity without requiring a metallic substrate, conducting
additives, or polymeric binders of heterostructures.*** More-
over, the graphene matrix of the heterostructures can effectively
buffer the volume change during the Na insertion/extraction
process and increase the anode's overall electrochemical func-
tion.''? In recent studies, WS,/G heterostructures have been
successfully synthesized through ultrasonication, chemical
vapor deposition, and hydrothermal techniques, achieving
uniform growth of WS, nanocrystals on graphene nano-
sheets.®'>' It was used as an anode material for both lithium-
ion batteries and SIBs due to its high surface area and good
in-plane conductivity, which facilitates fast electron transfer
during electrochemical reactions of the material.”>*>**** As
electrodes in SIBs, the WS,/G exhibits a good reversible sodium
storage capacity of about 590 mA h g~ *.*2 It also shows excellent
high-rate performance and cyclability.

With the aim of developing and optimizing advanced anode
materials based on WS,/G composites for SIBs, several rational
strategies have been proposed from both experimental and
theoretical perspectives. One effective approach involves rolling
graphene into hollow nanotubes to encapsulate WS, nano-
structures, thereby constructing a highly conductive and
electrolyte-accessible framework. This architecture not only
facilitates electron and ion transport but also effectively miti-
gates volume changes during cycling.” Another promising
design introduces a three-layer shell structure composed of
a stable porous carbon shell, WS, nanosheets, and nitrogen-
doped graphene, which significantly enhances lithium and
sodium storage performance. This configuration delivers a high
discharge capacity of 205 mA h g™ after 900 cycles at 0.5 A g™*
for SIBs.** It was reported that co-doping with nitrogen and
oxygen modifies the electronic structure of WS,, reducing its
bandgap from 1.6 eV to 0 eV and increasing the interlayer
spacing in WS,/G composites. These modifications significantly
improve electron and ion transport, resulting in exceptional
electrochemical performance with an ultrafast Na* storage
capability and remarkable cycling stability over 3000 cycles.**
Additionally, substituting the sulfur atoms in WS, or MoS, ML,
another two-dimensional material in the TMD family, with
boron/carbon (B/C) has been proposed as an effective pathway
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to increase electronic conductivity, enhance sodium intercala-
tion strength, and accelerate diffusion of electrons and ions.****
Similarly, dopants on the sulfur layer of the WS,/G hetero-
structure are expected to modify the surface properties by
creating additional active sites for sodium intercalation,
thereby improving the storage capacity of SIBs.

A good understanding of the dopant effect on the sodium
intercalation mechanism and sodium migration within WS,/G
heterostructures is critical to boost their application as new
nanoscale anodes for high-performance SIBs. Hence, we
perform a systematic first-principles study to explore the impact
of boron (B) and carbon (C) doping on Na intercalation mech-
anism and diffusion in WS,/G heterostructures for potential use
as anode materials in SIBs. We focus on analysing the effect of
B/C dopants on sodium intercalation ability, electronic
conductivity, structural stability, and Na-ionic migration char-
acteristics of the WS,/G heterostructures. Our findings provide
a meaningful and promising strategy for designing advanced
SIB anodes.

Computational details

We performed density functional theory (DFT) calculations with
the projector-augmented wave and plane-wave basis set as
implemented in the Vienna Ab initio Simulation Package
(VASP).2*?” The generalized gradient approximation of the Per-
dew-Burke-Ernzerhof functional method*® was used to treat the
exchange correlation energy between Na and the doped WS,/G
bilayers. To describe the interlayer interactions between gra-
phene and doped WS, monolayer, the van der Waals correction
implemented in the functional optB88-vdW?* is introduced in
the calculations.

To achieve a heterostructure with a minor lattice mismatch,
we constructed a bilayer based on a 4 x 4 x 1 supercell of WS,
monolayer stacked above a 5 x 5 x 1 supercell of graphene, to
investigate the Na intercalation mechanism of the C/B-doped
WS,/G heterostructures. A Monkhorst-Pack scheme*® with 6 x
6 x 1and 9 x 9 x 1 k-mesh is required to converge the plane-
wave basis set for the optimization and electronic calculations
of the doped WS,/G heterostructures, respectively. A conver-
gence energy of 540 eV was applied to all investigated samples.
The change in the total energy between the two consecutive
steps is set to be 107> eV. Atomic positions are relaxed until the
maximum residual force acting on each atom is smaller than
0.01 eV A™*. A vacuum of 25 A thickness was introduced
between two neighbouring heterostructures to eliminate the
atomic interactions between the imaged periodic systems. We
utilized the VASPKIT package®" to post-process the electronic
properties.

We computed the Na binding energy (E.qs) for each explored
configuration using the following relation:

Ebind = Ecomplex - Edop - ENa’ (1)

where Ecomplex, Edops and En, are the energies of the doped WS,/
G + Na, doped WS,/G, and Na atom, respectively. To explore the
redistribution of electrons due to the interaction between the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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doped WS,/G bilayer and Na atom, the charge density difference
(Ap) is obtained by the equation:

Ap = Pcomplex — Pdop — PNas (2)

where peomplexs Pdop, aNd pna are the charge densities of the
doped WS,/G + Na, doped WS,/G, isolated Na atom, respec-
tively. To gain insight quantitatively into the charge transfer
process within the doped WS,/G + Na systems, we conducted
Bader charge analysis based on Henkelman's algorithm.*> We
also performed the climbing image nudged elastic band (CI-
NEB) calculations to define minimum-energy diffusion paths
(MEPs) and the diffusion energy barrier heights of sodium

ions.?33*

Results and discussions
Geometric structure

Fig. S1f presents the optimized structure of the 4:5 pristine
WS,/G heterostructures and Table 1 summarizes the structural
parameters and interlayer binding energy of the isolated WS,
and graphene layers and the pristine WS,/G heterostructures,
which agree well with previous experimental and theoretical
works.**** It can be found that the lattice mismatch between the
WS, and graphene layers is 2.6%, comparable to the other
heterostructures, such as graphene/hexagonal boron nitride.*®
In the heterostructure, the C-C bond length is elongated by
0.6%, while the W-S bond length undergoes a compression of
0.4%. The strains sustained by the component materials upon
the formation of the heterostructure are calculated using the
following equation:

e= % 100%, 3)

a;

where a;, and a; are the lateral lattice constants of the hetero-
structure and component layers (the subscript i denotes either
the WS, or the graphene), respectively. Upon forming the het-
erostructure, WS, and graphene experience strains of —1.57%
and 0.97%. All the strains, lattice mismatches, and bond
extensions/contractions are within the range typically reported
for similar heterostructures.**>** This suggests a stability of the
long-range order in the WS,/G heterostructures. The calculated
binding energies between graphene and WS, are —33.6 meV per
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atom, falling within the typical ranges for van der Waals
interactions.””***” The negative binding energy indicates an
exothermic interaction between the WS, and graphene layers,
resulting in stable vdWchemWS,/G heterostructures. The
thickness of WS,/G bilayers is 6.45 A, in good agreement with
the experimental data,® whereas the interfacial distance of 3.39
A is quite similar to many 2D heterostructures,* making it well-
suited for sodium insertion and diffusion within the interfacial
region.

Doping with elements of lower electronegativity has been
reported to be beneficial in expanding the local interfacial
space, creating additional active sites for Na" intercalation, and
reducing the energy barrier for Na" migration by altering the
electronic properties.**** Fig. S21 presents the optimized
geometric structure of 4 : 5 WS,/G heterostructures with a single
B/C-doped atom. The lattice parameters of the bilayers upon
doping remain unchanged, as shown in Table 1. Both the C-C
and W-S bond lengths are also unaffected, while the calculated
binding energies are —31.3 for B doping and —30.5 meV for C
doping. The unchanged in lattice parameters and the negative
binding energies indicate that the doped WS,/G hetero-
structures maintain high structural stability, making them
suitable for use as anode materials. The interlayer spacing
between the graphene and WS, layers around the dopants
slightly expanses by 0.01 A as doping, which contributes to
enhance sodium storage capability and facilitate Na" diffusion
kinetics.***® Additionally, the W-B and W-C bond lengths
around the dopants are 2.12 A and 2.02 A, respectively, both
considerably shorter than the W-S bond length. These bond
contractions induce local lattice distortions, breaking the
structural symmetry of the heterostructure and potentially
modifying the charge carrier distribution.

To investigate the impact of B and C dopants on the sodia-
tion behaviours of WS,/G heterostructures, a single Na atom is
sequentially placed at various active sites, which include the top
of the dopant atom, the top of a W atom, the W-C/B bridge site,
and the hollow site at the centre of a WS, hexagon near the
dopant on the WS,/G surface. For comparison, Na intercalation
on the surface of pristine WS,/G heterostructure are also
exanimated. Pristine WS,/G exhibits a weak sensitivity to Na, in
which the binding energies for Na intercalation on the surface
and within the interfacial region are —0.229 eV and —0.283 eV,

Table1 Structural parameters and binding energy of the isolated WS, and graphene layers, as well as pristine and doped WS,/G heterostructures

Isolated WS,

Isolated
graphene

Pristine
heterostructure

B-doped
heterostructure

C-doped
heterostructure

Lateral lattice constant

W-S bond length (A)

C-W bond length (A)

B-W bond length (A)

C-C bond length (A)

Strain sustained by WS, layer (%)

Strain sustained by graphene layer (%)
Interlayer distance (A)

Interlayer binding energy (meV per atom)

a=b=12.66A
2.42

a=b=12344A

© 2025 The Author(s). Published by the Royal Society of Chemistry

a=b=12.464
2.41

a=b=12.46A
2.41

a=b=12.46A
2.41

— — 2.02
— 2.12 —
1.44 1.44 1.44
1.57 1.57 1.57
—0.97 -0.97 -0.97
3.39 3.40 3.40
—33.6 —-33.1 -30.5
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Fig. 1 The most stable configurations of the B/C-doped WS,/G as
adding single Na atom either above the surface (a/c) or within the
interfacial space (b/d) with top view.

respectively. The intercalated distance (the shortest distance
from the intercalated Na and the WS, surface) is 2.11 A for the
surface site and 1.82 A for the interfacial site. Fig. 1(a and c)
shows the most stable configurations of Na intercalated on the
surface of B- and C-doped WS,/graphene heterostructures with
intercalation distances of 1.73 A and 1.43 A, respectively. These
distances are reduced by 0.38 A and 0.68 A, respectively,
compared to that in the undoped WS,/G structure. Corre-
sponding to this reduction in intercalation distance, the
binding energies for Na on the B-doped and C-doped hetero-
structures are —1.461 eV and —1.702 €V, as listed in Table 2,
indicating a remarkably enhanced Na intercalation upon
doping. These findings suggest that B and C dopants act as
anchoring centers for Na' ions, enhancing local intercalation.
Thus, a rational increase in dopant concentration can create
more favorable adsorption sites and boost the Na® storage
capacity of WS,/G anodes. We also sequentially inserted a single
sodium atom into the interfacial space at four different posi-
tions, which include the bottom of an W atom, the W-S bridge,
and the hollow site below the center of a WS, hexagon near the
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bottom of the dopant. The results indicate that Na ions prefer to
anchor at the W-bottom site near the doped-B/C atoms as
illustrated in Fig. 1(b and d). The Na intercalation energy for the
B/C-doped system is —1.234/-0.834 eV, which is significantly
more negative than that without dopants and aligns well with
the observed 0.05 A reduction in intercalation distance upon
doping. The results suggest that B and C doping on the surface
of the WS,/G heterostructure not only facilitates Na intercala-
tion above the surface but also enhances intercalation within
the interfacial region. The enhanced sodium intercalation
induced by doping is a crucial factor, enabling a uniform Na*
distribution as shown in Fig. S31 with the intercalation of six
sodium atoms and thereby effectively suppressing dendrite
formation on the anode during cycling process.*

Upon Na-ion intercalation, structural deformation caused by
large volume changes can result in stress accumulation, leading
to mechanical failure, disrupted electrical pathways, and
diminished active surface area of the electrode.” This degra-
dation not only compromises electrode integrity but also
hampers Na* transport kinetics, adversely impacting the bat-
tery's rate capability and long-term cycling.*® Therefore, identi-
fying anode materials with small volumetric changes during
cycling is crucial to ensuring long cycle life of electrodes in SIBs.
To evaluate the volumetric changes of B/C-doped WS,/G heter-
ostructures induced by Na addition with respect to the unin-
tercalated case, we use the following equation:

lin er — lunin er
YOlinter — VO uninter 1 1o, (4)

ovol =
VOlunimer

in which voljjer and volypineer are the volumes of the doped WS,/
G heterostructures with and without Na ion intercalation,
respectively. For both the surface and interfacial intercalation of
Na, the volume change is below 1% as the number of interca-
lated Na ions increases from 1 to 6, as listed in Table 3. This is
significantly smaller than the volume changes typically
observed in most common anode materials such as LiCo0O,,**
NMC,* and graphite.>® The small volume reduction due to Na
intercalation indicates the high potential of doped WS,/G

Table 2 Binding energies (in eV) of B/C-doped WS,/G heterostructure with a single Na atom

On surface Within interfacial region
Dopant W top Dopant top Hollow Bridge W bottom Hollow Bridge
B —1.461 —1.453 —1.450 —1.451 —1.234 —1.139 —-1.219
C —1.581 —1.591 —1.702 —1.577 —0.834 —0.726 —0.813
Table 3 Volume change and local interfacial spacing of the B/C-doped WS,/G caused by the Na ion intercalation
Na number above the surface Na number in the interfacial space

Parameter Dopant 1 2 3 4 5 6 1 2 3 4 5 6
Volume change (%) B -0.9 0 0 -0.4 -0.5 -0.3 -1.0 0 -0.2 —0.2 —0.5 —0.5

C 0 0 —-0.7 -1.1 —0.5 —0.4 -1.0 0 —-0.1 —0.2 —-0.4 —0.5
Interfacial spacing (A) B 3.38 3.40 3.39 3.38 3.37 3.36 3.87 4.18 4.31 4.38 4.40 4.47

C 3.39 3.39 3.39 3.39 3.33 3.33 3.73 4.21 4.31 4.39 4.42 4.46
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heterostructures as anode materials for charge/discharge SIBs
with long-term cycle.

Change in interfacial distance during Na-ion intercalation
can directly influence the ease of sodium insertion and migra-
tion within the anode's interfacial region during charge/
discharge cycles. As presented in Table 3, when Na atoms are
positioned on the surface, the interlayer spacing either remains
nearly unchanged or slightly decreases, by less than 0.07 A, even
as the number of intercalated Na atoms increases up to six. This
small variation in interfacial spacing suggests that the doped

View Article Online
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heterostructures provide a space, well-suited for efficient Na
insertion and diffusion within the interfacial region. Unlike Na
intercalation on the surface, the insertion of Na atoms within
the interfacial region of the doped WS,/G heterostructures leads
to a significant local expansion of the interfacial distance near
the intercalation sites. This distance can increase by as much as
1.07 A, reaching up to 4.47 A. As the number of intercalated Na
ions increases, the interfacial distance further expands to create
a more accommodating reservoir for sodium intercalation and
de-intercalation, which is beneficial for enhancing ion storage
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Fig. 2 Projected band structure and projected density of states (DOS) of pristine WS,/G (a), B-doped WS,/G (b), and C-doped WS,/G (c).
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capacity, facilitating ion transport, and promote rapid charge-
transfer reactions.®” Despite the interfacial space expansion,
the doped WS,/G heterostructures exhibit only a small overall
volume change, a retaining their van der Waals (vdW) layered
geometry, and especially, and a uniform Na" distribution even
with the insertion of up to six Na ions, as shown in Fig. S3.7 This
promises a good cycling stability during the charge/discharge
processes, making doped WS,/G heterostructures as potential
candidates for durable anode materials in SIBs.

Electronic conduction mechanisms

Upon forming the heterostructure, both WS, and graphene
mostly retain their electronic band structure characteristics due
to the weak interfacial interaction,®® which allows to form type-I
band alignment as observed in Fig. 2(a). The heterostructure
possesses an electronic band structure of a semi metallic
material with a small bandgap of 1.3 meV, similar to that
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reported in literature.*® This suggests that the high electronic
conductivity of the WS,/G heterostructure observed in experi-
mental work® is primarily derived from the graphene layer. The
Fermi level is located at the Dirac point of the graphene band
structure. The WS, band structure exhibits a band gap of 2.0 eV,
which aligns quite well with the reported theoretical result® and
experimental value of 2.1 eV® of WS, monolayer. The relative
energies of graphene’s Dirac point and WS,'s maximum valence
band, as shown in Fig. 2(a), favour vertically hole transfer into
graphene, while electrons tend to remain in the WS,.* It leads
to the electron loss with 0.046¢ of the graphene layer as listed in
Table 4. To gain a better understanding of the electronic
properties of the WS,/G heterostructure, we illustrate the energy
band decomposed charge density (EBDCD), which is the
modulus square of the Kohn-Sham wavefunction at the corre-
sponding energy levels |¢,|>. The EBDCD at the Dirac point is
shown in Fig. 3(a), while that at the K point of the highest

Table 4 A summary of the Bader charge mechanism within pristine and doped WS,/G without intercalation of Na

Pristine heterostructure

B-doped heterostructure

C-doped heterostructure

WS, total charge (e) —0.046 +0.957 +2.543
Graphene total charge (e) +0.046 +0.046 +0.189
Dopant total charge (e) — —1.003 —2.732
Conducting layers Graphene Graphene WS, Graphene WS,

Origins of additional conducting
mechanisms

WS, top valance band B-dopant
induced shallow accepter band

Partially occupied C-dopant-
induced band

(f)

Fig. 3 Figure (a) displays the isosurfaces of the energy band decomposed charge density (EBDCD) at the Dirac point, while figure (b) shows the
EBDCD at the highest occupied orbital of WS; at the K point in the pristine WS,/G heterostructure. Figures (c) and (d) illustrate the EBDCD for the
top valence band at the M point and the dopant-induced band at the K point in the B-doped WS,/G system, respectively. Figures (e) and (f)
respectively present the EBDCD for the top valence band and the dopant-induced band at the K point in the C-doped WS,/G heterostructure.
For each subfigure, the left-hand images show the top views of the corresponding isosurfaces.
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occupied orbital of WS, is shown in Fig. 3(b). Charge carriers at
the Dirac cone state concentrate in the p, orbital of the gra-
phene layer, whereas the charge carriers of the WS, highest
occupied state at the K point distribute in the W d,,/d,2_2 + S p,/
Py

High electrical conductivity of the anodic material allows
fast ion movement within the electrode structure, leading to
a high capacity and performance. Introducing dopants into
WS,/G heterostructures is expected to enhance their electronic
conductivity. As shown in Fig. 2(b and c), the doped WS,/G
heterostructures have an electronic band structure with type-I
band alignment of metallic composite materials. This indi-
cates that introducing dopants enhance conductivity of the
heterostructure, which is beneficial for their application as
anodic materials in SIBs. B/C doping induces an isolated,
weakly dispersive impurity state with a high density of states
(DOS) near the Fermi level and within the electronic gap of the
WS,. The impurity states can act as extra energy levels, affecting
electronic properties of the systems by allowing more effortless
movement of electrons through the material, boosting the
charge transport properties, and thereby facilitating a fast
electron transfer during electrochemical reactions of the
material.®*** Although doping induces local lattice distortions,
the absence of significant changes in the dispersion of the
bands near the Fermi level implies that mobility is not drasti-
cally affected by doping-induced structural distortion. Further-
more, upon introducing dopants, we can see an inconsiderable
change in the individual electronic band structure of both
graphene and WS, around the Dirac cone, which indicates
a weak influence of the dopants on the interlayer interaction
within the heterostructure.

The redistribution of charge carriers on both the WS, and
graphene sides due to B/C doping could play a critical role in
enhancing the electrical conductivity of the heterostructures as
well as the local chemical affinity toward Na" ions at both their
surface and interface. A careful analysis of the dopant-induced
charge redistribution can provide further insights into the
mechanisms responsible for these enhancements. Within the
B-doped heterostructure, the Fermi level is at the top of the
doped WS, valence band. This allows electrons to be excited
from the valence band of the doped WS, layer to the graphene
layer, enabling significant participation of the doped WS, layer
in electrical conduction. Fig. 3(c) presents the EBDCD at the top
of the WS, valence band at a K-point near the M point, where
a band crossing occurs between WS, and graphene. The charge
densities indicate that the carriers in the B-doped WS, layer are
delocalized throughout the WS, layer, including the region
around the dopant, which exhibits B p,, - W d bonding char-
acteristic as highlighted by a red circle in Fig. 3(c). Moreover,
the B dopant also induces a shallow acceptor band located
between 1.32 eV and 1.42 eV above the Fermi level (see Fig. 2(b)),
characterized by contributions from non-bonding B p,, WS,,
and graphene p, states as the corresponding EBDCD repre-
sented in Fig. 3(d). The significant contribution of graphene p,
states to the B-dopant-induced acceptor band, as well as the
presence of B p,, - W d bonding states in the WS, valence band,
demonstrating a dopant-induced electron transfer to the B

© 2025 The Author(s). Published by the Royal Society of Chemistry
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dopant like the Bader charge analysis (Table 4). Differing from B
doping, introducing C dopant induces a smaller shift in the
Fermi level as shown in Fig. 2(c). It can see that the Fermi level

2 2
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Fig. 4 Electronic band structures (left images) and partial density of
states (right images) for the B-doped WS,/G heterostructure upon Na
intercalation on the surface (a) and within the interfacial space (b), and
for the C-doped WS,/G heterostructure with Na addition on the
surface (c) and within the interfacial space (d). In projected band
structure images, the projection of dopant orbitals is shown by purple
colour and the projection of Na orbitals is presented by green colour.
The Fermi level is set at the top of the valence band.
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overlaps the dopant p,. The highest occupied orbitals of WS,
reside in the energy range below 0.613 eV from the Fermi level,
retaining the characteristic shape of the EBDCD isosurface in
case without dopants as depicted in Fig. 3(e), and do not
participate in the conduction process. The possibility of an
additional electrical conduction mechanism arises from the
partially occupied band induced by the dopant. The corre-
sponding EBDCD, shown in Fig. 3(e and g), demonstrates that
the carriers associated with this impurity state are localized
around the dopant site, particularly, in the p, shape regions,
with no significant distribution in the graphene layer. The
excited holes at this impurity state might transfer into the gra-
phene, like that happens in pristine heterostructures due to
type-I band alignment with the Fermi level crossing the impu-
rity state, increasing the conductivity of graphene layer. As
aresult, the graphene layer becomes positive charged with value
of +0.189¢, which is greater 4.1 times than that as doping B as
observed from Table 4. It implies that inducing isolated impu-
rity state due to C dopant is predicted to boost vertical hole
transfer from the WS, side to the graphene side to enhance the
electrical conductivity of the bilayers.

Table 5 Bader charge analysis of pristine and B/C-doped WS,/G upon
intercalation of Na: positive values indicate the electron charge
acceptor and negative values imply electron loss

Individual Na above the  Na at interfacial
Heterostructure part surface space
Non dopant WS, (e) +0.764 +0.486
Graphene ()  +0.211 +0.582
Na (e) —0.975 —0.988
B-dopped WS,/G WS, (e) +0.720 +0.921
Graphene ()  +0.008 +0.113
Doped B (e) +0.260 —0.046
Na (e) —0.988 —0.988
C-dopped WS,/G WS, (e) +0.565 +0.510
Graphene ()  +0.062 +0.376
Doped C (e) +0.367 +0.101
Na (e) —0.984 —0.987
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To evaluate the impact of Na intercalation on the electronic
structure of doped WS,/G bilayers, we carried out electronic
structure analyses on the Na-intercalated systems. These
systems exhibit metallic electronic band structures similar to
those of the systems without Na intercalation, as shown in
Fig. 4, which is beneficial for electron and Na' ion transport
during charge/discharge processes. As summarized in Table 5,
the Bader charge calculations reveal that Na atoms carry
a formal charge ranging from +0.984 to +0.988 in both B- and C-
doped heterostructures, presenting the reliability of the Na'/
anode model. The charge transfer from Na to the doped het-
erostructure leads to a significant upward shift of the Fermi
level, which lies around the Dirac point in Fig. 4. Upon Na
intercalation, dopant orbitals become delocalized, occupying
not only the impurity states as in the case without Na interca-
lation, but also the electronic energy states of WS, around the
Fermi level. This delocalization leads to an increase in the DOS
near the Fermi level, thereby enhancing the electrical conduc-
tivity of the system. In the undoped system, the WS, nanosheet
receives 0.764e from the intercalated Na atom at the preferred
surface site and 0.486 e when Na is located within the interfacial
space. However, the B/C-doped WS, nanosheets within doped
WS,/G heterostructures gain more charge upon Na intercala-
tion, 0.980/0.932 e from surface-intercalated Na and 0.875/0.611
e from Na positioned in the interfacial space, as summarized in
Table 5. This indicates that introducing dopants can promote
electron trapping during Na intercalation,® thereby enhancing
Na' ion diffusion and improving the overall electrochemical
performance of the material during sodium-ion battery cycling,
cycling as observed in experiment works.®*** The effect of Na
intercalation on the electronic properties of doped hetero-
structures differs, depending on whether it occurs at the surface
or the interface. Specifically, when Na is anchored at the surface
sites of the bilayer, the doped WS, monolayer receives the
majority of the electron charge, 99.2% for B doping and 93.7%
for C doping. This charge transfer primarily affects the electrical
properties of the doped WS, layer, while the electronic

(a) (b)

(c) (d)

Fig. 5 Charge density difference (CDD) of B/C-doped WS,/G upon intercalation of a single Na atom above the surface plotted in (a)/(c) image
and at the interfacial space illustrated in (b)/(d) image with iso-surface value of 0.06e A~>. The violet-red indicates charge accumulation, whereas

the light green represents charge depletion.
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properties of the graphene layer are only weakly affected. In
addition, the dopants act as electron trapping centers. Specifi-
cally, the B dopant gains 0.260 e and the C dopant receives 0.367
e, resulting in electron accumulation around the dopant sites,
as shown in Fig. 5(a and c). When Na is intercalated at the
interface, the graphene layer gains a significantly higher
amount of charge compared to the case with Na intercalated at
the surface: 0.113 e with B doping and 0.376 e with C doping.
This more distributed charge transfer is attributed to the
shorter distance between the intercalated Na and the graphene
layer. Consequently, noticeable electron accumulation on the
graphene surface is evident in Fig. 5(b and d). The charge
transfer from interface-intercalated Na can enhance the elec-
trical conductivity of both the doped WS, and graphene layers.

Na-ion migration
The Na-ion diffusion mechanism is essential for the anode

materials' charge/discharge process. A good understanding of

067 0.67
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the diffusion of sodium ions allows to evaluate the potential of
application of doped WS,/G heterostructures as anode material
in SIBs. We performed climbing-image nudged elastic band (CI-
NEB) calculations for all active intercalation sites of Na ions,
represented by purple spheres in Fig. 6, to determine the
minimum-energy pathways for diffusion. Because Na atoms can
be intercalated both on the surface and within the interfacial
region of the doped WS,/G heterostructures with moderate
binding energies as revealed above, we considered three
potential diffusion pathways: one on the surface and two within
the interfacial space as illustrated in Fig. 6. Path 1 begins at one
of the most favorable Na intercalation sites on the surface of the
heterostructure proceeds to the nearest neighboring site along
the a-direction. Path 2 starts at one of the most favorable Na
intercalation sites within the interfacial space to the nearest
neighboring site along the b-direction. Path 3 also originates at
one of the most favorable Na intercalation sites within the
interfacial space to the nearest neighboring site along the a-
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Fig. 6 The activation energy profiles (upper images) of Na ions of B-doped WS,/G (a) and C-doped WS,/G (b) of as Na moving along three
different diffusion paths (corresponding lower images) indicated by purple curves stacked above purple-colored balls. Path 1 is on the surface
along the a-direction, path 2 is in the interface space along the b-direction, and path 3 is in the interface along the a-direction.
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direction. For each of these Na-ion diffusion pathways, we
selected closed migration routes and used the final images
obtained from the CI-NEB calculations based on the optimized
initial structures to describe the corresponding diffusion
processes.

Fig. 6 presents the activation energy profiles as a function of
the migration coordinate for Na diffusion along the three
diffusion paths in both B- and C-doped WS,/G heterostructures.
The profiles reveal that the energy barrier for Na migration
above the surface of the doped WS,/G strongly depends on the
type of dopant. Specifically, the energy barrier for Na diffusion
on the surface of C-doped WS,/G is 0.494 eV, which is moderate
and comparable to the energy barrier for Na migration through
the interface of 1T-MoS,/G" and Li migration in the interlayer
space of WS,/G without doping."” However, for the B-doped
WS,/G system, the energy barrier for Na migration on the
surface is considerably smaller, 0.091 eV, which is comparable
to that of pristine graphene sheets®® and much smaller than that
of pristine TMD nanosheets (0.49-0.95 V).*” This remarkable
difference is mainly attributed to the electronegativity of the
dopant type. As illustrated in Fig. 3(c), B doping with lower
electronegativity compared to S induces carrier delocalization
across the WS, layer within the heterostructure, thereby
significantly accelerating Na* ion transport, as previously re-
ported.®® Conversely, C doping with higher electronegativity
results in carrier localization as shown in Fig. 3(e), which leads
to a higher of the energy carrier for Na migration. This finding
highlights the critical role of dopant selection as a strategic
design approach for optimizing Na-ion mobility in WS,/
graphene-based anode materials. For Na' migration through
the interfacial region along the a- and b-directions of the B- and
C-doped WS,/graphene heterostructures, a slight difference in
the activation energy profiles is observed between the two
directions, as shown in Fig. 6. The energy barriers fall within
a narrow range of 0.274 to 0.335 eV. These values are notably
lower than those of pristine TMD nanosheets®” and similar
heterostructure such as 1T-MoS,/G (~0.7 eV),"* facilitating
favorable Na' diffusion within the interfacial space. The low
migration barrier of Na ions in the interface region is attributed
to two main factors. First, introducing dopants enhances the
electrical conductivity of the system with good electrical
conductivity of metallic materials, thereby facilitating charge
transport.* Second, introducing dopants breaks the local
intrinsic lattice symmetry of heterostructures, which lead to
a charge inhomogeneity, creating low potential energy land-
scape for Na ion immigration at interface region.** These find-
ings demonstrates that B/C doping in WS,/G heterostructures
can create energetically favourable pathway for sodium ions,
similar to that pointed out in previous reports.”

Concluding remarks

We investigated the effects of boron (B) and carbon (C) doping
on sodium intercalation and diffusion mechanisms in WS,/G
heterostructures, aiming to develop advanced anode materials
for sodium-ion batteries (SIBs). The electronic structure calcu-
lations indicate that doped WS,/G heterostructures exhibit
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electronic properties of metallic materials. Doping leads to the
emergence of additional impurity states, which act as extra
energy levels, affecting electronic properties of the systems by
allowing more effortless movement of electrons through the
material during electrochemical reactions. Notably,
substituting surface sulfur atoms with B or C creates chemically
active sites that enhance the binding affinity of Na* ions both on
the surface and at interfacial region of the heterostructures. The
most stable configurations exhibit strong adsorption energies,
with values reaching as low as —1.702 eV, which may effectively
suppress sodium dendrite formation during cycling. Climbing-
image nudged elastic band calculations show that B/C doping
generates low-energy diffusion pathways, with Na® migration
barriers ranging from 0.091 to 0.494 eV, favorable for both
surface and interfacial transport. Moreover, the doped WS,/G
systems exhibit a small volumetric change upon Na intercala-
tion, making them suitable candidates for developing anodes in
batteries with high cycling stability.

By analyzing idealized theoretical models, our work uncovers
the role of dopants in tailoring sodium intercalation and
diffusion processes in WS,/G heterostructures, offering guid-
ance for the design of advanced anode materials. However,
translating these theoretical insights into real electrochemical
performance under practical cycling conditions requires
a further consideration of several key factors such as dopant
distribution uniformity, defect formation, and potential Na
clustering at high concentrations, which may significantly
influence Na intercalation behavior and alter ion diffusion
kinetics. This study opens new avenues for future research to
bridge the gap between theory and experiment. Promising
directions include evaluating the long-term cycling stability of
doped WS,/G heterostructures under realistic battery operating
conditions, assessing thermal stability and structural integrity
during Na intercalation via Ab initio Molecular Dynamics
simulations, and investigating long-term ion diffusion and
storage kinetics through kinetic Monte Carlo (KMC) methods.
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