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ling reaction via chiral
propargylglycine Ni(II) complex: an approach for
synthesizing enantiomerically enriched unnatural
a-amino acids

Liana Hayriyan,ab Anna Grigoryan,ab Hasmik Gevorgyan,b Avetis Tsaturyan,ab
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and Anna Mkrtchyan *ab

A novel hybrid synthetic approach was developed for the enantioselective synthesis of unnatural a-amino

acids, utilizing chiral square-planar Ni(II) Schiff base complexes in combination with an A3-coupling

(Mannich-type) reaction. The methodology enabled the generation of a series of a-amino acid

derivatives with excellent enantiomeric excess ($99% ee) and high chemical yields under optimized

reaction conditions involving CuI/FeCl3 catalysis in toluene under argon. The reaction demonstrated

strong dependence on the nature of the amine, with cyclic secondary amines yielding superior results

compared to linear or primary analogs. The obtained products were structurally confirmed via X-ray

crystallography and HPLC analysis, verifying the retention of stereochemical integrity. Molecular docking

studies against collagenase indicated that all synthesized compounds could interact with the enzyme via

various binding domains and interaction types, particularly hydrogen bonding. Subsequent in vitro

collagenase inhibition assays revealed that all compounds, except 4a, exhibited inhibitory activity, with

compound 4e demonstrating the highest potency (IC50 = 0.75 mM), despite not having the most

favorable docking score. This highlights the importance of complementary in silico and experimental

evaluations for reliable biological profiling. The presented strategy provides a versatile platform for the

synthesis of structurally diverse, enantiomerically pure non-proteinogenic amino acids with promising

bioactivity, offering valuable prospects for drug discovery and enzymatic inhibition studies.
Introduction

A key aim and challenge in chemistry is designing reactions that
create diverse, functional, optically active molecules from
readily available, simple materials, with a high asymmetric
yield. This is why, over the past twenty years, the synthesis of
enantiomerically enriched molecules has become a central
focus in organic synthesis.1–3 Within this eld, non-
proteinogenic (unnatural) amino acids hold a particularly
important position. In efforts to optimize physicochemical
properties and enhance target selectivity, unnatural amino
acids (UAAs) have emerged as indispensable building blocks in
the design of peptide- and peptidomimetic-based therapeutics.4

In addition to serving as key structural motifs in peptidomi-
metics, many UAAs also possess inherent biological activities.
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For instance, certain UAAs act as enzyme inhibitors,5 while
others demonstrate antimicrobial effects6–8 or antiproliferative
properties. These ndings highlight the dual signicance of
UAAs, both as versatile intermediates in drug design and as
bioactive compounds in their own right. In line with this, the
search for innovative therapeutic strategies increasingly extends
beyond natural molecules to include synthetic systems, such as
amino acid–based derivatives, oligonucleotidic analogues, and
hybrid structures.9–13

On the other hand, chiral propargylamines play a crucial role
as an essential intermediate in the synthesis of biologically
active compounds.14–17 Propargylamine derivatives are
commonly obtained through the addition of terminal alkynes to
imines or iminium ions18. The catalytic enantioselective
synthesis of propargylamines from primary amines is a well-
established process, oen employing copper(I) catalysis with
ligands19. Copper and silver salts, in combination with various
organocatalysts, have also been utilized20(Scheme 1).

Due to this increased complexity, relatively few studies have
tackled the challenge of catalytic enantioselective A3 reactions
with secondary amines21–23.
RSC Adv., 2025, 15, 35379–35387 | 35379
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Scheme 1 Synthesis of enantioenriched derivatives of propargylamines.

Scheme 2 Synthesis of the initial complex 2.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
2/

20
26

 1
1:

54
:5

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
On the other hand, the combination of three reactants via
the Mannich reaction is a exible procedure that has been
widely utilized across various applications in organic
synthesis.24–30 The A3 coupling reactions have undergone thor-
ough examination under both microwave31–33 and ultrasonic
irradiation.34 These reactions have demonstrated smooth
progression in aqueous environments or even in the absence of
solvents.35 They have been applied in the synthesis of natural
products, polymers, and biologically active compounds.36–39

A limited number of studies have reported the application of
the Mannich reaction for the synthesis of enantiomerically
enriched amino acids.36–38 However, in most of these cases, the
reaction has primarily furnished amino acid derivatives rather
than the free amino acids themselves, thereby necessitating an
additional synthetic or deprotection step to access the target
compounds. Moreover, to the best of our knowledge, no studies
have thus far described the direct synthesis of enantiomerically
enriched a-amino acids bearing a propargylamine moiety via
the Mannich reaction. Hence, employing the Mannich reaction
for the acquisition of enantiomerically enriched a-amino acids
presents a novel and promising avenue.

Additionally, one of the main directions for the synthesis of
enantiomerically enriched a-amino acids is stoichiometric
asymmetric synthesis using a square-planar nickel Ni(II) of
chiral glycine/alanine/dehydroalanine Schiff base comple.39,40

Numerous research groups have focused on utilizing square-
planar Ni(II) complexes of Schiff bases, derived from a-amino
acids and chiral carbonyl compounds of (S)- and (R)-prolines, in
stoichiometric asymmetric synthesis. These complexes have
been effectively applied in critical reactions such as Ca-alkyl-
ation, Michael addition, and aldol reactions, enabling the
synthesis of various unnatural amino acids.41–46 Recently,
modied derivatives of Ni(II) square-planar complexes have
demonstrated signicant success in catalytic transformations,
such as Sonogashira,47 Heck,48 Suzuki49 and the copper-
35380 | RSC Adv., 2025, 15, 35379–35387
catalyzed azide–alkyne cycloaddition reactions.50 In these
processes, the complexes serve as matrices that preserve
chirality, ensuring that the chiral center remains unaltered and
maintaining stereochemical integrity throughout the catalytic
cycle.

Here, we report a hybrid approach that combines both
methodologies: utilizing a chiral nickel complex to facilitate
enantiomeric yield while exploring the A3 reaction. Conse-
quently, this approach holds the potential for generating novel
enantiomerically enriched non-protein amino acids via the A3

reaction.
Results and discussion

In this study, the Mannich reaction was investigated using
a Ni(II) complex of the Schiff base derived from the chiral
auxiliary (S)-2-N-(N0-benzylprolyl)aminobenzophenone (BPB)
and propargylglycine as the initial complex (2)51 (Scheme 2). A
key advantage of this approach lies in its ability to achieve
a 99% enantiomeric yield at the Ca – position of the target
unnatural a-amino acid, which incorporates a chiral prop-
argylamine moiety. This methodology facilitates the efficient
synthesis of the desired product, ensuring a high degree of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Optimization of reaction conditions A3 reaction Mannich coupling reaction via complex 2a

# Solvent 2: Amine (eq.) Co-cat.b Time, h 3a Conversion, % 30 Conversion, %

1 DMSO 1/10 CuI 20 5 0
2 CH3CN 1/10 CuI 20 10 10
3 CH3CN 1/20 CuI 20 5 15
4 1,4-Dioxane 1/1.5 FeCl3 16 0 0
5 1,4-Dioxane 1/1.5 CuI 16 20 40
6 1,4-Dioxane 1/1.5 CuI/FeCl3 10 40 30
7 1,4-Dioxane 1/1.5 CuOAc 16 50 50
8 Toluene 1/1.5 CuI/FeCl3 16 65c 0
9 Toluene 1/1.5 CuI 16 50 0
10 Toluene 1/1.5 CuI/FeCl3 1.5 79c 0

a The reaction was carried out under Ar. b The co-catalyst is 10 mol/%. c The chemical yield was determined by column chromatography.
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enantiomeric enrichment (99% ee) at the Ca – position of the a-
amino acid.

The Mannich reaction was explored through a three-
component alkynylation reaction, utilizing paraformaldehyde,
complex 2, and primary or secondary amines. For the optimi-
zation conditions as a model reaction was taken a three-
component alkynylation process involving paraformaldehyde,
morpholine, and complex 2 (Table 1). The progress of the
reaction was monitored by TLC (SiO2, CHCl3/acetone 3 : 1),
following the disappearance of the starting complex 2. During
the optimization of the reaction, not only the target product 3a,
but also the dimeric byproduct 30 was observed (Scheme 3).52 As
side-product analysis conrmed the formation of the dimerized
complex 30, and given that previous studies have demonstrated
the critical role of oxygen as an oxidant in promoting this
process, the reaction was therefore carried out under an argon
atmosphere to suppress dimerization.53 Solvent choice exerted
a pronounced effect on conversion and selectivity: polar aprotic
solvents (DMSO, CH3CN) led to low to moderate formation of
the target product 3a and, in some cases, increased formation of
the dimeric side product 30, whereas non-polar or weakly polar
solvents (1,4-dioxane, toluene) cauesd the formation of 3a. The
nature of the copper source and the presence of a co-catalyst
also signicantly inuenced the outcome. For example,
CuOAc promoted the formation of both 3a and 30 (entry 7),
while the addition of the Lewis acid FeCl3 enhanced the yield of
3a. Notably, the combination of CuI and FeCl3 in a non-polar
solvent markedly increased the yield of 3a while suppressing
dimerization entirely (entry 8). Shortening the reaction time
under these conditions further improved the outcome, as pro-
longed reaction times promoted side reactions and decompo-
sition of the initial complex 2 (entry 10). Finally, the sequence of
Scheme 3 Optimization of A3 reaction Mannich coupling reaction via
complex 2.

© 2025 The Author(s). Published by the Royal Society of Chemistry
reagent addition proved critical: when the catalyst/co-catalyst
were present before substrate/amine addition, conversion to
3a was faster, but extended reaction times increased the
proportion of side reactions. In contrast, controlled addition of
one reaction partner improved selectivity. Taken together, these
observations—solvent polarity, catalyst identity, reaction time,
and addition order—dened the optimal conditions outlined in
entry 10.

Based on previous studies of Mannich mechanism,54–56 we
can suppose that FeCl3 is proposed to act as a Lewis acid,
primarily activating the aldehyde. The amine then adds to the
activated aldehyde to form a hemiaminal intermediate, which
undergoes FeCl3-facilitated dehydration to generate the imi-
nium ion, the key electrophilic species for subsequent C–C
bond formation. Simultaneously, CuI coordinates to the
terminal alkyne, forming a p-complex that lowers the pKa of the
terminal proton and enables its deprotonation by the amine or
a trace base to generate the nucleophilic Cu–acetylide. This
species attacks the electrophilic carbon of the iminium ion,
forming the propargylamine framework. Finally, proton trans-
fer restores the neutral amine product, while both FeCl3 and
CuI are regenerated to continue the catalytic cycle.

Using optimal conditions various amines were tested
(Scheme 4).
Scheme 4 Scope of the A3 reaction Mannich coupling reaction via
complex 2.

RSC Adv., 2025, 15, 35379–35387 | 35381
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Scheme 5 Isolation of the target enantiomerically enriched unnatural
a-amino acids.
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An interesting pattern was observed regarding the inuence
of amine type on the chemical yield. 53–79% chemical yields
were obtained with cyclic aliphatic amines (Scheme 4, 3a–3d).
However, the yield decreased signicantly when transitioning
from cyclic to liner aliphatic amines (Scheme 4, 3e–3h).
Furthermore, the nature of the amine played a crucial role; for
instance, the yield sharply declined with primary amines.
Notably, no reaction occurred in the presence of imidazole. We
suppose that imidazole exerts signicant electron-donating
effects due to its aromatic nitrogen atoms, which could alter
the reactivity of the imine intermediate, reducing its reactivity
towards nucleophilic attack.

The next step involves the disassembly of some obtained
complexes 3(a–e) and the isolation of a-amino acids. The results
of these procedures are summarized in Scheme 5.

In all cases, the asymmetric yield exceeds 99%, as complex 2,
utilized in the reaction, possesses an initial purity of 99%.
Although the reaction is carried out in a mildly basic medium,
the a-amino acid moiety could, in principle, undergo a-proton
elimination; however, experimental evidence conrms stereo-
chemical integrity is retained. However, this possibility can be
ruled out, as previous studies have demonstrated that a positive
optical rotation in the product complexes is associated with an
S-absolute conguration at the Ca position of the a-amino acid
moiety.57 Furthermore, X-ray diffraction analysis of interme-
diate complexes conrms the retention of the S-absolute
conguration in the products (Fig. 1). To ensure that the
absolute conguration remains unaltered throughout the
reaction, HPLC analysis of a-amino acid 4a was performed. The
results indicate that the elimination of the a-proton does not
Fig. 1 X-ray analysis of the 3a, 3c and 3e.

35382 | RSC Adv., 2025, 15, 35379–35387
occur, conrming the preservation of the absolute congura-
tion and reaffirming that the ee of the obtained amino acids
remains above 99%.
Molecular docking analysis

Based on literature data and the recognized potential of
unnatural amino acids,58–60 we decided to evaluate the biolog-
ical activity of the synthesized unnatural a-amino acids by
performing molecular docking studies with collagenase as the
target enzyme. This investigation was pursued on two levels: in
silico docking simulations and in vitro enzymatic inhibition
assays. According to the molecular docking analysis, all studied
structures show an ability to interact with collagenase (Fig. 2).
Gibbs free energy values are presented in the Table 2. Of the
investigated compounds two bind collagenase in catalytic sub-
domain very close to the active center (4d and 4e), other two
bind to activator domain which is responsible for full activity on
collagen61 (4a and 4b) and remaining one (4c) show the ability to
interact to helper subdomain. Detailed analysis showed that
compounds 4a and 4c bind to collagenase by different types of
low interactions such as van der Waals forces, hydrophobic
interactions etc. only. Compound 4b formed 2 hydrogen bounds
by its amino group one with carbonyl oxygen of side carboxyl
group of Asp 296 (2.040 Å) and second one with carbonyl oxygen
of Gln 215 (1.957 Å). 4d also formed 2 hydrogen bounds, but one
by its amino group with hydroxyl oxygen of Thr 551 (1.776 Å)
and another by carboxyl group to amino group of Leu 550 (2.209
Å). Compound 4e interact to collagenase by forming 3 hydrogen
bounds: by carbonyl oxygen of carboxyl group to amino group of
Leu 550 (2.201 Å), by hydroxyl oxygen of carboxyl group to a-
amino group of Arg 549 (2.139 Å) and by amino group to car-
bamoyl oxigen of Asn 548 (2.136 Å).
Fig. 2 Molecular Docking of non-protein a-amino acids 4a–4e.

Table 2 Results of the molecular docking analysis and biological
analysis

Compound Gibbs free energy kcal mol−1 IC50

1 4a −4.8 —
2 4b −5.4 2.27
3 4c −5.4 1.52
4 4d −5.7 1.225
5 4e −5 0.75

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Inhibition assays on the collagenase activity

To validate the in silico ndings, all synthesized compounds
were subjected to enzymatic inhibition assays targeting colla-
genase. The activity of collagenase has been determined in the
presence of investigated amino acids. Investigated amino acids
were added in the concentration range 0.2–2 mM. The obtained
results are presented in the Table 2. According to the obtained
results, collagenase has been inhibited by all investigated
compounds except 4a.

Although compound 4d exhibits a more favorable Gibbs free
energy in silico, compound 4e shows superior in vitro inhibition
(lowest IC50). This discrepancy highlights the limitations of
docking scores as sole predictors of biological activity and
underscores the importance of specic hydrogen bonding
networks, binding site geometry, and dynamic enzyme–ligand
interactions, which may not be fully captured in docking
simulations. The enhanced activity of 4e likely results from its
favorable binding orientation and extensive hydrogen bonding
within the catalytic subdomain, effectively impairing collage-
nase function.

Experimental
General information

All amines, aldehydes were obtained from commercial sources
and used without further purication. The initial 2 complexes
were prepared following literature protocols.51 TLC analyses
were performed on glass plates coated with silica gel 60 F254.
Column chromatography was performed on silica gel (60 × 120
mesh) on a glass column.

Instrumentation

Melting points (mp) were determined by IElectrothermalJ. 1H
and 13C NMR spectra (IMercury-300 VarianJ 300 MHz respec-
tively) were recorded using TMS as an internal standard (0
ppm). Elemental analyses were done by elemental analyzer
EURO EA 3000. The enantiomeric purity of the amino acids was
determined by HPLC (IWaters Alliance 2695 HPLC SystemJ) on
the chiral phase Diaspher-110- Chirasel-E-PA 6 : 0 mkm 4.0 ×

250 mm, and a mixture of 20% MeOH and 80% 0 : 1 M aqueous
solution NaH2PO4$2H2O was used as the eluent. The optical
rotation was measured on a Perkin Elmer-341 polarimeter, The
X-ray was done by Enraf-Nonius CAD4, LCMS analysis was done
by Shimadzu LCMS 2020 with prominence-I LC-2030C 3D. The
CD analyses was done my Chirascan™ V100.

Genral procedure of Mannich reaction with
paraformaldehyde

A 2 g (0.0037 mol) sample of NiII-(S)-BPB-(S)-PGly complex,
0.336 g (0.011 mol) of paraformaldehyde, and 0.060 g (0.00037
mol) of FeCl3 were added to a round-bottom ask connected to
a reux condenser and supplied with an argon gas ow. The
mixture was dissolved in 20 mL toluene for 15–20 minutes.
Then, 0.07 g (0.00037 mol) of CuI and (0.0074 mol) of amine
mixed with a small amount of toluene were added. The reaction
mixture was stirred under heating conditions at a temperature
© 2025 The Author(s). Published by the Royal Society of Chemistry
of 50–60 °C. The course of the reaction was monitored by TLC
(SiO2, CHCl3/CH3COCH3 = 3/1) until the traces of the initial
complex were eliminated. Based on TLC data, the reaction took
0.5–3 h.

Aer completion of the reaction, the mixture was poured
into distilled water (50 mL) under stirring for 15 min and
extracted with methylene chloride (3 × 30 mL). The combined
organic layers were washed with distilled water (2 × 20 mL),
dried over anhydrous MgSO4 for 30 min, and ltered. The
solvent was removed under reduced pressure, and the residue
was crystallized from acetone (20 mL) to afford the pure
product.

General procedure for isolation of amino acids

Complexes 3a–d were dissolved in MeOH (50 mL) and slowly
added to 2 M HCl (50 mL). The reaction mixture was heated at
50 °C until the characteristic red color of the metal complex
disappeared. The solution was then concentrated under
reduced pressure, diluted with water (50 mL), and the precipi-
tated (S)-BPB HCl was collected by ltration. The optically active
a-amino acids 4a–d were subsequently isolated from the
aqueous layer by ion-exchange chromatography on Dowex-50
(H+ form) resin, using 5% aqueous NH4OH as the eluent. The
eluates were concentrated under reduced pressure, and the
amino acids were puried by recrystallization from a water/
EtOH mixture (1 : 2 v/v).

The obtained amino acids 4(a–d) were practically insoluble
in any solvent, which caused difficulties for measuring their
specic rotation.

Molecular docking

The structures of the compounds were build using Chem-
BioOffice 2010 (ChemBio3D Ultra 12.0). Minimization of the
ligand free energy was performed using the MM2 force eld and
the truncated Newton–Raphson method. The crystallographic
structure of collagenase G (PDB ID: 2Y50) was used in analysis.
Water molecules were removed, and polar hydrogens were
added according to soware producer's suggested protocol of
macromolecule preparation. Docking of ligands to the enzyme
was performed using AutoGrid 4 and AutoDock Vina soware62.

Ligands were ranked based on an energy-dependent score
function, and protein–ligand interactions were modeled on
a grid to speed up calculations. Interaction modes were iden-
tied as well as bond types and lengths were determined.

Determination of collagenase activity

Collagenase activity was determined by a method based on the
measurement of free amino groups that are released during
substrate hydrolysis.63 The reaction mixture consisted of 0.05 M
HEPES buffer (4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid) with pH 7.2, 10 mg mL−1 gelatin and 0.025 mg mL−1

collagenase, the reaction was carried out at 37 °C.
To determine the concentration of amino groups, the ortho-

phthalaldehyde (OPA) reagent was used consisting of 0.2 M
borate buffer with pH 9.7, 0.1667 mg mL−1 OPA and 1.18 mM
mercaptoethanol. Aliquots of 50 mL were taken every 30
RSC Adv., 2025, 15, 35379–35387 | 35383
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minutes, and the reaction was stopped by adding 10 mL of 30%
trichloroacetic acid. Then 1.5 mL of OPA reagent and 1.5 mL of
water were added to the resulting sample, and the A340 value
was recorded aer 5-minutes incubation at a temperature of
27 °C.
Conclusions

This study presents a novel hybrid synthetic strategy that inte-
grates the use of chiral square-planar Ni(II) Schiff base
complexes with the A3 Mannich reaction, enabling the efficient
synthesis of enantiomerically enriched unnatural a-amino acids
containing different type of moiety. The optimized conditions
using a CuI/FeCl3 co-catalyst system in toluene under inert
atmosphere resulted in high chemical yields and excellent
stereoselectivity ($99% ee) at the Ca-position. The synthetic
approach was found to be particularly efficient with cyclic
secondary amines, while linear or primary amines signicantly
reduced the yields.

Subsequent structural elucidation and chiral purity valida-
tion, including HPLC and X-ray crystallography, conrmed the
preservation of the S-absolute conguration during synthesis.
Furthermore, the biological potential of the synthesized amino
acids was explored through molecular docking and in vitro
inhibition assays against collagenase.

Although docking analysis revealed favorable Gibbs free
energy values and binding interactions—particularly extensive
hydrogen bonding in compound 4e—the biological assays
highlighted the complexity of enzyme–ligand dynamics.
Notably, compound 4e, despite not having the lowest docking
score, exhibited the highest inhibitory activity (IC50= 0.75 mM),
demonstrating that docking energy alone is not always a reliable
predictor of in vitro efficacy. These ndings emphasize the
necessity of integrating computational and experimental eval-
uations for accurate assessment of bioactivity.

Overall, the developed approach not only provides a robust
route to stereochemically pure non-proteinogenic a-amino
acids but also yields biologically active compounds with
potential applications in enzyme inhibition and medicinal
chemistry.
Author contributions

Liana Hayriyan contributed to the methodology, investigation,
data curation. Anna Grigoryan was involved in the investigation,
validation, data curation. Hasmik Gevorgyan contributed to
formal analysis, visualization. Avetis Tsaturyan participated in
the investigation, provided resources, and supported project
administration. Armen Sargsyan was responsible for soware,
formal analysis, and validation. Peter Langer contributed to
supervision, writing – review and editing. Ashot Saghyan
supervision, project administration, and funding acquisition.
Anna Mkrtchyan was involved in conceptualization, data
interpretation, writing – original dra, writing – review and
editing and supervision.
35384 | RSC Adv., 2025, 15, 35379–35387
Conflicts of interest

There are no conicts to declare.
Data availability

Additional data related to molecular docking studies are avail-
able from the corresponding author upon reasonable request.

CCDC 2355349, 2355346 and 2355404 contain the supple-
mentary crystallographic data for this paper.64a–c

All experimental data supporting the ndings of this study,
including synthetic procedures, characterization data (NMR,
HPLC, X-ray crystallography), and biological assay results, are
provided in the SI. Supplementary information: detailed
experimental procedures, instrumentation details, NMR and
MS spectra, HPLC analysis, X-ray crystallographic data, and
molecular docking studies. See DOI: https://doi.org/10.1039/
d5ra04554a.
Acknowledgements

This work was supported by the Higher Education and Science
Committee of MESCS RA in the frames of the research projects
24LCG-1D018 and ISTC AM-2705.
References

1 C. Najera and J. M. Sansano, Catalytic Asymmetric Synthesis
of Alpha-Amino Acids, Chem. Rev., 2007, 107(11), 4584–4671,
DOI: 10.1021/cr050580o.

2 Z. Li and C.-J. Li, Asymmetric Synthesis Based on Catalytic
Activation of C–H Bonds and C–C Bonds, in New Frontiers
in Asymmetric Catalysis, John Wiley & Sons, Ltd, 2007, pp.
129–152, DOI: 10.1002/9780470098004.ch5.

3 E. N. Jacobsen, A. Pfaltz and H. Yamamoto, Comprehensive
Asymmetric Catalysis, Springer, 2003.

4 K. K. Sharma, K. Sharma, K. Rao, A. Sharma, G. K. Rathod,
S. Aaghaz, N. Sehra, R. Parmar, B. VanVeller and R. Jain,
Unnatural Amino Acids: Strategies, Designs, and
Applications in Medicinal Chemistry and Drug Discovery, J.
Med. Chem., 2024, 67(22), 19932–19965, DOI: 10.1021/
acs.jmedchem.4c00110.

5 I. Maluch, J. Czarna and M. Drag, Applications of Unnatural
Amino Acids in Protease Probes, Chem. Asian J., 2019, 14(23),
4103–4113, DOI: 10.1002/asia.201901152.

6 T. Narancic, S. A. Almahboub and K. E. O'Connor, Unnatural
Amino Acids: Production and Biotechnological Potential,
World J. Microbiol. Biotechnol., 2019, 35(4), 67, DOI:
10.1007/s11274-019-2642-9.

7 Antimicrobial Peptides: An Evolving Treasure to Combat
Emerging Infections and Drug-resistance, SpringerLink,
https://link.springer.com/collections/ihefgacj, accessed
2025-09-02.

8 Unusual Amino Acids in Medicinal Chemistry j Journal of
Medicinal Chemistry, https://pubs.acs.org/doi/abs/10.1021/
acs.jmedchem.6b00319, accessed 2025-09-02.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1039/d5ra04554a
https://doi.org/10.1039/d5ra04554a
https://doi.org/10.1021/cr050580o
https://doi.org/10.1002/9780470098004.ch5
https://doi.org/10.1021/acs.jmedchem.4c00110
https://doi.org/10.1021/acs.jmedchem.4c00110
https://doi.org/10.1002/asia.201901152
https://doi.org/10.1007/s11274-019-2642-9
https://link.springer.com/collections/ihefgacjfj
https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00319
https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.6b00319
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra04554a


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
2/

20
26

 1
1:

54
:5

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
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