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discovery of liquid crystal polymers with enhanced
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Liquid crystal polymers with exceptional optical properties are highly promising for next-generation virtual,

augmented, and mixed reality (VR/AR/MR) technologies, serving as high-performance, compact,

lightweight, and cost-effective optical components. However, the growing demands for optical

transparency and high refractive index in advanced optical devices present a challenge for material

discovery. In this study, we develop a novel approach that integrates first-principles calculations with

genetic algorithms to accelerate the discovery of liquid crystal polymers with low visible absorption and

high refractive index. By iterating within a predefined space of molecular building blocks, our approach

rapidly identifies reactive mesogens that meet target specifications. Additionally, it provides valuable

insights into the relationships between molecular structure and properties. This strategy not only

accelerates material screening but also uncovers key molecular design principles, offering a systematic

and scalable alternative to traditional trial-and-error methods.
1 Introduction

Liquid crystal polymers (LCPs) have played an important role in
the development of advanced optical components. By leveraging
the optical anisotropy of the liquid crystal molecules and their
exible alignment capabilities, liquid crystal polymer enable many
thin-lm based planar optical elements that are high-efficiency,
compact, lightweight, and cost-effective, with examples including
photochromic lms, optical bers, and polarization holographic
gratings and lenses.1–3 With the rapid advancement of display
technologies and virtual, augmented, and mixed reality (VR/AR/
MR) systems, liquid crystal polymer-based spatial light modula-
tors and waveguides have attracted signicant interest due to their
critical functionality in these devices.4–6

A key advantage of liquid crystal polymers in optical applica-
tions is their combination of low optical absorption in the visible
range and high refractive indices, which improves light efficiency
while minimizing component weight and volume.7 The funda-
mental building blocks of liquid crystal polymers, known as
reactive mesogens (RMs), consist of a rigid mesogenic core, alkyl
chain spacers, and polymerizable terminal groups, as depicted in
Fig. 1(a). The mesogenic core retains liquid crystal properties due
ng@meta.com
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the Royal Society of Chemistry
to its rod-like conjugated structure, which results in molecular
anisotropy. Strong intermolecular interactions between meso-
genic cores promote self-assembly and alignment in the liquid
crystal phase. The length of the alkyl spacer can be adjusted to
modify the liquid crystal phase transition temperature. Addi-
tionally, reactive mesogens act as monomers through poly-
merizable end groups, allowing polymerization by thermal or UV
curing to form stable optical lms.8 The unique structures of
reactive mesogens enable tunability of both optical absorption
and refractive index, providing a molecular design strategy for
enhancing optical properties.

Over the past few decades, design and synthesis of reactive
mesogens with desired optical properties remain a signicant
challenge due to both the theoretical complexity of molecular
design and the inefficiency of material discovery.9,10 Mesogenic
cores with longer conjugation generally exhibit increased
polarizability, enhancing the refractive index. However, this
also tends to increase light absorption at longer wavelengths, as
the delocalized electrons are more easily excited by lower
energy.11,12 The experimental process oen relies on empirical
methods and modications of existing molecular structures,
making it time-consuming and resource-intensive.13–15

Although computational methods can accelerate molecular
design compared to experimental approaches, they also face
challenges. Unlike crystal materials with periodic structures,
simulating the optical properties of liquid crystal polymers
traditionally requires modeling multi-molecular systems,
making it similarly time-consuming and unsuitable for large-
RSC Adv., 2025, 15, 43161–43173 | 43161
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Fig. 1 (a) Structures of reactive mesogen. (b) Alignment of reactive mesogens in the nematic phase, followed by polymerization into a liquid
crystal polymer network.
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scale screening. Variations in intramolecular and intermolec-
ular interactions in liquid crystal polymers can signicantly
inuence their optical properties. Therefore, accurate modeling
largely relies on capturing the molecular ordering of the liquid
crystal polymer system.16

To address these challenges, it is crucial to develop a pipe-
line that enables the rapid and accurate simulation of the
optical properties of liquid crystal polymers, specically
focusing on absorption and refractive index. This pipeline
would facilitate extensive screening of candidate structures,
providing insights into structure–property relationships and
opening new avenues in the molecular design space. Recent
advancements in optical material exploration, particularly
through machine learning and generative models, have
provided valuable insights for liquid crystal polymer
development.17–19 However, a comprehensive liquid crystal
material database with detailed optical data is still lacking,
underscoring the need to explore the liquid crystal polymer
space using advanced search and generative methods.

In this study, we develop a rst-principles-based computa-
tional framework for large-scale screening of liquid crystal
polymers with optical transparency and refractive index. By
approximating the polymer network conguration using dimer
conformations of reactive mesogens in nematic phase, we
signicantly reduce the computational cost of multi-molecular
system simulations while retaining key molecular interac-
tions. Further validation through molecular dynamics (MD)
simulations and experimental data conrm the accuracy of this
approach, supporting the dimer-based modeling strategy. We
43162 | RSC Adv., 2025, 15, 43161–43173
then integrate a genetic algorithm to screen, optimize, and
generate novel liquid crystal polymer candidates. The resulting
molecules demonstrate low absorbance in the visible wave-
lengths and exceptionally high refractive indices, offering
valuable guidance for molecular design and material discovery.
Furthermore, the computational pipeline developed in this
research is adaptable to other organic molecule discovery plat-
forms, particularly for polymer materials with specic optical
properties. This adaptability holds benets for a wide range of
applications in optics, robotics, and other elds, providing
a versatile tool for advancing material design and discovery.
2 Computational pipeline
methodology and validation

To facilitate high-throughput computational molecular
screening, it is essential to develop a streamlined model that
incorporates necessary approximations, supported by robust
scientic evidence and experimental validation. In this section,
we rst introduce liquid crystal polymer networks. The cong-
uration of these networks is simplied as several dimer
conformations, which are then used for absorption and
refractive index calculations using time-dependent density
functional theory (TD-DFT) and density functional theory (DFT),
respectively.
2.1 Formation of liquid crystal polymer network

The formation of a liquid crystal polymer network, depicted in
Fig. 1(b), begins by heating reactive mesogens to the liquid
© 2025 The Author(s). Published by the Royal Society of Chemistry
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crystal phase to achieve alignment. This is followed by a curing
step to form a cross-linked network, effectively locking the
molecular alignment of reactive mesogens and preserving their
conformations in the liquid crystal polymer. Consequently, the
optical properties of the liquid crystal polymer are largely
determined by the packing of the reactive mesogens.1 Although
minor differences in the order parameter and density between
reactive mesogens and corresponding liquid crystal polymers
arise due to spacer shrinkage before and aer cross-linking
process, these differences have a smaller impact compared to
the inuence of molecular arrangement on optical proper-
ties.8,20 In this work, we use the conformational states of reactive
mesogens in the nematic phase as an approximation for the
polymer network when simulating the optical properties of
liquid crystal polymers, as discussed in the following sections.

2.1.1 Dimer simplications. The arrangement and packing
of reactive mesogens are crucial in determining the optical
properties of liquid crystal polymers. To improve computational
efficiency while preserving accuracy, we further simplify the full
assembly of reactive mesogens to a dimer system with various
conformations. Dimers represent the minimal aggregate size
that can capture nearest-neighbor p–p interactions and repro-
duce the characteristic spectral shis, while avoiding the
rapidly increasing computational cost and convergence diffi-
culties of larger aggregates such as trimers or tetramers.21–23

These dimer conformations represent different degrees of p–p
stacking, and the dimer system energies adhere to the Boltz-
mann distribution. This approach is based on the Lebwohl–
Lasher lattice model.24 This simple spin lattice model, rooted in
classical physics, is particularly suitable for high-throughput
screening due to its computational efficiency. The model
utilizes the Monte Carlo method to simulate phase behavior by
stochastically altering the orientations of individual molecules,
with the Boltzmann distribution governing the process. Studies
have shown that it effectively captures the rst-order phase
transition between ordered and disordered states.24

Initially, 50 reactive mesogen conformers were generated
from the SMILES of input molecular structure via RDKit,25,26

followed by structural optimization using semi-empirical GFN2-
Fig. 2 (a) Schematic illustration of a liquid crystal polymer network fea
degrees of p–p stacking interactions. (b) Structure of HCM-008 and its
experimental monomer solution, polymer thin film and computational r

© 2025 The Author(s). Published by the Royal Society of Chemistry
xTB method27 with Crest.28–30 Molclus isostat tool31 was used to
merge identical conformers by applying a geometry threshold of
0.25 Å and an energy threshold of 0.5 kcal mol−1. Next, 200
dimers were generated from the selected conformers, with
inter-dimer distances controlled to within 2 van der Waals radii,
and random relative spatial orientations were assigned using
Molclus genmer tool.31 Dimers were further structurally opti-
mized using the GFN2-xTB method in Crest, followed by the
calculation of dimer probabilities at 400 K based on the Boltz-
mann distribution. Subsequently, the eight lowest energy
dimers were identied among those with energy differences of
less than 3 kcal mol−1, serving as simplied computational
units. This approach efficiently selects low energy conformers
and captures the impact of intermolecular interactions on
molecular geometry. Finally, quantum chemical calculations
were performed to obtain the UV-vis spectra and refractive index
of the selected dimers, and the averaged properties were used to
approximate the absorption and refractive index of the polymer
lm. The dimer generation workow is illustrated in Fig. 3, with
the key steps highlighted in blue.
2.2 UV-vis spectra computation

2.2.1 Spectra calculation and experimental validation. TD-
DFT has proven to be a reliable method for predicting the
optical properties of organic molecules.32–34 By applying tradi-
tional DFT to time-dependent systems, TD-DFT allows for
accurate modeling of excited states, which are crucial for
understanding electronic transitions in organic materials.33 To
evaluate the absorption of liquid crystal polymers using the
dimer pipeline, UV-vis spectra for ve commercial reactive
mesogens, HCM-008 (RM257), HCM-009 (RM82), HCM-020
(RM23), HCM-021 (RM006/RM105), and HCM-083, were calcu-
lated with TD-DFT at the PBE0/6-31G(d,p) level. Concurrently,
experimental measurements were conducted using UV-vis
spectroscopy. The results show that the computed values
deviate by an average of only 7 nm from the experimental data,
indicating a high degree of consistency with experimental
observations. All calculations were performed using the
turing three distinct dimer conformations, each representing varying
HOMO–LUMO orbitals. (c) UV absorption spectra of HCM-008 from
esults of different dimer types.

RSC Adv., 2025, 15, 43161–43173 | 43163
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Gaussian 16.c soware package,35 and the simulated spectra are
presented alongside the experimental data in Fig. S3.

As shown in the schematic drawing in Fig. 2(a), the conju-
gated mesogenic cores are distributed in a liquid crystal poly-
mer network connected by non-conjugated spacers. This
arrangement naturally gives rise to dimer conformations with
varying degrees and geometries of p–p stacking. For clarity of
discussion, we group these conformations into three represen-
tative types. Type A corresponds to congurations with negli-
gible p–p overlap, typically resembling edge-to-face or highly
displaced slip-stack arrangements. Type B represents dimers
with partial orbital overlap, indicative of weak p–p interactions.
Type C corresponds to nearly cofacial stacking with signicant
overlap between conjugated segments, resulting in the stron-
gest p–p interactions. We emphasize that this classication is
introduced only as a schematic framework to illustrate the
diversity of possible packing geometries, rather than a strict
energetic denition applied in our simulations.

As observed in both computational and experimental data,
different degrees of p–p stacking are critical in inuencing
optical responses, oen leading to pronounced red-shied
absorption spectra or notable spectral broadening. To illus-
trate this effect in detail, we take HCM-008 as an example, as
shown in Fig. 2(b). In HCM-008, the calculated orbital contri-
butions indicate that the dominant allowed transition occurs at
250 nm, corresponding to a HOMO–LUMO transition identied
as a p / p* excitation within the molecule. Fig. 2(c) illustrates
that Type A, characterized by negligible p–p overlap, exhibits
spectra closely resembling those of isolated monomers. By
contrast, Type C, with nearly cofacial stacking, shows the most
signicant red shi in its absorption spectrum. The combined
contributions from these diverse dimer congurations lead to
the broadening of absorption peaks in polymer lms. These
ndings highlight the importance of dimer conformations in
determining the optical properties of liquid crystal polymers
and support our approach of approximating UV-vis spectra
through ensemble averaging over multiple dimer conforma-
tions of the mesogenic core.

Building on the averaged spectra strategy, we developed an
automated computational pipeline (Fig. 3) to perform TD-DFT
calculations on the top-ranked conformer candidates identi-
ed earlier, generating an averaged spectrum. This framework
enables efficient, high-throughput molecular absorption
calculations, facilitating subsequent genetic algorithm-based
optimization. Beyond streamlining the computational process,
this approach provides deeper insights into how mesogenic
core interactions in the nematic phase inuence the optical
properties of liquid crystal polymers.
Fig. 3 Computational pipeline for dimer generation and optical propert

43164 | RSC Adv., 2025, 15, 43161–43173
2.2.2 Validation via molecular dynamics. To further vali-
date the accuracy of our computational pipeline based on dimer
simplication, we conducted additional MD simulations, which
are known for their ability to capture complex molecular
interactions and phase transitions.36–38 The phase behavior of
ve reactive mesogens, HCM-008 (RM257), HCM-009 (RM82),
HCM-020 (RM23), HCM-021 (RM006/RM105), and HCM-083,
was captured using MD simulations using Schrödinger's
Materials Science Suite with the OPLS4 force eld (details in SI,
Section 1).39–41 In this process, all molecules successfully
reproduced the nematic liquid crystal phase, validating the
robustness of the protocol Fig. S3.

We extracted dimer conformations by randomly selecting
200 dimers from the initialized liquid crystal phase (details in
SI, Section 1), ensuring an intermolecular distance of less than 4
Å based on the nearest-neighbor criterion. Single-point energy
calculations were then performed on these dimers using GFN2-
xTB in Crest. The energy distribution of the dimers was found to
approximate a Gaussian distribution, providing additional
evidence of the distinct intermolecular interactions character-
istic of the liquid crystal phase (Fig. S2).

The average UV-vis spectra were compared with experimental
data (Table S2). The results showed a strong correlation
between the computed and experimental values, with an
average deviation of only 6.2 nm. Similarly, TD-DFT calculations
on the eight dimers generated via the designed dimer pipeline
also yielded average UV-vis spectra that closely matched the
experimental results, with the same average error of 9.4 nm.

Compared with the maximum absorption wavelength ob-
tained from the MD-extracted dimer conformations, our
designed dimer pipeline exhibits a red-shied maximum
absorption wavelength. This difference arises because the
pipeline selects dimers based on their lowest energy confor-
mations, resulting in stronger p–p stacking and lower energy
than MD-generated dimers, which follow a Gaussian distribu-
tion. Although this discrepancy arises from the pipeline's
inability to fully capture the MD-based Gaussian distribution,
the error is acceptable given the substantial acceleration of
spectral calculations achieved through dimer simplication.
These dimers will also serve as a basis for further quantum
chemical calculations of refractive indices, providing valuable
support for subsequent material screening efforts.
2.3 Refractive index computation

The macroscopic refractive indices of liquid crystals are typi-
cally derived from the Lorentz–Lorenz equation. Due to the
anisotropic nature of extraordinary (ne) and ordinary (no)
refractive indices, Vuks42 introduced a semi-empirical equation
y calculations.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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that incorporates the isotropic local eld, relating microscopic
molecular polarizability to the macroscopic refractive indices in
anisotropic media.43,44

ðne;o2 � 1Þ
hn2i þ 2

¼
�
4p

3

�
Nae;o; (1)

where N is the number of molecules per unit volume, ae and ao

are the respective molecular polarizabilities, and hn2i is dened
as:

�
n2
� ¼ ne

2 þ 2no
2

3
: (2)

The ratio of normalized polarizability can be expressed as:

ae

ao

¼ ne
2 � 1

no2 � 1
: (3)

Therefore, by calculating the molecular anisotropic polariz-
ability and number density, the refractive index can be accu-
rately predicted. The following sections provide a detailed
explanation of how these results are calculated through rst-
principles methods, complemented by a calibration against
experimental data.

2.3.1 Number density. The number density is typically
determined from the density of MD simulation trajectory.
However, this approach is both computationally expensive and
time-consuming, posing challenges for high-throughput mate-
rial screening. To address this, current methods that substitute
molecular volume for MD-calculated density have demon-
strated strong correlations with experimental results for amor-
phous polymers and liquid systems, offering a more cost-
effective alternative to traditional MD simulations.45

To validate that the molecular volume can be applied to the
density calculations of liquid crystals, we investigated the
temperature-dependent density behavior of the ve reactive
mesogens. The results showed that while density decreased
with temperature, the slope of density change remained nearly
constant (Fig. S5). This consistency arises from the highly
uniform ellipsoidal shapes of reactive mesogen molecules,
which, despite variations in molecular weight, exhibit similar
packing coefficients in the nematic phase. This nding
supports the feasibility of using molecular volume to accelerate
number density calculations.

We employed Bader's denition of molecular volume in the
condensed phase, where molecular volume is dened using the
electron density isosurface as the van der Waals surface,
accounting for volume deformation due to electronic effects.46,47

The molecular volume was computed using the marching
tetrahedra method on grid data, as implemented in Multiwfn
soware.48,49 A comparison of the densities from the molecular
volumes of monomers and dimers for the ve reactive meso-
gens revealed a less than 2% difference in the densities ob-
tained from wavefunctions (Table S3). Thus, using the
molecular volume of monomers signicantly enhances
computational efficiency, while maintaining desired accuracy.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Subsequently, we compared the nematic phase densities at
298 K of 77 literature-reported liquid crystal molecules obtained
via MD simulations with densities derived from molecular
volumes calculated using DFT wavefunctions (Fig. S6). The
results showed a strong correlation (R2 = 0.92) between the two
methods. This indicates that using the molecular volume of
reactive mesogens can greatly simplify and accelerate the
number density calculations.

2.3.2 Polarizability computation. Polarizability (a) of liquid
crystal molecules can be derived from wave function-based
methods and DFT.50,51 By using the linear response theory,
polarizability is computed by analyzing the system's reaction to
an external perturbation, such as a constant electric eld.52 The
rst-order response of the zero-eld energy E(0) is the molecular
dipole moment, reecting the electron density distribution in
polar molecules. The second-order response is the static
polarizability tensor (a), which quanties the deformation of
the electron cloud under the external eld. Due to the rod-like
structure and p-conjugated backbone in liquid crystal mole-
cules, the polarization along the molecular long axis is typically
greater than that along the short axis. This structural anisotropy
results in a directionally dependent dipole response to external
electric elds. Therefore, the extraordinary polarizability ae and
ordinary polarizability ao are dened as:

ae = axx, (4)

ao ¼ ayy þ azz

2
; (5)

where axx, ayy, azz represent the polarizability components in
the x, y, and z directions, respectively.

The polarizability is a frequency-dependent property.
However, only the static polarizability was calculated to derive
the refractive index under zero-eld conditions. Given that the
target liquid crystal molecules are transparent with negligible
absorption in the visible region and lack low energy excited
states, the frequency-dependent polarizability remains nearly
constant or slightly monotonically decreases. It ultimately
converges to the static polarizability value.53 Consequently, the
relative refractive indices of different molecular structures
remain unaffected by frequency, thus not impacting the
subsequent material screening process. Moreover, the compu-
tational cost of determining static polarizability is signicantly
lower than that of frequency-dependent polarizability, enabling
the use of static values to approximate the experimentally
measured refractive indices at specic wavelengths.

Accurately calculating the polarizability is a computationally
intensive task that imposes strict requirements on the disper-
sion functions of the basis set and the selection of DFT
functionals.54–56 To reduce computational expense and improve
efficiency, the ZPol basis set has been rigorously validated as
a reliable choice to achieve moderate accuracy in the evaluation
of molecular linear electrical properties.57–59 It has demon-
strated competitiveness with larger and more general basis sets
while maintaining reliability in polarizability estimates for
organic molecules.60,61 To further enhance computational effi-
ciency, we calculated the polarizability of dimers for the ve
RSC Adv., 2025, 15, 43161–43173 | 43165
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reactive mesogens and their constituent monomers separately,
with results summarized in Table S3. The ndings show that
the averaged polarizability of the twomonomers deviates by less
than 2% from that of the corresponding dimer, demonstrating
that monomers can serve as a computationally efficient alter-
native for polarizability calculations. Furthermore, conforma-
tional differences between dimers and monomers contribute to
an error of less than 2%. Therefore, we select the lowest energy
dimer conformation, compute the polarizability of its indi-
vidual reactive mesogens separately, and use the averaged
value.

We used the M06-HF functional62 along with the ZPol basis
set (containing both polarization and diffuse functions) to
calculate the polarizabilities of 77 liquid crystal small molecules
reported in the literature, and compared the results with
experimental values, as shown in Fig. S7. All calculations were
performed using the Gaussian 16.c soware package.35 The navg
calculated by aavg showed excellent agreement with the experi-
mental results, while the calculated ne was slightly higher and
the no was slightly lower than the experimental values. This
discrepancy arises because DFT calculations for individual
molecules do not account for the inuence of order parameter
on ne and no in liquid crystal polymer lms. Consequently, in
the subsequent genetic algorithm-based structure exploration,
we used navg as the criterion to identify candidates with high
refractive index.

In the high-throughput refractive index calculation pipeline,
DFT calculations are performed on monomers derived from the
lowest energy dimer conguration. Molecular volume is ob-
tained from wavefunctions, and density is simulated using
a calibrated packing coefficient. By integrating these parame-
ters with polarizability calculations, the polymer lm's refrac-
tive index is approximated. This approach optimally balances
computational efficiency and accuracy, making it particularly
suitable for high-throughput screening and the systematic
exploration of liquid crystal materials.
Fig. 4 (a) Design of reactive mesogen structures and the five steps of
crossover, mutation, and termination. (b) Distribution of maximum absorp
and 2.

43166 | RSC Adv., 2025, 15, 43161–43173
3 Genetic algorithm design

A major challenge in designing novel materials for optical
applications is identifying optimal molecular structures within
the vast chemical space. To overcome this challenge, we use an
inverse design strategy based on a genetic algorithm for global
multi-objective optimization – a widely recognized approach for
accelerating the discovery of organic materials with desired
optical and electronic properties.63–65 Compared to machine
learning, genetic algorithms are computationally efficient, as
they do not require large training datasets, and they offer
a signicant speed advantage over traditional experimental
workows. During multiple iterations of the evolutionary algo-
rithm, the population of monomer structures undergoes
computational crossover and mutation operations (mimicking
biological processes), such as the exchange or substitution of
molecular fragments. Ultimately, candidates that pass the
initial screening are subjected to further property computations
with rst-principles methods in our computational pipeline.
We note https://github.com/hutchisonlab/hutchison-polymer-
GA as the basis for the implementation and adaptation of the
genetic algorithm for this work.

The initial batch of generated reactive mesogen structures
begins with the iterative process of the genetic algorithm. Using
an established computational pipeline, UV-vis spectra and
theoretical refractive index values are obtained for each mole-
cule. A tness function ranks themolecules, selecting those that
best balance transparency and refractive index for the next
iteration. New molecular structures are generated through
crossover and mutation, and the process continues until the
generated molecules meet the optical requirements. The itera-
tion then terminates, yielding the desired reactive mesogen
structures (Fig. 4(a)).

The highlight of our pipeline is the molecular generation
from building blocks, which is unique to liquid crystals, which
will be discussed in more detail in the following sections.
genetic algorithm for evolutionary iterations: initialization, selection,
tion wavelength and ne of molecules obtained from Fitness functions 1

© 2025 The Author(s). Published by the Royal Society of Chemistry
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3.1 Molecular building blocks

The molecular building blocks include the mesogen core, an
acrylate-linked alkyl chain, and a terminal substituent, as
illustrated in Fig. 4(a). Each moiety types was identied and
extracted from a liquid crystal molecule literature.

The database comprises four polymerizable alkyl chain
building blocks incorporating different heteroatoms, 15
substituent building blocks positioned at the opposite end of
the mesogen, and 52 mesogen core building blocks, including
16 linear bridges and 36 aromatic rings (Fig. S12). The length of
the mesogen core is constrained to 3–7 units, as shorter cores
exhibit insufficient anisotropy between their long and short
axes, hindering liquid crystal phase formation. However,
excessively long cores exhibit extended conjugation, which
signicantly reduces optical transparency. The unique design of
these building blocks for reactive mesogens precisely captures
key molecular structural features, enhancing the efficiency of
the genetic algorithm by accelerating convergence toward target
properties. The liquid crystalline phase behavior of the gener-
ated molecules is further validated through MD simulations, as
discussed in subsequent sections.
3.2 Fitness functions

According to the sum-over-states (SOS) equations, achieving
both high optical transparency and high polarizability in
a single monomer is inherently limited by electronic delocal-
ization. Molecules with higher transparency per unit volume
typically exhibit lower polarizability, as the delocalized elec-
trons are more easily excited by shorter wavelengths. Given
these inherent trade-offs, where low absorption and high
refractive index oen conict, optimizing these characteristics
simultaneously becomes a complex challenge. Therefore, the
tness function plays a critical role in ranking, selecting, and
ltering target structures, ensuring that the selected molecules
are aligned with the desired target properties.

To optimize both optical transparency and refractive index,
we designed two specialized tness functions to guide the
iterative selection process. The tness functions consist of three
components: the transparency score, the average refractive
index value score, and the anisotropic refractive index differ-
ence score. By adjusting the weights of each component, we
rene the ranking of candidates at each iteration, ensuring that
only the most promising candidates progress to the next stage.

The transparency score is determined by the maximum
absorption wavelength and the ratio of the absorbance of
a molecule at its maximum absorption wavelength to its
absorbance at 460 nm. Molecules with shorter maximum
absorption wavelengths and lower absorbance at 460 nm
receive higher transparency scores. The average refractive index
score prioritizes molecules with higher average refractive
indices, promoting the selection of high refractive index
candidates. The anisotropic refractive index difference is
included to avoid deviations from a rod-shaped molecular
shape. Randomly generated reactive mesogen core building
blocks may containmultiple bridge linkers, whichmight reduce
molecular rigidity. This can hinder nematic phase packing or
© 2025 The Author(s). Published by the Royal Society of Chemistry
even prevent the molecule from being considered a liquid
crystal monomer. Including the anisotropic refractive index
difference in the tness function helps favor rod-like molecules,
making it more likely that they will go to the next iteration.

Fitness function 1 gives more weight to the transparency
score. It starts with transparent molecules, especially those with
a maximum absorption wavelength shorter than 460 nm,
selecting candidates with higher refractive indices in subse-
quent iterations. Fitness function 2 focuses on molecules with
refractive indices greater than 2.0, ltering for transparency in
later stages. The specic formulas for both tness functions can
be found in SI Section 3. Although the two functions have
different weightings, both prioritize molecules that achieve
high refractive index and transparency, making it more likely
for them to progress to the next iteration. As shown in Fig. 4(b),
molecules optimized with Fitness function 1 tend to cluster in
regions with low absorption and low ne, while those optimized
with Fitness function 2 are found in areas with higher ne and
closer to the visible absorption range. This highlights the
challenge of balancing transparency and refractive index, and
demonstrates how our dual tness functions effectively guide
molecules toward the desired optical properties. With each
iteration, the molecules move closer to our target area.

4 Results and discussion
4.1 Genetic algorithm convergence

For both tness functions, we performed ve independent runs
of the genetic algorithm, starting from a random initial seed of
32 molecules, each run lasting 30 epochs. To evaluate the
convergence behavior of the genetic algorithm, we analyzed the
evolution of tness scores, refractive indices, and transparency
scores over epochs for each run. We report the individual and
combined behaviors of the runs shown in Fig. 5 and 6.

Fitness function 1 showed minimal variability across the ve
runs, and all runs demonstrated a clear convergence toward
maximizing the tness score. The maximum, minimum, and
average scores of the population consistently increased, indi-
cating that the genetic algorithm successfully identied mole-
cules with both high transparency and refractive index
(Fig. 5(a)). Transparency scores within the population also
showed signicant convergence toward the maximum value of
10, with high consistency across runs (Fig. 5(d)). Moreover, both
ne and navg showed an increase across epochs in all ve runs,
with the average values improving from 1.80 to 1.95 for ne and
from 1.51 to 1.58 for navg (Fig. 5(b) and (c)). In contrast, no,
representing the refractive index along the short axis of the
reactive mesogen, remained unchanged during the molecular
design process (Fig. 5(e)). Given the competing relationship
between transparency and refractive index, Fitness function 1
prioritizes maximizing molecular transparency. As a result, the
improvement in transparency scores during the iterations far
outpaced the increases in ne and navg, which aligns with the
expected outcome for the target molecules.

Fitness function 2 showed greater variability in the ve
independent runs compared to Fitness function 1. Both ne and
navg demonstrated increases during the initial ten epochs before
RSC Adv., 2025, 15, 43161–43173 | 43167
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Fig. 5 Score and property distributions across all five independent genetic algorithm runs: (a and f) show fitness score, (b and g) show
extraordinary refractive index ne, (c and h) show average refractive index navg, (d and i) show transparency score, (e and j) show ordinary refractive
index no for Fitness functions 1 and 2, respectively.
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convergence, with ne increasing from 1.95 to 2.03 and navg
increasing from 1.62 to 1.65 (Fig. 5(g) and (h)). Compared to
Fitness function 1, Fitness function 2 achieved higher values for
both ne and navg. Obvious variability was observed in the tness
function score, with the mean value remaining stable at
approximately 205 throughout iterations, while the maximum
score in one run reached as high as 260 (Fig. 6(e)). Similar
variability was observed for the transparency score, where the
average value remained nearly constant, but the maximum
value improved signicantly between epochs. These distinct
variations in transparency scores can be attributed to the
constraint imposed by Fitness function 2, requiring navg to
43168 | RSC Adv., 2025, 15, 43161–43173
exceed 1.6. This restriction effectively narrows the search space,
making advancements in transparency highly reliant on the
stochastic discovery of top-performing candidates. As a result,
the variability between different runs became more
pronounced, with the success of the process relied on the
inherent randomness of crossover and mutation in the genetic
algorithm. Moreover, the design of the molecule along the short
axis remained unchanged, so the no value showed little uctu-
ation (Fig. 5(j)). Despite the considerable variability in the
optimization outcomes across different runs with Fitness
function 2, the average refractive index between 5 runs consis-
tently reached values above 2.0 for all runs. Furthermore, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Metrics across each of the five independent genetic algorithm runs: (a and e) show fitness score, (b and f) show extraordinary refractive
index ne, (c and g) show average refractive index navg, (d and h) show transparency score for Fitness functions 1 and 2, respectively.
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refractive index demonstrated an upward trend with uctua-
tions in all three runs, aligning with our expectations.

4.2 Building block frequencies

We analyzed the high-frequency building blocks in reactive
mesogens optimized by the two tness functions. In Fitness
function 1, A17 (benzoxazole) and A20 (quinoline) consistently
exhibited high occurrence in all ve runs, whereas other
aromatic building blocks showed high frequencies in only one
run (Fig. 7(a)). In Fitness function 2, A12, A16, and A25 were
dominant in at least one run, with frequencies exceeding 50%
and remaining prevalent in others (Fig. 7(e)). Despite the
differing selection criteria of the two tness functions, both
favored aromatic rings with multiple heteroatoms and fused
ring systems. The presence of heteroatoms modies the elec-
tron distribution, inuencing dipole interactions and electronic
transitions, which can enhance polarizability. Similarly, fused
rings with extended p-conjugation facilitate electron delocal-
ization, further improving polarizability. However, excessive
ring fusion or the introduction of strongly electron-withdrawing
heteroatoms can shi absorption into the visible range,
reducing optical transparency. These high-frequency building
blocks provide a balance between polarizability and
transparency.

For the bridge linkers in the mesogen core, C^C triple
bonds were highly frequent and consistent in all ve runs in
both tness functions, especially in Fitness function 1, which
prioritizes transparency. Their rigid structure stabilizes molec-
ular geometry, creating a more structured backbone that
enhances the packing efficiency of reactive mesogens. This
© 2025 The Author(s). Published by the Royal Society of Chemistry
improved packing promotes intermolecular interactions,
contributing to greater order in the nematic phase. Addition-
ally, the high bond energy and localization of p-electrons in
triple bonds widen the HOMO–LUMO gap, shiing absorption
into the UV region and avoiding visible absorption. As a result,
C^C triple bonds improve both transparency and structural
rigidity, making them a preferred choice over other linear
linkers. In contrast, Fitness function 2 favored azo (–N]N–)
linkages and halogen-containing bridge linkers. Halogen
substitution modies electron density distribution and can
enhance polarizability via induced dipole effects. However, azo
bonds are not strictly linear and can undergo cis–trans isomer-
ization under light exposure, potentially disrupting the nematic
phase stability. Consequently, they were less effective in Fitness
function 1, which prioritizes optical transparency. This high-
lights C^C triple bonds as an optimal choice, offering
a balance between high polarizability, rigidity, and excellent
optical transparency.

The –N]C]S end-group, prevalent across all optimization
runs, signicantly improves both polarizability and trans-
parency. The electron-withdrawing sulfur and nitrogen atoms,
by reducing electron density, promote electron delocalization
within the conjugated system, thereby enhancing the polariz-
ability. Furthermore, conjugation between the –C]N and –C]
S groups further facilitates electron delocalization, modifying
the molecular electronic structure. This change in electronic
structure shis the absorption to the UV region, as the modied
energy levels make electronic transitions more likely to occur in
the UV range. Consequently, the –N]C]S end-group not only
enhances polarizability but also maintains transparency,
RSC Adv., 2025, 15, 43161–43173 | 43169
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Fig. 7 Building block frequencies of each of five genetic algorithm runs with Fitness functions 1 and 2, including (a and e) aromatic rings, (b and f)
linear bridges, (c and g) end groups, (d and h) tails.
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making it an ideal choice for the design of liquid crystal
molecules.

For exible chains with different heteroatoms, the results
across all ve runs were consistent in both Fitness functions 1
and 2. Molecules substituted with oxygen and nitrogen
contributed more to polarizability, while sulfur played a more
signicant role in enhancing transparency. Sulfur, with its
larger size and lower electronegativity, participating in conju-
gation through electron delocalization. This electron donation
helps distribute electron density more evenly across the mole-
cule, avoiding electronic transitions in the visible range. As
a result, sulfur-containing exible chains are more transparent,
as their electronic transitions tend to shi into the UV range. In
contrast, carbon atoms in the exible side chain had the
weakest impact on both polarizability and transparency across
both tness functions, likely due to their lower electron-
donating ability and smaller size, which make them less effec-
tive at stabilizing the structure or shiing absorption toward
shorter wavelengths.

These outcomes may be attributed to the inherent stochas-
ticity of genetic algorithms, which require a greater number of
iterations and repeated experiments to avoid local minima. The
current limited iterations and repetitions may have overlooked
top candidates. However, within the limited number of runs and
epochs, we have still identied several consistent candidates,
which have been highly valuable for the molecular design.
43170 | RSC Adv., 2025, 15, 43161–43173
4.3 Generated material validations

To verify the existence of the nematic phase in the generated
reactive mesogen structures, we selected candidates that
simultaneously satised two criteria: ne > 2.0 and absorption
intensity below 0.1% at 460 nm relative to the maximum peak.
Aer removing duplicates and candidates with identical main-
chain building blocks, 10 unique candidates with distinct
main-chain cores remained for MD validation, ensuring repre-
sentative coverage (Fig. S10). The results showed that six
candidates exhibited a nematic phase within the temperature
range of 200 K to 700 K. Candidate 1 did not undergo a nematic
phase transition and maintained an order parameter below 0.2.
This result can be attributed to the elongated aspect ratio of the
mesogen core, which is entirely composed of C^C triple bond
bridge linkers (Fig. S10). Compared to cores formed by aromatic
rings, linear bridges produce a much smaller radius along the
no direction, hindering the formation of ordered structures
during the cooling process. In contrast, Candidates 8–10
exhibited phase transition temperatures that exceeded 700 K.
These candidates consistently incorporated the fused ring
building block and the mesogen core composed of four
building blocks, imparting greater rigidity and enhanced p–p

stacking interactions. Consequently, the increased molecular
rigidity and improved stacking efficiency substantially elevated
the transition temperatures of these candidates.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 (a) Order parameter as a function of temperature for Candidate 2 during the MD cooling process. (b) Polarizability density distribution of
Candidate 2, with the green and blue isosurfaces representing positive and negative values, respectively. (c) Average and individual spectra of
eight dimers of Candidate 2 selected through the dimer generation pipeline.
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Among the six molecules exhibiting liquid crystalline pha-
ses, Candidate 2 was selected for polarizability density analysis,
as its transition temperature is the lowest and falls within an
experimentally accessible range. The polarizability density of
Candidate 2 is primarily concentrated near the triple bonds and
the thiocyanate group at one end of the molecule, as well as
around the sulfur atom at the opposite end. This localization
arises from the high electron density and polarizability of the
triple bonds and the strong dipole moment of the thiocyanate
group, which enhances the molecule's responsiveness to
external electric elds. Similarly, the sulfur atom contributes
signicantly to the polarizability due to its large atomic radius
and high polarizability, highlighting its role in inuencing the
optical properties.

Subsequently, we employed the TD-DFT method to calculate
the excitation energies and oscillator strengths of the rst 20
excited states of Candidate 2. The maximum absorption peak
was observed at 365 nm (Fig. 8). A strong absorption band is
attributed to the doubly degenerate HOMO−1 / LUMO and
HOMO / LUMO+1, which correspond to the p / p* transi-
tion, while all other excitations contribute negligibly to the
absorption spectrum (Fig. S11). As no signicant absorption
band is observed in the visible region, the polymer formed by
Candidate 2 is expected to be colorless.
5 Conclusion

In this study, we developed a material discovery pipeline for
liquid crystal molecules that integrates the semi-empirical
GFN2-xTB method with rst-principles (TD-)DFT calculations.
This integration enables rapid iterations within a genetic algo-
rithm framework, allowing for efficient exploration of the
chemical search space. Our approach successfully identies
potential reactive mesogen structures characterized by high
transparency and high refractive indices.

The dimer generation pipeline incorporates the inuence of
liquid crystal molecular packing. We have validated the accu-
racy and efficiency of this pipeline by comparing experimental
and calculated values for ve commercial reactive mesogens.
These comparisons demonstrate the pipeline's capability to
reliably predict material properties, thereby supporting its use
in the discovery of new liquid crystal materials.
© 2025 The Author(s). Published by the Royal Society of Chemistry
The genetic algorithm demonstrated its effectiveness as
a methodology for optimizing material absorption and refrac-
tive index by efficiently exploring and targeting specic regions
within the chemical search space. Despite the inherent
randomness of genetic algorithms, it consistently identied
recurring high-frequency building blocks and specic structural
arrangements across independent runs. This consistency
suggests that increasing the number of iterations and inde-
pendent runs will further enhance the robustness and reliability
of the results, solidifying the effectiveness of this design
strategy.

Our computational analysis revealed that the 10 screened
candidates exhibit less than 0.1% absorption at 460 nm
compared to the maximum absorption peak absorbance, with
ne values exceeding 2.0. The highest candidate shows an ne
value exceeding 2.1, and all candidates were further validated
with MD simulations to conrm the existence of the nematic
phase. In cases with lower transparency constraints or addi-
tional side-chain modications, we anticipate even higher ne
values for our candidates.

Future research could focus on improving the computational
efficiency of the pipeline and advancing the prediction of
nematic phase transitions. These improvements would enable
deeper exploration of the chemical space for materials with
enhanced optical properties. In addition, our physics-driven
workow, validated at the quantum chemical level, can serve
as a complementary source of high-quality datasets for training
and benchmarking machine learning/deep learning models.
Such integration of physics-based validation with data-driven
approaches holds promise for expanding the potential appli-
cations of liquid crystal-based optical materials and acceler-
ating the development of high-performance optical devices.
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