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truction and sustainable recycling
strategies of lithium-ion batteries across electric
vehicle platforms

Phuoc-Anh Le *

The rapid adoption of electric vehicles (EVs) hinges on addressing two critical challenges of lithium-ion

batteries (LIBs): thermal safety risks and end-of-life sustainability. This review provides a systematic

comparison of LIB integration across four EV architectures including battery electric (BEV), hybrid (HEV),

plug-in hybrid (PHEV), and fuel cell electric vehicles (FCEV), with a dual focus on mitigating thermal

runaway and advancing recycling technologies. Through analysis of recent previous studies, we reveal

three key findings: (1) battery pack configurations and thermal management systems across platforms;

(2) thermal runaway mechanisms and mitigation strategies through case studies of field failures; and (3)

emerging recycling methods achieve material recovery with lower energy input, though industrial-scale

implementation remains challenging. Our meta-analysis identifies hydrometallurgy as the most viable

near-term solution for LIB recycling (80–95% metal recovery), while highlighting promising alternatives

like electrochemical relithiation that preserve cathode crystal structure. The work further examines

critical infrastructure gaps, demonstrating that renewable-powered charging and localized recycling

networks could reduce EV lifecycle emissions by 30–40%. By bridging materials innovation with systems

engineering, this review provides a roadmap for developing safer, more sustainable LIB ecosystems from

cell design to second-life applications, and prioritizes research directions for next-generation batteries

compatible with evolving EV architectures.
1 Introduction

The global reliance on fossil fuels and the environmental
degradation caused by internal combustion engine vehicles
have spurred intensive research into advanced battery systems
for electric and hybrid vehicles.1–3 Lithium-ion batteries (LIBs)
have emerged as the dominant energy storage solution,
enabling EVs to reduce transportation-related CO2 emissions by
up to 70% compared to conventional combustion engine vehi-
cles.4 Beyond greenhouse gas reductions, EVs signicantly
decrease urban air pollutants such as nitrogen oxides (NOx) and
particulate matter (PM2.5), contributing to improved air
quality.5–9 Additionally, EVs exhibit a 3–5 dB reduction in traffic
noise, mitigating noise pollution in densely populated areas.10,11

However, widespread EV adoption faces critical challenges,
including limited energy density,12,13 supply chain vulnerabil-
ities for key materials like lithium and cobalt,14,15 and persistent
safety concerns related to thermal runaway.16

Secondary batteries, specically nickel–metal hydride and
lithium-ion batteries, are widely recognized as the most tech-
nological advancement in rechargeable batteries. They have
garnered a lot of attention and are currently the norm for many
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types of electric and hybrid cars.17,18 The need for next-
generation rechargeable batteries with high power, high
capacity, fast charging rate, long cycle life, signicantly better
safety performance, and reasonable cost has become the pre-
vailing focus in the electric and hybrid vehicle industry.19

Additionally, it is anticipated that as electric car sales rise
globally over the course of the forecast period, demand for
electric vehicles equipped with rechargeable batteries will
correspondingly rise.20 The technology for electric vehicles is
constantly progressing to meet demands for high performance
and power density. In the upcoming years, electric and hybrid
cars are expected to extensively utilize lithium-ion batteries.21

The tendency is supported by the rise in fossil fuel prices and
public awareness of EVs' benets, which would ultimately
encourage growth within the automotive application category.

Before LIBs—integrated EVs—dominated the commercial
market, hybrid electric vehicles oen used nickel–metal hydride
battery generation to power the electric motor, sharing the load
with the use of the internal combustion engine.22 These are, of
course, hybrid cars that use both electric and internal
combustion engines with the aim of lowering travel costs,
lowering emissions, and reducing reliance on charging
stations.23 Despite its notable reduction in greenhouse gas
emissions, its inherently complex structure plays a role in
gasoline engines, producing CO2 during high-load conditions.
RSC Adv., 2025, 15, 35687–35725 | 35687
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The widespread commercialization of LIBs starting in the 1990s
has led to a signicant drop in the cost of these batteries, setting
the stage for devices using this generation of batteries to be
more widely used.24,25 Until the expansion of hybrid cars using
LIBs, the innovation of LIB has created the premise for radically
revolutionizing the electric vehicle sector: replacing conven-
tional combustion engines with highly efficient LIB-powered
electric motors.26,27 Batteries are currently used in a wide
range of applications, primarily consumer electronics. Their
advantages also transfer quite well to the stationary energy
storage and electric mobility industries, including electric cars,
motorcycles, scooters, bicycles, and advanced wheelchairs.28,29

To claim that our lives today would be unimaginable without
the use of batteries is not an exaggeration. Batteries are also
considered a substitution for gasoline and other energy-related
solutions, notably in the present automobile industry trans-
formation.3,30 In the 2030s, battery-powered electric automo-
biles are anticipated to revolutionize the future of
transportation.31

Although electric cars still only account for a small portion of
the overall automobile industry, their attractiveness is
continuing to grow as automakers adopt modern technology to
enhance EVs' performance and characteristics. One of the best
zero-emission vehicles today, electric cars come in a variety of
unique designs and pricing points. Currently, electric car types
have evolved and been able to be customized to different market
demands. Different types of EVs, such as full-battery electric
vehicles (BEVs) and their commercial variations, including
hybrid electric vehicles (HEVs) and plug-in hybrid electric
vehicles (PHEVs), in addition to another alternative fuel cell
electric car (FCEV), have been extensively developed, appre-
ciably reducing greenhouse gas emissions.16 Compared to
internal combustion engines (ICEs), EVs are considered more
environmentally friendly, have higher energy efficiency, and
have lower maintenance, fuel, and operating costs. How is an
electric vehicle operated? The type of electric vehicle determines
how it operates. Future developments and a quick discussion on
the various types of electric vehicles and their operation will be
provided in this review.

This review aims to systematically analyze four commercially
prevalent electric vehicle types—BEVs, HEVs, PHEVs, and
FCEVs, which focuses on their lithium-ion battery architectures,
safety challenges, and sustainability trade-offs. While prior
studies have investigated individual EV categories in isolation,
such as BEV energy efficiency optimization32–35 and lifecycle cost
analyses,36–38 a comprehensive, cross-category evaluation of
lithium-ion battery (LIB) integration strategies remains under-
developed, particularly regarding two critical aspects: (i)
comparative thermal runaway mitigation approaches across EV
architectures, and (ii) standardized frameworks for end-of-life
battery management. This fragmentation hinders systematic
progress in EV safety and sustainability. To address this gap, we
employ a three-tiered methodology: (1) a meta-analysis of recent
experimental data (2015–2023) on LIB performance across EV
types, (2) a critical evaluation of thermal management systems
and their failure modes, and (3) an assessment of recycling
techniques through the lens of scalability and environmental
35688 | RSC Adv., 2025, 15, 35687–35725
impact. By synthesizing these dimensions, this work provides
a roadmap for optimizing EV safety and circular economy
practices, while identifying urgent research priorities for next-
generation LIBs, including sodium-ion batteries, metal–air
batteries, and all solid-state batteries.
2 The discussion for four commercial
types of electric vehicles
2.1 Electric vehicle revolution with lithium-ion battery

The lithium-ion battery story began in 1960 with several reports
on a new generation of batteries using CuF2/lithium
electrodes.39–42 Until the 1970s, the interesting introduction of
a TiS2 electrode with high performance provided a promising
future for commercialization at that time. However, it was
limited by its high cost and hazardous generation of H2S when
exposed to ambient air.43,44 A decade later, during the golden
decades of the 1980s and 1990s, ground-breaking research,
prolic patents, as well as the commercialization of lithium-ion
batteries, were established. The introduction of two novel
electrode materials, LiCoO2 and graphite, along with the
formation of a solid-electrolyte interphase that offers stable
operation at high temperatures, increases battery life, and
lessens explosive creation, has become a game changer.45,46 The
innovation led to the rst commercialization of lithium-ion
batteries in the 1990s, which fundamentally altered the
portable electronics sector.

Fig. 1a presents a chronology of the evolution of lithium
batteries, highlighting signicant events at each stage, from the
time it rst emerged as an attractive option to the point at which
it dominated the market for manufacture, distribution, and
consumption. Fig. 1b illustrates the quality and time spent
collecting batteries from three large markets in Europe, Aus-
tralia, and the United States in 2012, when lithium-ion batteries
became more popular and appeared in various devices.47 The
rst generation of dry (low volumes of liquid) battery chemis-
tries, such as lead-acid, zinc-carbon, and nickel–cadmium
batteries, dominated much of the market.48–50 Following the
success of rst-generation batteries, second generations were
developed and commercialized with greater storage capacity,
longer cycle life, and greater power density. The state-of-the-art
has contributed to the electronic technology revolution of the
early 20th century. These included numerous elite battery
families, such as rechargeable alkaline batteries, including
nickel–iron (NiFe) and nickel metal hydride (NiMH).51,52

Nevertheless, rechargeable alkaline batteries have several chal-
lenges with energy density, recycling, ammability, thermal
safety, and raising other environmental concerns.53 These
issues must be resolved by the following generation.

Currently on the market, there are many types of lithium-ion
batteries obtaining their unique advantages and disadvantages
that are utilized for diverse electronic devices. Typical battery
cathode and anode chemistry comprises lithium cobalt oxide
(LCO), lithium nickel oxide (LNO), lithium manganese oxide
(LMO), lithium nickel manganese cobalt oxide (NMC), lithium
iron phosphate (LFP), lithium nickel cobalt aluminum oxide
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) A timeline of lithium-ion batteries following (b) source, quality and spent batteries collection. Figure has been reproduced from ref. 47
with permission from Royal Society of Chemistry, copyright 2021.
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(NCA), and, graphite anodes, silicon-based anodes, and lithium
titanate (LTO) anodes.54–58 Today, LIBs can be considered
a widely commercial product. LIBs have gradually dominated
the market, overwhelming the remaining generations owing to
their outstanding performance. From tiny smart bracelets to
truck-sized electric vehicles, LIBs have inltrated our daily lives.
Thereby, the dominance of LIBs will be long-lasting in the next
decade, before the evolution of the next generation. However,
this has triggered an unprecedented increase in demand for
LIBs in terms of both quantity (number of cells) and quality
(energy densities of cells). This leads to concerns regarding
safety and the supply chain. Problems pertaining to thermal
runaways and overmining critical mineral resources (such as
copper, manganese, nickel, aluminum, cobalt, and zinc) are
beginning to take center stage and can be arguably highlighted
as some of the main hurdles for the research eld to overcome.
The increasing use and further development of LIBs have
generated many consequences (resources and pollution) that
need to be overcome and addressed as soon as possible. Thus,
the next two parts will illustrate the brief of commercial lithium-
© 2025 The Author(s). Published by the Royal Society of Chemistry
ion batteries in electric vehicles in relation to the thermal
runaway phenomenon and recycling.
2.2 Lithium-ion battery fabrication and package for electric
vehicles

A commercial battery cell consists of the following main
components: a cathode, an anode, and an electrolyte. Depend-
ing on the application, sub-components such as tabs, separa-
tors, current collectors, and housing cases can be varied in
number and size. Lithium ions can be stored in cathode and
anode layers during the discharging process, while electrolyte
acts as a medium for lithium transportation (Fig. 2).59 Typically,
in a standard lithium-ion battery, the working mechanism of
a lithium-ion battery can be simply explained by the charge and
discharge processes. Under the charging voltage, lithium ions
are created on the battery's cathode layer and are moved to the
anode layer via the electrolyte. In the anode layer, the electrode,
mainly made in porous form, is generally composed of different
carbon forms or silicon that allow for lithium to be absorbed or
alloyed, accommodating a large number of lithium ions within
RSC Adv., 2025, 15, 35687–35725 | 35689
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Fig. 2 (a) General construction of one lithium-ion battery cell with intensively studied electrode materials.
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the structure. With more lithium ions stored, the charging
capacity rises. In the discharge process and by providing electric
current, the anode releases lithium ions to the cathode, creating
Fig. 3 The three most popular electric vehicle battery modules are base

35690 | RSC Adv., 2025, 15, 35687–35725
electron ows from one side to another. That is, each Li ion
moves from the anode to the cathode in the battery, and in the
external circuit, there is another electron moving from the
d on three different cell types.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 A brief history and evolution of electric vehicles.
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cathode to the anode, generating current ows. This creates
a charge balance between the two electrodes.

Different manufacturers utilize different batteries in their
electric vehicles. The chemical reaction in each of their batteries
varies somewhat, but they are all basically constructed using the
same battery cells and modules. Battery modules are
Fig. 5 The general construction of four most popular electric vehicles.

© 2025 The Author(s). Published by the Royal Society of Chemistry
constructed from an enormous number of cells, with the
nominal voltage falling between 3 and 3.8 volts. These cells are
connected in series or parallel to generate the required voltage
and current. Currently, the primary lithium-ion battery cong-
urations are cylindrical, prismatic, and pouch cell types, with
each geometry exhibiting unique trade-offs in energy density,
RSC Adv., 2025, 15, 35687–35725 | 35691
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Fig. 6 Main components of battery electric vehicles.
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thermal management, and manufacturability (Fig. 3).60–63 The
cylindrical cell batteries are mostly well known due to their low
manufacturing costs, robust mechanical structure, stream-
lining processing, and high packing ratio (jelly roll-to-can ratio).
The cylinder's drawbacks, however, are limited in available
capacity and heat dissipation. To improve the operating
capacity, prismatic cells were widely developed to adapt to
applications calling for higher capacity. Each manufacturer
develops their own format because they are made in a variety of
sizes and have a box-like shape. Prismatic cells, because of their
natural at, rectangular shape, can achieve excellent power
while improving thermal dissipation by having a high surface
area and an increasing number of tabs for each layer (for
stacking design). On the other hand, gas generation can be fatal
as it builds up high internal pressure, damaging the housing
case and jelly roll structure. As a consequence, severe thermal
runaway is the highest priority in designing and developing
these high-energy cells. The complex manufacturing process
and higher cost per GWh, coming from “dead space” inside the
cell, challenge OEMs to optimize. The newly developed type of
aluminum-sealed-pouch cell is more exible for packaging
Table 1 Battery type characterizations for electric vehicles. Table modifi

Battery types LCO LMO

Cathode/Anode LiCoO2/graphite LiMn2O4/g

Commercial time 1991 1996
Voltage, V 3.0–4.2 3.0–4.2
Energy density, Wh kg−1 150–200 100–150
Charge (C-rate) 0.7–1 C. Charge current

above 1 C shortens battery life
0.7–1 C wi
3 C, and ch

Discharge (C-rate) 1 C. Discharge current
above 1 C shortens battery life

1 C with m
10 C for sp

Cycle life, cycles 500–1000 300–700
Thermal runaway, °C 150 250

35692 | RSC Adv., 2025, 15, 35687–35725
while enhancing the packing ratio (cell-to-module). This offers
the advantage of being portable and able to t into the little
space inside the device, but it is particularly vulnerable to
external stress and heat generation. Thus, the swelling and
ammability that result from prolonged charge–discharge
durations are two important issues with pouch cells. In fact,
thermal runaway represents a critical safety risk across all
lithium-ion battery congurations including cylindrical, pris-
matic, and pouch cells which though manifestation varies by
design.64,65 Cylindrical cells benet from robust metal casings
that may delay propagation, while prismatic cells' compact
stacked electrodes and pouch cells' thin, exible packaging
accelerate heat transfer, increasing vulnerability to cascading
failures.66–68 Common triggers like internal shorts, over-
charging, or mechanical abuse initiate exothermic reactions in
any format, but pouch cells exhibit particularly rapid thermal
spread due to minimal thermal mass between layers, whereas
cylindrical designs may localize damage through built-in vent-
ing mechanisms.69–73 These differences underscore that while
no form factor is immune, understanding format-specic
ed from ref. 85 with permission from jESE, copyright 202185

NMC LFP NCA

raphite LiNiMnCoO2/
graphite

LiFePO4/
graphite

LiNiCoAlO2/
graphite

2008 1996 1999
3.0–4.2 2.5–3.65 3.0–4.2
150–220 90–120 200–260

th maximum until
arges to 4.2 V

Only from 0.7 to 1 C 1 C ∼0.7 C

aximum until
ecial versions

1 C 1 C 1 C typical

1000–2000 2000 500
210 270 150

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Main components of hybrid electric vehicles.
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failure modes is essential for tailored safety solutions in battery
systems.

Fig. 4 presents a general timeline of the technological and
commercial evolution of EVs from their experimental begin-
nings in the late 19th century to their projected market domi-
nance in the mid-21st century. The earliest EVs presented in
London during the 1890 s, utilizing nickel–cadmium (Ni–Cd)
battery technology by Hartford Electric Light Company.74

However, these early efforts were ultimately overshadowed by
the rapid development of inexpensive, mass-produced gasoline
vehicles, combined with the establishment of extensive petro-
leum infrastructure, which relegated EVs to niche applications
for most of the 20th century. The modern renaissance of electric
mobility began with several key milestones: NASA's deployment
Fig. 8 Main components of plug-in hybrid electric vehicles.

© 2025 The Author(s). Published by the Royal Society of Chemistry
of the electric Lunar Roving Vehicle during the Apollo 15
mission in 1971 demonstrated the viability of battery-powered
transportation in extreme environments.74–76 The 1997 intro-
duction of Toyota's Prius, the rst mass-produced hybrid elec-
tric vehicle, marked a turning point in consumer acceptance of
electried powertrains. The subsequent decade witnessed crit-
ical technological breakthroughs, particularly Tesla Motors'
2006 Roadster, which proved lithium-ion batteries could deliver
both performance and range, and BYD Auto's 2008 F3DM, the
world's rst mass-produced plug-in hybrid electric vehicle.
Since 2010, multiple converging factors have driven unprece-
dented growth in EV adoption. Increasing environmental
regulations, volatile fossil fuel prices, and dramatic improve-
ments in lithium-ion battery technology (with energy densities
RSC Adv., 2025, 15, 35687–35725 | 35693
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Fig. 9 Main components of fuel cell electric vehicles.
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increasing by 5–8% annually while costs decreased by approxi-
mately 80% between 2010 and 2020) have transformed the
automotive landscape.77–79 Current research focuses on next-
Fig. 10 An example of a hybrid thermal management system concept for
with an emphasis on the battery pack. Figure has been reproduced from

35694 | RSC Adv., 2025, 15, 35687–35725
generation battery chemistries including sodium-ion, all-solid-
state, and metal–air congurations that promise further
improvements in safety, energy density, and sustainability.
a battery electric car that combines passive and active cooling systems
ref. 111 with permission of Elsevier, copyright 2018.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 (a) The quantitative chain reactions in thermal runaway, and (b) The typical differential scanning calorimetry (DSC) findings of the lithium-
ion battery's component materials. Figure has been reproduced from ref. 124 with permission from Elsevier, copyright 2018.
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Market projections indicate this growth trajectory will continue,
with EVs expected to comprise 20% of global new car sales by
2025, increasing to 40% by 2030. However, complete market
penetration faces challenges including the slow turnover of
existing vehicle eets – analysts estimate that even with 100% of
new car sales being electric by 2040, approximately half of
vehicles on the road may still use conventional powertrains due
to the 10–15 years average lifespan of automobiles. This
underscores the need for continued advancements in battery
technology, expansion of charging infrastructure, and
supportive policy frameworks to achieve full transportation
electrication.

2.3 Introduction of four top commercial electric vehicles

Electric cars have gradually gained the trust of consumers with
their affordable price, good performance, and reliable operation
based on the recent rapid development of battery
manufacturing technology. This is further supported by
ground-breaking advancements in information technology,
semiconductor technology, and telecommunications tech-
nology. In actuality, consumers' willingness to own electric cars
is being driven by the expansion of available electric car models
and the falling cost of batteries. There are currently four main
categories of electric vehicles on the market: battery electric
vehicles (BEVs), hybrid electric vehicles (HEVs), plug-in hybrid
electric vehicles (PHEVs), and fuel cell electric vehicles (FCEVs)
(Fig. 5).80–83

2.3.1 Battery electric vehicles. Battery-electric vehicles
(BEVs) are fully powered by electric motors and rechargeable
batteries. First developed in the 1880 s, early models served
primarily as demonstrations due to technological limita-
tions.80,81 They became more viable in the early 20th century
with improved batteries, replacing internal combustion engines
with grid-charged battery systems. In general, BEVs have the
following main parts: an electric motor, battery pack, inverter,
© 2025 The Author(s). Published by the Royal Society of Chemistry
control module, and drive train (Fig. 6). The electric motor
serves as the primary propulsion device, converting electrical
energy into mechanical energy to drive the vehicle, while the
battery modules serve as the critical energy storage system that
determines the range, performance, and operational capabil-
ities. Most commercial BEVs today use rechargeable lithium-ion
batteries due to their recyclability, higher energy density, and
improved safety. The current state-of-the-art extensively focuses
on three major types of cathodes, including layered structure
types (lithium nickel oxide-LNO, lithium cobalt oxide-LCO,
lithium nickel manganese cobalt oxide-NMC, NCA), spinel
(lithium manganese oxide-LMO), and olivine (lithium iron
phosphate-LFP), combining with different forms of anodes
such as carbon forms (graphite, graphene), Si-based, and other
possible carbon composites.83,84 LIBs efficiently convert elec-
tricity into kinetic energy with minimal losses compared to
combustion engines. However, they pose signicant safety risks
if thermal runaway occurs, leading to ammability and re.
This hazard makes thermal management systems critical for
preventing thermal runaway, ensuring uniform temperature
distribution, and reducing power degradation. Moreover,
various cooling strategies have been developed to maintain
optimal performance while meeting safety and environmental
standards, while future advancements in electrode materials
and electrolytes may further enhance energy density, lifespan,
and high-temperature performance.

EV manufacturers each pursue customized lithium-ion
battery solutions balancing cost, performance, and longevity.
Current industry efforts focus on reducing production costs
while maintaining battery capacity and lifespan. Table 1
compares ve commercial EV battery types, highlighting their
key properties. Among these, LFP (lithium iron phosphate)
batteries offer distinct advantages: (i) superior thermal stability
and safety from low resistance, and (ii) lower costs by avoiding
RSC Adv., 2025, 15, 35687–35725 | 35695

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra04471e


Fig. 12 LIB cell thermal runaway states and related mitigation techniques: (a) a description of the thermal runaway phenomena in the batteries
and the concept of time sequence regulation, and (b) time sequence map based on characteristics temperature and thermal physical
temperature. Figure has been reproduced from ref. 131 with permission from Elsevier, copyright 2020.

35696 | RSC Adv., 2025, 15, 35687–35725 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 (a) Diagram illustrating the mechanisms and change processes for the three main stages of thermal runaway, and (b) Particle release
mechanism from a standard lithium-ion battery cell during thermal runaway. Figure has been reproduced from ref. 135 with permission from
Elsevier, copyright 2023.
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expensive cobalt, nickel, and manganese in their phosphate-
based cathodes.

2.3.2 Hybrid electric vehicles. The hybrid electric vehicles
(HEVs) employ both an electric motor and a gasoline engine to
consume much less fuel while yet accelerating quickly.86–88

Typically, hybrid electric vehicles are driven by a combustion
engine as well as one or more electric motors that draw power
© 2025 The Author(s). Published by the Royal Society of Chemistry
from batteries (Fig. 7).89,90 A simple hybrid electric vehicle
cannot be plugged in to charge its battery. Instead, the battery is
charged using a combination of regenerative braking and an
internal combustion engine. The greater power provided by the
electric motor may allow for a smaller engine. It is possible to
lower the engine's idle usage while it is stationary and use the
battery to power auxiliary loads. When combined, these
RSC Adv., 2025, 15, 35687–35725 | 35697
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Fig. 14 The 18 650 battery cell under the temperature evolution of thermal abuse leading to gas pressure and mass flow rate at various states of
charge (SOC): (a) SOC = 25%, (b) SOC = 50%, and (c) SOC = 75%. Figure has been reproduced from ref. 143 with permission from Elsevier,
copyright 2021.
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upgrades increase fuel economy while still maintaining
a reasonable driving experience.

Despite the use of ICE, HEV resembles the same challenge as
BEV when the system highlights the complex structure of
different temperature control loops to balance temperature
operation between the ICE, electric motor, power electronics,
35698 | RSC Adv., 2025, 15, 35687–35725
batteries, and cabin. The cost of replacements is high, but the
lifespan of these batteries is quite long. The goal of eliminating
fossil fuels in the future will lead to the replacement of hybrid
electric vehicles by all battery electric vehicles, despite the
manufacturers constructing newer hybrid cars with battery
packs neatly stowed and saving space.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Battery life time prediction based on actually operating data. Figure has been reproduced from ref. 187 with permission Elsevier,
copyright 2025.
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2.3.3 Plug-in hybrid electric vehicles. Plug-in hybrid elec-
tric vehicles (PHEVs) combine an electric motor (powered by
rechargeable batteries) with a gasoline/diesel engine.91 Their
key feature is seamless switching between power sources –

operating primarily on electricity until battery depletion, then
Fig. 16 The flowchart of (a) AFFBCRLS approach, and (b) IASRCKFmetho
copyright 2023.

© 2025 The Author(s). Published by the Royal Society of Chemistry
automatically engaging the combustion engine (Fig. 8). The
system can recharge batteries during operation, extending
driving range while reducing fossil fuel consumption. However,
PHEVs remain a transitional technology toward fully electric or
fuel cell vehicles. Their dual powertrain introduces safety
d. Figure has been reproduced from ref. 198 with permission of Elsevier,

RSC Adv., 2025, 15, 35687–35725 | 35699
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Fig. 17 Flowchart of (a) adaptive online parameter identificationmethod and (b) RBC-DSVMmodel. Figure adapted fromWang et al.199 Copyright
2024 Elsevier.
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challenges, as high-capacity batteries combined with combus-
tion systems may increase explosion risks due to reactive elec-
trolytes. Despite these concerns, PHEVs currently offer
a practical pathway to lower emissions and mitigate climate
change impacts during the EV transition period.

2.3.4 Fuel cell electric vehicles. Fuel Cell Electric Vehicles
(FCEVs) employ an electric motor powered primarily by a fuel
cell system controlled by a Power Control Unit (PCU) (Fig. 9).92

LIBs serve as complementary energy storage, functioning as
power buffers during high-load conditions (e.g., acceleration)
35700 | RSC Adv., 2025, 15, 35687–35725
while enabling regenerative braking. This dual-system archi-
tecture improves energy efficiency by: (i) mitigating peak loads
on fuel cells to extend durability, (ii) optimizing power distri-
bution, and (iii) recovering braking energy. Unlike combustion
engines, FCEVs emit only water vapor and heat and avoid effi-
ciency limitations of the Otto cycle through electrochemical
potential-based operation.93 While promising for next-
generation mobility, FCEVs face infrastructure challenges due
to underdeveloped hydrogen production and distribution
networks. Compared to BEVs, FCEVs offer advantages in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 18 Production of lithium-ion battery materials worldwide. Fig. 15 adapted from Pantoja et al.200 Copyright 2022 MDPI.
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refueling speed with fast-charging by few minutes for a long
range, making them suitable for heavy-duty transport.94,95

However, BEVs currently benet from established charging
infrastructure, higher well-to-wheel efficiency (60–80% vs. 25–
35% for FCEVs), and lower operating costs.

Hydrogen, the energy fuel of FCEVs, can be produced
through multiple methods, categorized as fossil fuel-based,
such as steam reforming or partial oxidation or renewable-
based (electrolysis, biomass conversion).96 While steam
Fig. 19 General process to recycle lithium-ion batteries, including pyro

© 2025 The Author(s). Published by the Royal Society of Chemistry
methane reforming remains the dominant method (50% of
global production), its high CO emissions limit sustainability.96

Renewable methods are increasingly attractive due to lower
emissions and abundant feedstock availability. As the hydrogen
economy expands, these green production methods will be
crucial for enabling sustainable fuel cell electric vehicles and
reducing fossil fuel dependence.

2.3.5 Thermal management systems onto different EVs.
Each of the four vehicles mentioned above contains a thermal
metallurgical, hydrometalurgical, and direct recycling methods.

RSC Adv., 2025, 15, 35687–35725 | 35701
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Table 2 Advantages and disadvantages of the three main battery recycling methodologies

Techniques Direct recycling method Pyrometallugical method Hydrometallugical method

Advantages - Suitable for almost batteries types - Can recycle a large number of
spent batteries

- High selectivity and high recycling
efficiency and value-added products

- Short recovery path and easy to
operate

- Can recovery of the high quality
precious metals

- Low working temperature

- Low-cost due to low energy
consumption, and high recovery
rate

- Small chemical consumption - High effectiveness at removing
other contaminants

- Environmental friendliness - Short ow and straightforward
procedure

- Can recover almost cathodic
materials
- Rezo SO2 gas emissions

Disadvantages - Take a time for mechanical
pretreament and separations

- High investment costs - Nonenvironmental friendly
wastewater aer productions

- Mixing cathode materials may be
reduced the quality of recycled
materials

- High energy requirements due to
high required temperature

- Incomplete binder and electrolyte
recycling

- Recycled materials may not good
as virgin materials

- The discharge of hazardous gases
into the environment

- Procedure complexity

- Losing lithium materials - Chemical selectivity

RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
9/

20
25

 1
1:

43
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
management system (TMS), which is a crucial component with
the shared objective of maximizing durability, safety, and
performance. However, each of TMS has its own unique
features. In BEVs, TMS focuses primarily on lithium-ion battery
packs, employing liquid cooling or refrigerant-based systems to
maintain optimal temperatures during charging/discharging,
while also managing motor/inverter heat.97,98 HEVs integrate
dual cooling systems for both the internal combustion engine
(ICE) and the battery/motor system, oen prioritizing ICE
thermal needs due to smaller battery capacities.99–101 PHEVs
have more complex challenges, requiring adaptive TMS to
balance high-voltage battery cooling (during electric mode) with
ICE waste heat recovery (during hybrid mode), while preventing
thermal interference between systems.102–106 In general, FCEVs
demand triple thermal regulation: (i) cooling the fuel cell stack
via liquid coolants, (ii) managing lithium-ion buffer battery
temperatures, and (iii) handling cryogenic hydrogen storage
heat exchange.107–110 All EV types utilize advanced control
strategies, such as predictive algorithms and phase-change
materials, to mitigate thermal runaway risks, reduce parasitic
energy losses, and extend component lifespans. While BEVs/
PHEVs emphasize battery-centric cooling, FCEVs require inte-
grated chemical/electrical thermal management, reecting
their unique energy conversion processes. Emerging solutions
like heat pump integration and unied cooling plates are being
adopted across platforms to improve efficiency and adaptability
to extreme climates. Fig. 10 illustrates a typical diagram of the
components of the energy management system in an electric
vehicle with active and passive cooling systems centered around
the battery pack system.111 While passive cooling systems using
phase change material (PCM) and heat pipes (HP) are popular
due to their low cost but poor heat dissipation under conditions
of high system temperature and lack of control system. Active
cooling systems can be controlled and have the ability to
dissipate heat quickly but also have the limitation of consuming
a lot of operating energy and causing costly maintenance due to
35702 | RSC Adv., 2025, 15, 35687–35725
their complex structure. Therefore, hybrid systems between
passive and active are developed to optimize the overall cost as
well as the life of the system.

2.4 Battery thermal runaway phenomenon in battery electric
vehicles

Safety remains one of the most critical challenges hindering the
widespread adoption of LIBs in EVs. As energy densities
continue to increase following the increase of battery module,
ensuring LIB safety becomes increasingly imperative. The
primary safety concern involves thermal runaway – a potentially
catastrophic failure mode resulting from sequential, thermally-
activated degradation processes of battery components through
chain reactions.112 This section examines the underlying
chemical mechanisms driving thermal runaway in commercial
lithium-ion battery systems, with the aim of providing
a comprehensive analysis of this critical safety phenomenon
and its mitigation strategies. Following the timeline from 2020
to mid-2025, there have been thousands of electric vehicle res
and explosions worldwide, with the largest number occurring in
the two largest electric vehicle markets, China and the United
States.113–116 However, the exact number in specic accident
situations in the world is difficult to determine due to the
condentiality of electric vehicle manufacturers and political
factors. It can be seen that the number of electric vehicle re
and explosion accidents is lower than that of gasoline vehicles,
however, with the remarkable growth of electric vehicles in the
coming years, the safety of electric vehicles when operating and
charging has raised certain concerns from consumers. Next, the
thermal runaway phenomenon is discussed as the suspected
cause of the explosion of the battery pack, causing the entire
electric vehicle to catch re.

Lithium-ion batteries typically maintain a stable structure
due to the reversible movement of lithium ions between the
cathode and anode during standard charging and discharging
cycles. However, in mechatronic systems employing large
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 20 (a) Schematic representation of the cathode regeneration technique, where electrochemical lithium reintegration transforms spent
LixCoO2 electrodes into reusable LiCoO2 active materials for new batteries, and thick-electrode regeneration of spent battery materials: (b)
schematic overview of the thick-electrode regeneration process for spent lithium-ion batteries, (c) electrochemical relithiation mechanism
enabled by thick-electrode architecture, (d) voltage–time profile during constant-current relithiation, (e) compositional analysis (Li/Fe, Li/P, and
Fe/P atomic ratios) of regenerated LiFePO4 (LFP) powders, (f) comparative cycling performance (1st vs. 2nd cycle) of regenerated LFP in coin
cells. (a) has been reproduced from ref. 230 with permission from American chemical society, copyright 2017. (b–f) has been reproduced from
ref. 232 with permission from Elsevier, copyright 2025.
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lithium-ion battery arrays, such as electric vehicles, various
operational factors can initiate thermal runaway in the battery
system. When the battery cells have a thermal runaway
phenomenon, it can be extremely difficult to stop the chain
reaction from continuing. This phenomenon occurs when the
internal temperature rises to a point of chemical reaction
appearance, increasing temperature in the overall cell, which in
© 2025 The Author(s). Published by the Royal Society of Chemistry
turn triggers other chemical reactions that release even more
heat. The battery cell temperature increases exponentially
within milliseconds as stored energy is abruptly released under
abusive conditions. This uncontrolled exothermic process
generates sequential chain reactions capable of reaching
temperatures exceeding 400 °C, with potential escalation to
1000 °C. At these elevated temperatures, the cell typically
RSC Adv., 2025, 15, 35687–35725 | 35703
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Fig. 21 The schematic illustrates a complete circular economic cycle for lithium batteries, starting from their use in electric vehicles to typical
end-of-life battery recycling processes and recovery of valuablematerials for reuse. Figure 21 has been reproduced from ref. 245 with permission
from Royal Chemical Society, copyright 2024.
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undergoes violent venting of ammable electrolytes, creating
self-sustaining res that resist conventional suppression
methods. Typically, the thermal runaway can be divided into
four stages: (i) from 80 to 120 °C: as the temperature increases,
electrolyte and solid electrolyte interphase (SEI) components
start to decompose. The newly exposed electrode particle area
promotes further reactions with electrolyte, losing lithium
inventory and creating more SEI that increases the resistance of
the battery; (ii) over 140 °C: the exothermic reactions of cathode
materials with releasing oxygen; (iii) over 180 °C: the decom-
position of both cathode and electrolyte layers; and (iv) the
batteries are completely destroyed.117–119 In the actual use of
electric vehicles, many factors have been recorded that lead to
the phenomenon of thermal runaway. In general, there are
three main factors classied as follows: (1) mechanical abuse
(physical damage by crash, puncture, penetration, collision,
etc.); (2) electrical abuse (overcharge/discharge, internal short
circuit, etc.); and (3) thermal abuse (overheating, ame attack,
etc.).120–123

What might be the initial cause of thermal runaway? The
internal process of thermal runaway is primarily brought on by
a series of exothermic chain reactions. In other words, because
35704 | RSC Adv., 2025, 15, 35687–35725
the heat generated by the side reactions in the previous stage
cannot be completely dissipated in time, the battery tempera-
ture will increase. As a result, the temperature increase may
start a subsequent round of adverse reactions, nally resulting
in thermal runaway. Studies have demonstrated the side reac-
tions that occur during the thermal runaway of lithium-ion
batteries, such as the SEI decomposition, anode-electrolyte
reaction, separator melting, electrolyte decomposition,
cathode decomposition (dissolution of transition metal,
lithium plating/dendrite causing short circuit, oxygen release),
short circuit, and electrolyte burning (Fig. 11a).124,125 For detail,
Fig. 11b shows the typical differential scanning calorimetry
(DSC) ndings of the lithium-ion battery's component mate-
rials. The heat release power (Q), the enthalpy (DH), which
reects the total heat released, and the distinctive tempera-
tures, such as the onset temperature (Tonset), the peak temper-
ature (Tpeak), and the terminal temperature (Tend), are among
the features of the processes.124,126 The heat release for typical
battery materials has been outlined, and it has been discovered
that the beginning temperature for commercial cathode mate-
rials is as follows: LiFePO4 (LFP) > Li4Ti5O12 (LTO) > LiNixCoy-
MnzO2 (NCM) > LiNixCoyAlzO2 (NCA) > LiCO2 (LCO).127 The
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 22 The promising goal for electric vehicles is to use renewable energy for charging.

Fig. 23 Global EV evolution forecast. Figure has been reproduced
from ref. 260 with permission from IGI global scientific publishing,
copyright 2019.
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energy release diagram also shows where the heat from internal
short circuits (ISC) or combustion is released, although the
displays for these chemical reactions are different. The sepa-
rator's collapse temperature and the ISC's onset temperature
are closely connected. For the polyethylene (PE) separator, the
ISC can happen at around 130 °C, for the polypropylene (PP) or
PP/PE/PP separator at 170 °C, and for the ceramic-coated
separator around 200 °C.124 Herein, the rst breakdown of SEI
is thought to be the rst side reaction that happens during the
entire thermal runaway process. The early disintegration of SEI
takes place between 80 and 120 °C, with a peak at about 100 °
C.128,129 Once the SEI decomposes at a high temperature, the
intercalated lithium-ions in the graphite anode can come into
© 2025 The Author(s). Published by the Royal Society of Chemistry
contact with the electrolyte. This leads a greater surface reaction
between the lithiated graphite and organic compounds/
transition metals/acidic attack, forming a new SEI.129 Thus,
due to the nature of electrolytes, a series of undesirable reac-
tions between electrodes and electrolyte are immensely detri-
mental to thermal runaway. In particular, the electrolytes
consist of a blend of different carbonates and are primarily
composed of ammable linear carbonates such as combina-
tions of diethyl carbonate (DEC), dimethyl carbonate (DMC),
ethyl methyl carbonate (EMC), and ethylene carbonate (EC).
Although linear carbonates provide high ionic conductivity,
decreasing the electrolyte viscosity corresponds to better ion
uptake into the polyolen-based separator and creating a stable
solid electrolyte interface layer on the graphite electrode
surface.130 Their low ash points lead to a higher combustion
speed and heat release rate. Additionally, the addition of
lithium salt does not greatly change the mixture's ash point,
even while it lowers the vapor pressure and affects the period of
combustion. The exposure of lithium-ion batteries to air during
the thermal runaway process can result in dangerous amma-
bility and toxic gas release.

In detail, the tracking and control of thermal runaway
require a deep understanding of the mechanism as well as the
physical and chemical processes during the four stages.
Recently, X. Feng et al. provided a time sequence map (TSM) to
point out the detailed thermal runaway mechanism for LIBs.132

The idea of a thermodynamic system aids in classifying various
physical and chemical processes in terms of the places in which
they take place. The two-path pattern in Fig. 12 may be used to
redra the TSM since the physical and/or chemical processes
can take place both within and outside the battery cell.131 The
RSC Adv., 2025, 15, 35687–35725 | 35705
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Fig. 24 General construction of one sodium-ion battery cell with intensively studied materials.
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two-path pattern for deciphering the thermal runaway process
of LIBs is shown in Fig. 12a. The OUT path symbolizes the
smoke, re, or explosion that occurs outside the cell, parallel to
the IN path, which represents the heat failure caused by
chemical reactions inside the cell. Fig. 12b shows more detail of
the two-path pattern based on characteristic temperature and
Fig. 25 Structure and working principle of aqueous metal–air batteries

35706 | RSC Adv., 2025, 15, 35687–35725
thermal-physical temperature. Up to thermal runaway, the IN
route depicts the evolution of thermal failure within the cell
case. The sequence of vent, smoke, and re seen outside the cell
case is depicted in the OUT route and is explained by the re
triangle. In summary, a time sequence map-based thermal
runaway mechanism will show both specic internal triggers
and non-aqueous metal–air batteries.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 26 Typical lithium-ion battery categories are shown schematically. Based on the volume of liquid and percentage of SSE in the built
batteries, three different types of batteries may be identified. Figure has been reproduced from ref. 270 with permission of America Chemical
Society, copyright 2020.
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and events occurring outside the battery cell. Numerous studies
concentrate on early warning of the thermal runaway threat to
increase the safety of LIBs. The following categories can be used
to categorize the monitoring techniques: (i) abnormal
phenomenon monitoring of batteries in the early stage of
thermal runaway, such as characterizing gas generation and
internal/external force; (ii) early warning based on battery
internal electrical characteristics; and (iii) temperature moni-
toring via the battery management system (BMS).123,133,134 A
combination method with external characteristics (voltage,
current, temperature, and capacity) and internal mechanisms
(electrochemical reaction and degradation of the material)
© 2025 The Author(s). Published by the Royal Society of Chemistry
should be developed for evaluating the electrochemical-thermal
coupling properties of LIBs during the evolution of the thermal
runaway phenomenon in order to establish an accurate and
widely applicable thermal runaway prediction and early
warning method. Additionally, in order to obtain a quantitative
evaluation and forecast of the thermal runaway risk of LIBs,
safety limits should be built based on electrochemical
characteristics.

Actually, during the thermal runaway phenomenon, the
creation and conversion processes between the solid, liquid,
and gas phases combine to cause the gas venting of lithium-ion
battery cells. This is really the outcome of both chemical
RSC Adv., 2025, 15, 35687–35725 | 35707
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Fig. 27 The ideas toward a circularity for electric vehicle battery packs: (A and B) electric vehicle battery manufacturing and assembly, (C)
settings to support and manage battery packs in real time during use, and (D and E) smart and closed-loop recycling processes using AI and
robots. Figure has been reproduced from ref. 286 with permission from Elsevier, copyright 2023.
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reactions and physical transformations. In response to inqui-
ries regarding the reasons behind the jet ow's accompanying
droplet and particle emissions during gas venting and the
changes that battery materials suffer under thermal abuse,
Wang et al. presented a model that demonstrates the transition
process and mechanism for different stages during thermal
runaway.135 The following three regions, which correspond to
different processes, are depicted in Fig. 13a: region 1 is the jelly
roll, region 2 is the phase interface and headspace, and region 3
is the ambient uid.135–140 Moreover, apart from the produced
gases and electrolyte vapors, a signicant emission component
of thermal runaway processes is the solid particle. Fig. 13b
reports a schematic picture based on X-ray imaging of the
thermal runaway cell, which explains how components of the
electrode material are expelled from the jelly roll and are
subsequently discharged as particles, which is depicted by four
consecutive steps to the entire process.135,139,141,142

Recently, J. Kim et al. provided a detailed thermal runaway
phenomenon of an 18 650 lithium-ion battery cell under the
35708 | RSC Adv., 2025, 15, 35687–35725
temperature evolution process (Fig. 14).143 To investigate the cell
venting, internal pressure, and gas-phase dynamics behavior of
18 650 Li-ion cells experiencing thermal runaway, a computa-
tional model is created. The turbulent ow out of the cells is
characterized by a k-3 Reynolds-averaged Navier–Stokes model,
while the uid dynamics inside the cells are described by Darcy–
Forchheimer's equation. A single-step lumped reaction model
describes the kinetics of gas production and thermal abuse
reactions. Then, a sequence of computational uid dynamics
simulations is carried out on a solitary 18 650 cell at different
levels of charge at 100%, 50%, and 25% in order to examine
intricate ow and temperature characteristics in relation to the
amount of gas produced during cell venting. It has been
discovered that the second stage dominates the cell response
because thermal runaway produces the majority of the gases.
State-of-the-art technology also has a big impact on the
tendency for propagation. Due to larger reacting gas masses and
concentrations, cells with higher state charges generate more
© 2025 The Author(s). Published by the Royal Society of Chemistry
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heat and gas during the venting event. As a result, interior cell
pressures rise, raising the possibility of sidewall breaching.

Recent advancements in thermal runaway early warning
have shied toward monitoring external characteristics that
precede catastrophic failure, enabling timely intervention.
Novel warning and assessment features, including force, gas,
sound, optical signals, and impedance changes which have
emerged as critical indicators.144,145 For instance, gas sensors
identify volatile organic compounds (e.g., CO, CO2, HF, CH4)
released during early-stage thermal runaway.146–148 Acoustic
emission techniques capture ultrasonic waves generated by
microstructural damage, such as separator cracking or elec-
trode delamination.134,149,150 Optical methods, including
infrared thermography and ber optic sensor, provide real-time
temperature and strain mapping with high spatial
resolution.151–154 Additionally, impedance spectroscopy tracks
abrupt changes in internal resistance due to solid-electrolyte
interphase (SEI) breakdown or short-circuit formation.155–158 By
integrating these multi-modal signals with machine learning
algorithms, modern battery management systems (BMS) can
achieve early thermal runaway prediction with over 90% accu-
racy, signicantly improving safety margins for lithium-ion
batteries in electric vehicles and energy storage systems.159,160

The rapid growth of EVs has been accompanied by a growing
number of high-prole re incidents, highlighting critical
safety challenges in lithium-ion battery systems. Studies of
these incidents demonstrate that thermal runaway oen initi-
ates at localized hotspots, frequently near cell edges in pouch
cells, welding points, or overcharge/discharge within single
cells, where microscopic defects (internal short circuits,
dendrites, and electrode misalignment) create high-resistance
zones.113,121,161 Once triggered, exothermic reactions decom-
pose the electrolyte and cathode materials, accelerating
temperatures to 800 °C within seconds. Compounding these
risks, thermal runaway from pack-to-pack propagation is spread
by insufficient thermal barriers, leading to re in the battery
module. These real failures show a critical gap between stan-
dardized lab tests such as nail penetration and actual accident
conditions, where multi-factors, including vibration, weather,
high SoC, aging, parking space, and geography, interact
unpredictably.162–166
2.5 Recycling lithium-ion batteries from electric vehicles

Another critical factor for the widespread adoption of EVs is
establishing a circular material economy to ensure that waste
from spent lithium-ion batteries does not undermine the envi-
ronmental benets. Recycling electric vehicle batteries is not
a simple goal and requires managing the entire life cycle, which
means coordinating from production and operational
management to collection and recycling aer use. In fact,
lithium-ion batteries used for electric vehicles are very diverse
in type, conguration, and generation. Each type of battery has
specic requirements and characteristics related to the recy-
cling process, along with strict regulations aimed at maximizing
the use of recycled materials and ensuring high standards of
environmental protection. In this section, the most general
© 2025 The Author(s). Published by the Royal Society of Chemistry
overview is provided to introduce the most realistic and concise
view possible to help readers gain certain knowledge and
identify current trends.

2.5.1 Lifetime prediction of lithium-ion batteries. Under-
standing the life cycle of lithium-ion batteries is essential to
maximizing their lifespan and ensuring optimal performance.
Thus, determining the life cycle of a lithium battery will help in
deciding replacement time as well as dismantling leads to
recycling.167,168 When compared to the rate of product capacity,
the actual capacity of lithium-ion batteries will continue to
decrease aer usage. A shi in this lithium-ion battery balance
might result from any adverse events that could deplete lithium
ions. This balance shi is permanent and can build up over
many cycles of charge–discharge, which will negatively impact
battery performance. Typically, a one-time battery charge and
discharge is one cycle, and the cycle life is an important index to
evaluate the battery life performance. The fundamental reason
behind the factors affecting the life cycle of lithium-ion
batteries is that the number of lithium ions participating in
the energy transfer process is continuously decreasing.169–171

Here, the total amount of lithium in the battery has no change,
but the activated lithium ions decrease because they are trapped
in some places or the transmission channel is blocked, causing
by various reason, such as working temperature
uctuations,172–178 charge/discharge aging,179–181 solid electrolyte
interphase (SEI) and dendrite growth182–186 formation makes
these ions unable to freely participate in the charging and di-
scharging process. Therefore, monitoring information about
the performance of each battery cell and the entire battery cell
and battery module will help determine the battery life cycle to
meet the capacity requirements of the battery module and
determine when to remove it for recycling. Recently, Wang et al.
introduced s consistency prediction based on actually operating
data.187 In their report, the ohmic internal resistance, electro-
chemical polarization internal resistance, and concentration
difference polarization internal resistance were determined to
be the characteristic parameters from the electric vehicle
operation data using the recursive least squares with forgetting
factor algorithm for the second-order equivalent circuit model
parameter identication. Second, a time series prediction
model and a thorough battery pack inconsistency assessment
model are put forward, both of which are capable of precisely
assessing and forecasting battery pack inconsistencies. Lastly,
nine months of real electric vehicle usage data are used to
evaluate the system. The ndings demonstrate the high accu-
racy of the suggested inconsistency evaluation and prediction
approach. The general process is showed in Fig. 15.187 In
general, predicting the remaining operating time of the battery
module is very important to help regulate as well as ensure
safety during operation. Moreover, this will help the process of
replacing old batteries and putting them into the recycling
process.

Accurate state-of-charge (SOC) estimation is crucial in
determining the remaining energy capacity of LiBs before they
enter the recycling process.188 SOC reects the available charge
relative to the maximum capacity of battery, providing insights
into its usability, degradation level, and potential for battery
RSC Adv., 2025, 15, 35687–35725 | 35709
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second-life applications.188–190 For recycling decisions, evalu-
ating the SOC helps assess whether a battery has reached its
end-of-life or still retains sufficient capacity for repurposing in
less demanding applications, such as energy storage
systems.191–193 Batteries with high residual capacity may be di-
verted to secondary markets, reducing waste and improving
resource efficiency, while deeply degraded cells with low SOC
are more likely to undergo material recovery via recycling
process. Thus, SOC estimation serves as a key parameter in the
decision-making process, ensuring economically and environ-
mentally optimized battery disposal or reuse. The importance of
SOC estimation extends beyond operational performance which
can play a pivotal role in sustainable battery lifecycle manage-
ment. Precise SOC assessment prevents premature recycling of
batteries that could still deliver value in secondary applications,
thereby extending their service life and reducing environmental
impact.194 Additionally, knowing the exact SOC ensures safe
handling during recycling, as partially charged batteries may
pose thermal runaway risks if improperly dismantled. From
a resource recovery perspective, SOC data aids recyclers in
optimizing processes such as discharge protocols and material
extraction, improving efficiency and cost-effectiveness.195 With
the strong growing of EVs, integrating reliable SOC estimation
methods into recycling frameworks will be essential for maxi-
mizing resource utilization and advancing circular economy
principles in the LiB industry.194–197 There are many studies on
SOC to provide the most optimal and complete solutions with
the ambition to optimize battery performance and help improve
durability. To enhance the accuracy and robustness of state-of-
charge (SOC) estimation in lithium-ion batteries (LiBs), Shi et al.
proposed an Improved Adaptive Square Root Cubature Kalman
Filter (IASRCKF) method, which dynamically adjusts the
window length of noise statistics based on error innovation
sequences.198 The study rst identied battery model parame-
ters using an Adaptive Forgetting Factor Bias Compensation
Recursive Least Squares (AFFBCRLS) method (Fig. 16a),
achieving a voltage estimation RMSE of 0.004 V. The IASRCKF
demonstrated superior performance over conventional
ASRCKF, reducing SOC estimation errors to 0.18% RMSE and
0.15%MAE while maintaining rapid convergence under varying
initial SOC and noise conditions (Fig. 16b). Despite its high
accuracy, the method's reliance on empirical parameter tuning
and computationally intensive matrix operations may limit its
practicality for low-cost hardware. The authors suggest future
work on parameter optimization and aging-aware algorithms to
improve efficiency and applicability. This work highlights the
potential of adaptive ltering techniques for precise SOC esti-
mation, which is critical for battery health assessment prior to
recycling decisions.

Recently, Wang et al. presented a hybrid Radial Basis
Correction-Differential Support Vector Machine (RBC-DSVM)
model combined with a Limited Memory Recursive Least
Squares (LMRLS) algorithm to achieve high-precision SOC
estimation for LiBs in urban electric vehicles.199 The study
addresses the challenges of nonlinear SOC dynamics and time-
varying battery parameters by integrating three key innovations:
(i) an LMRLS-based online parameter identication method for
35710 | RSC Adv., 2025, 15, 35687–35725
the rst-order Thevenin equivalent circuit model (FOT-ECM),
which adaptively tracks ohmic resistance (R0), polarization
resistance (RP), and capacitance (CP) with a maximum voltage
error of 0.064 V—outperforming conventional RLS in dynamic
conditions (Fig. 17a); (ii) an adaptive RBC-DSVM model that
iteratively corrects SOC errors by fusing Ah integration and
AEKF inputs, leveraging a radial basis kernel function to map
nonlinear relationships between voltage, current, and SOC
(Fig. 17b); (iii) experimental validation under Hybrid Pulse
Power Characterization (HPPC) and Dynamic Stress Test (DST)
conditions, demonstrating remarkable accuracy with maximum
SOC errors of 0.037% (HPPC) and 0.336% (DST), representing
89.78% and 6.15% improvements over AEKF, respectively. The
RBC-DSVM's robustness is further evidenced by its stable error
convergence under varying initial SOC values and measurement
noise. However, the authors note limitations, including
computational complexity due to matrix operations, empirical
tuning of hyperparameters (e.g., memory length L), and unva-
lidated performance under real-world noise and temperature
uctuations. Future work aims to optimize computational effi-
ciency and incorporate aging effects. This study advances BMS
technologies by bridging model-driven and data-driven
approaches, offering a scalable framework for real-time SOC
estimation in EV applications.

In summary, the modern SOC estimation methods leverage
advanced algorithms, such as adaptive Kalman lters, machine
learning models, and hybrid data-driven approaches, to address
challenges like nonlinear battery dynamics, noise interference,
and real-time computational constraints. However, challenges
remain in computational efficiency, real-world noise resilience,
and aging-aware modeling. Future advancements aim to inte-
grate these techniques with battery recycling frameworks,
ensuring accurate SOC assessment for end-of-life repurposing
or material recovery, thereby supporting a sustainable EV
ecosystem.

2.5.2 Battery recycling technologies. The issue of recycling
or replacing LIBs with the next generation has drawn consid-
erable attention from the general public and governments due
to the fact that LIBs have grown to be so popular due to their
enormous benets and difficulty in replacement. Lithium,
cobalt, nickel, manganese, and other metals have nite and
unequally distributed global deposits, and their extraction
requires a lot of energy and labor and causes a lot of pollution
(Fig. 18).200,201 Moreover, the size of the battery and the power
source used for charging have an impact on the environmental
performance of battery-electric cars.202 As a result, modica-
tions to the electrical industry and battery refurbishment
should be taken into account when evaluating their environ-
mental performance. For electric cars and renewable energy
storage systems, lithium-ion batteries have emerged as a critical
link in the energy supply chain.203 Recycling is regarded as one
of the best methods for recovering materials from used LIB
streams and redistributing them throughout the supply
chain.204

In fact, removing batteries from a device might generate
a signicant amount of waste for the environment. In addition,
batteries contain a lot of dangerous elements, making it unwise
© 2025 The Author(s). Published by the Royal Society of Chemistry
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to discard them directly. Addressing this, battery recycling is the
technique of reusing and processing batteries with the inten-
tion of lowering the amount of batteries disposed of as material
waste.205 Batteries include a number of toxic compounds and
heavy metals, and the pollution of land and water caused by
their disposal has raised environmental concerns.206 Currently,
in order to guarantee the highest level of safety throughout the
transport process, the problem of shipping chemicals for
battery manufacture as well as released batteries must meet
several stringent and challenging standards. Nowadays, most
production materials, including spent cells for recycling as well
as commercial cells, are frequently transported by container
ships across the ocean due to their low cost, high transport
capacity, superior safety compared to airplanes, and ease of
movement between continents. Recycling battery is necessary
for both environmental and health reasons. Lithium-ion
batteries must be disassembled and separated due to their
complicated structure and several distinct material types before
applying recycling techniques such as pyrometallurgy, hydro-
metallurgy, direct recycling, and combination procedures
(Fig. 19).207–209

For improved resource recovery and an energy-efficient
recycling procedure, particularly in the case of hydrometal-
lurgy and direct recycling pathways, wasted LIBs must be
physically and chemically pre-treated and separated.210 The
procedure is also necessary for recovering valuable materials
like Ni, Co, and Li as well as less valuable elements (also known
as impurity elements), such as Al, Fe, Cu, and C.211 Discharging,
disassembling, separating, dissolving, and thermal treatment
are only a few of the pre-treatment process's sequences,
according to numerous phases and procedures that have been
classied as part of the pre-treatment process.212 Pre-treatment
procedures are oen described as those that include classifying
and separating different LIB components and elements in order
to make future recycling procedures more effective and less
impurity-intensive.213,214

Pyrometallurgical technology is a convenient strategy that
can convert metal oxides to metal compounds or pure metal by
using heating and melting processes.215–217 Aer pretreatment,
the battery materials are heated in reductive roasting (smelting)
to change the metal oxides into a mixed metal alloy that may
contain cobalt, nickel, copper, iron, and slag containing lithium
and aluminum, depending on the battery composition. The
crushed wastes are melted in a furnace or molten bath during
the pyrometallurgy process to extract polymers. The main
drawbacks of pyrometallurgical processes are high investment
costs, high energy requirements, and the discharge of
hazardous gases into the environment, despite the fact that they
are claimed to be economically effective and fully utilize the
recovery of a sufficient number of precious metals.218,219

Hydrometallurgical technology generally employs aqueous
solutions in order to extract and isolate metals from LIBs.220 In
this method, various types of acids such as HCl, HNO3, H2SO4,
and organic acids like citric, oxalic, and ascorbic acid are
frequently employed, which are used to extract the pretreatment
battery components.221,222 Then specic metals are selectively
precipitated as salts using pH variation aer they have been
© 2025 The Author(s). Published by the Royal Society of Chemistry
extracted into solution, or they are extracted using organic
solvents that include extractants.

Direct recycling, one of the most innovative and promising
new LIB recycling techniques now under development, has
started to be applied commercially.223 In actuality, not every
component of a battery needs to be recycled; certain compo-
nents need to be replaced while others are still functional, such
as removing and recycling the cathode while other parts are
taken out and utilized again.224–227 Therefore, for the goal of
replacing and recycling damaged parts, the direct recycling
approach presents a sensible and economical strategy.228

Maintaining the purity of the material waste streams, which
necessitates specialized processing for cell packing and
component removal, is one of the most crucial aspects of direct
recycling.229

Due to the unique benets and drawbacks of each technique
(Table 2), combinations of hydrometallurgical and pyrometal-
lurgical processes are oen utilized to produce lithium-ion
batteries today. Pyrometallurgical techniques are probably
utilized because they give battery materials diversity and
because they require xed investment in already-existing facil-
ities. On the other hand, methods that are still being developed
rely more heavily on hydrometallurgy due to its cost-
effectiveness. In reality, the classication of the above technol-
ogies is only relative when studies have shown that a harmo-
nious combination of the above methods will have the best
effect. Therefore, for each type of lithium-ion battery and for
each recycling purpose, the above methods will be calculated in
detail and combined to form the most optimal process possible.

The recycling of spent EV lithium-ion batteries is being
revolutionized by emerging technologies that address the
limitations of conventional pyrometallurgical and hydrometal-
lurgical methods. Direct recycling employs low-energy
processes such as electrochemical relithiation and solvent-
assisted separation to restore degraded cathodes (e.g., NMC,
LFP) to their original state, preserving >95% of their structure
while reducing energy use by 50–70% compared to smelting
(Fig. 20).230–232 Meanwhile, bioleaching leverages bacteria (e.g.,
Acidophilic microorganisms, Bacillus foraminis, A. ferroox-
idans, Gluconobacter oxydans) to selectively extract metals like
cobalt and lithium under mild conditions, minimizing toxic
chemical waste and operating costs.233–236 For binder and elec-
trolyte removal, supercritical CO2 extraction offers a green
alternative to incineration, dissolving PVDF and organic
solvents without emissions.237,238 Advanced sorting technolo-
gies, including AI-driven robotic disassembly and laser-induced
breakdown spectroscopy (LIBS), enable precise separation of
battery components by chemistry, critical for handling diverse
EV battery designs. However, challenges persist in scaling these
technologies such as bioleaching remains slow (days vs. hours
for acid leaching), and direct recycling struggles with contami-
nated or mixed feedstocks. Innovations like plasma-assisted
pyrolysis for binder removal and closed-loop solvent recovery
systems are under development to improve efficiency.239,240 With
the EV market projected to generate more than 11 million tons
of battery waste annually by 2030,241 these technologies which
backed by policies like the EU Battery Regulation, could
RSC Adv., 2025, 15, 35687–35725 | 35711
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transform recycling into a high-yield, low-carbon industry,
recovering more than 90% of critical materials while meeting
stringent sustainability targets.

2.5.3 A circular economy in the context of electric vehicle
battery recycling. The circular economy is an economic model
in which products, materials and resources are kept in the
economy for as long as possible, through activities such as
reuse, repair, recycling and waste reduction.242–244 The goal of
the circular economy is to reduce dependence on natural
resources and reduce waste and environmental pollution.
Battery recycling is an important part of the circular economy,
especially in the context of the increasing use of lithium
batteries in electric vehicles, because spent lithium batteries
contain many valuable materials, such as lithium, nickel, and
cobalt, which can be recovered and recycled to produce new
batteries or other products, reducing the need to mine new
resources (Fig. 21).245

A circular economy model prioritizes three key phases: (i)
reuse of spent battery packs from EVs through second-life
applications like stationary energy storage, (ii) building a stan-
dard battery collection system for all types of batteries from
small electronic devices to electric vehicles, and (iii) recycling
for recovering critical materials via pyrometallurgical, hydro-
metallurgical, or direct recycling methods.245–249 Advanced
recycling techniques, such as hydrometallurgy with solvent
extraction or electrochemical leaching, can recover high-purity
metals, drastically reducing the requirement for virgin
mining. However, challenges still persist, including the
economic viability of recycling technologies. Recent emerging
innovations, such as AI and robotic disassembly systems,
promise to enhance recycling efficiency. By closing the loop on
battery materials, a circular economy purpose not only miti-
gates environmental risks and reduces ore mining but also
improves the living environment and raises public awareness of
environmental protection and sustainable development toward
achieving zero tailpipe emissions.
2.6 Future outlook of electric vehicles

2.6.1 Current issues. The next decade will see the explosive
growth of EVs of different sizes and the expansion of different
types of batteries, mainly lithium batteries. In fact, emissions
from traditional vehicles using fossil fuels are harmful to both
human health and the environment, such as asthma, bron-
chitis, cancer, and early mortality, which are all caused by the
air pollutants released by gasoline and diesel-powered vehi-
cles.250 By offering a fresh turn in technology, the introduction
of electric cars may assist in lessening the issue with traditional
vehicles.

The rapid growth of EVs over the coming decade will
undoubtedly place heavy demands on electrical infrastructure.
The daily power consumption will be enormous, and the power
transmission infrastructure will also need to be improved to
supply charging stations that are dispersed over a wide
region.251 As a result, the power generation system will be under
a lot of strain, raising the important issue of how enough
electricity will be generated to satisfy this demand.252,253 The two
35712 | RSC Adv., 2025, 15, 35687–35725
primary sources of energy used today are hydroelectricity and
coal-red thermal power; however, coal-red thermal power
requires fossil fuels like coal, which contradicts the goal of
reducing CO2 emissions. As a result, it is important to develop
renewable energy sources like solar and wind power in concert
with the existing infrastructure (Fig. 22).

The chance to replace fossil fuels in the transportation
industry is provided by electric automobiles. Increased energy
efficiency, less air pollution, and a decrease in global warming
can all be advantages of electrifying the transportation industry.
Yet, there are legitimate worries about how to meet the future
energy demand for recharging the batteries of electric vehicles
with clean and renewable sources. The concerns associated with
the availability of the precursor materials required to make
electric car batteries serve as a further reminder of the problem
of the long-term viability of EVs. Some of these material
resources' exploitation is associated with serious environ-
mental, ethical, and societal problems.

Moreover, one major emergency situation for all types of
electrical vehicles is the recycling problem of spent batteries,
which are discharged into the environment every year. The
requirement to recycle spent electric car batteries can be
considered an extremely urgent and important request in the
context of increasing pollution of water and air and global
warming. As well, a signicant number of precursor materials
for the manufacturing of electrodes, such as lithium, cobalt,
manganese, and nickel, will be required due to the enormous
demand for batteries for the electric car revolution in the
coming decade. Not only does this endanger the ecosystem, but
it also depletes mineral supplies. As a result, better technologies
must be created in order to properly recycle spent batteries.

Currently, 50 percent of the world's EV market is now made
up of all-electric cars (BEVs). Sales of BEVs are increasing more
quickly than those of plug-in hybrid electric vehicles (PHEVs).254

But various markets have very varying preferences for power-
trains, which are determined by legislative measures, consumer
preferences, and the availability of certain models. Following
the various databases of the global market for electric vehicles,
a market overview is given by us based on detailed and veriable
statistics from the data collected and presented below.255–259

Fig. 23 shows the global forecast sale of electric vehicles with
two biggest markets for electric vehicles in the world, China and
North America, continue to offer buyers a wide range of
options.260 In the foreseeable future, Europe is starting to
emerge as a signicant market. Both the further integration of
renewable energy and the growing number of electric cars will
have a signicant impact on the future transformation of the
European electrical grid.261 Rest of world, especially India will
become the biggest population in the world and is the most
attractive market in Asia aer China, but it has signicant
infrastructural challenges that will take 10 to 20 years to
resolve.260,262 Japan will be erce competition from electric
vehicle manufacturers due to the rather strict requirements of
consumers in these two countries; moreover, the industrial
science and infrastructure are very developed. Southeast Asia,
although still underdeveloped, has seen strong economic
growth in the past two decades and promises to be a dynamic
© 2025 The Author(s). Published by the Royal Society of Chemistry
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economic region and a fertile ground for electric vehicle
manufacturers.263 Overall, China will continue to lead the world
in producing electric car batteries over the next ten years, and it
will do so with undeniable advantages. In order to jointly
develop and build a large number of EVs, many multinational
automakers established brand-new joint ventures with local
Chinese factories.

2.6.2 Future perspectives and challenges of next-
generation batteries for EVs. Because of their high energy and
power densities, reliability, and longevity, LIBs have proven to
be efficient energy storage devices. However, LIBs confront
several safety and explosive issues in addition to signicant
difficulties with the precious metal resources utilized as elec-
trodes, such as lithium, nickel, cobalt, etc. Additionally, the
capacity of the recycling sector is still insufficient to satisfy the
demand to recycle all used LIBs. Finding the next generation of
batteries that can get around these drawbacks is therefore
critically needed. Under such circumstances, a number of
candidates—including sodium-ion batteries, metal–air
batteries, and all solid-state lithium batteries—emerge as
deserving replacements.

Sodium-ion batteries are a kind of rechargeable battery that
works like lithium-ion batteries but uses sodium instead of
lithium electrodes as well as a sodium electrolyte (Fig. 24).
Sodium-ion batteries could dominate the global battery market
in the future due to their low cost and plentiful supply of
sodium resources and promising large-scale production, which
makes them less expensive per kilowatt-hour.264 Recently, some
studies have focused on using hard-carbon anodes for sodium-
ion batteries due to their low cost, available sources, and stable
structure. Hard-carbon materials have a porous structure that
allows sodium ions to easily move and store during charging
and discharging, resulting in high energy density and good
stability.265 Therefore, hard carbon is considered a highly
commercial material for sodium-ion batteries. Sodium-ion
batteries leverage abundant, low-cost sodium resources,
reducing geopolitical risks associated with lithium, while
maintaining similar intercalation chemistry, enabling compat-
ibility with existing manufacturing infrastructure; however,
their lower energy density and larger Na+ ionic radius, which
slows diffusion kinetics and degrades cycle life, limit wide-
spread adoption.

Metal–air batteries are like lithium-ion batteries, and both
are types of rechargeable batteries. As shown in Fig. 25, metal–
air batteries use an external cathode (positive electrode) that
reacts with oxygen from the air, facilitated by carbon and
specic metals, while the anode (negative electrode) can be
made from metals such as zinc, aluminum, magnesium, or
lithium.266 According to theoretical calculations, metal–air
batteries have an energy density many times higher than
lithium-ion batteries, which gives hope for a future generation
of rechargeable batteries that can be widely used in energy
storage industrial systems and opens up great prospects for
electric cars.267 Metal–air batteries boast ultrahigh theoretical
energy densities, making them ideal for electric vehicles, but
suffer from poor rechargeability, electrolyte decomposition, and
cathode clogging by discharge products (e.g., Li2O2),
© 2025 The Author(s). Published by the Royal Society of Chemistry
necessitating advanced catalysts and stable electrolytes. In the
detailed, metal–air batteries have a solid electrolyte interphase
(SEI) lm is a passivation layer that sits between the metal
anode and the electrolyte. It is particularly challenging to
prevent the crossover of the air constituents and the degrada-
tion of the SEI present on the metal anodes. Batteries also
develop dendrites upon metal plating on the anode, which can
cause a short circuit and an explosion. Another signicant issue
is the cathode material's poor resistance to degradation
throughout the charge–discharge operation.267–269

All-solid-state lithium batteries (ASSLBs) are more viable
alternatives to LIBs, offering higher energy density, improved
safety, reliable high-temperature operation, and long-term
durability, irrespective of their electrolyte type (solid polymer
or inorganic) (Fig. 26).270 The original purpose of solid-state
batteries, which have recently attracted a lot of interest, was
to enhance the practicality of electric vehicles. Due to their
greater energy density and capacity to accommodate larger cells
in the same space as lithium-ion batteries, ASSLBs may soon
conquer the global market. The ASSLBs are now the subject of
considerable study and testing on a very small scale in order to
be produced in huge quantities in the future. The high inter-
facial resistance and lack of stability of solid–solid contact at the
electrolyte/electrode interface is one of the obstacles that must
be overcome in reality.270–273 The stability and compatibility of
the interfacial environment also have a signicant impact on
the electrochemical performance of batteries.274 In summary,
solid-state lithium batteries address safety concerns by replac-
ing ammable liquid electrolytes with solid counterparts,
enabling higher energy densities and dendrite suppression, yet
face interfacial resistance issues, brittle electrolyte mechanical
properties, and high production costs due to complex sintering
processes.

The recycling of next-generation batteries presents signi-
cant challenges due to their diverse chemistries and structural
complexities. Sodium-ion batteries, while sharing similar
properties with lithium-ion systems, suffer from lower material
value, making traditional pyrometallurgical or hydrometallur-
gical recycling economically unviable without government
assistance.275,276 Additionally, the prevalence of aluminum
current collectors in both electrodes complicates separation
processes. Metal–air batteries have some limitations of their
open cathode structures, which absorb atmospheric CO2 and
moisture, leading to carbonate formation that contaminates
recyclable components.277–279 Solid-state lithium batteries
require new recycling strategies, as their ceramic- or sulde-
based solid electrolytes are oen brittle and intermixed with
electrode layers, necessitating energy-intensive mechanical
separation, and their stable inorganic components resist
traditional leaching processes.280–282 Furthermore, the lack of
standardized designs across these emerging technologies
hampers the development of universal recycling protocols,
increasing costly and specic recycling strategies for each
battery type. Overcoming these challenges requires advances in
direct recycling methods, automated disassembly, and policy
frameworks to incentivize recovery of low-value materials like
sodium or complex solid electrolytes.
RSC Adv., 2025, 15, 35687–35725 | 35713

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra04471e


RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
9/

20
25

 1
1:

43
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2.6.3 The recent emerging recycling technologies. The rst
half of the 2020s has witnessed the remarkable development of
information technology, with the highlight being articial
intelligence (AI), which has been introduced and widely used in
many elds, from industry to commerce and services.283–285

Following this inuence, AI has been integrated into electric
vehicles for many different purposes, such as a virtual secretary
to support drivers, intelligent autopilot mode, and battery
management system. Currently, AI and robotic arms are being
researched to integrate into the inspection and recycling stages
of spent battery packs. AI can be used to diagnose the safety
level and remaining energy status before automatically adjust-
ing the line to the dismantling stage with robotic arms in
a closed room environment to protect people from toxic
chemicals and unexpected explosions.286–289 Fig. 27 illustrates
a recycling process for old EV battery packs that uses AI to
identify their condition before moving on to dismantling and
sorting components using a programmable robotic arm.
Fig. 27a and b show the critical initial steps in developing the
automation of the disassembly process, which is standardizing
the manufacturing, size, form, and construction of battery
packs and cells. The recycling of used LIBs also requires the
establishment of a thorough BMS (Fig. 27c). Then, the AI and
programmable robotic arms should concentrate on developing
and implementing an automated recycling system that includes
identication, sorting, disassembly, and separation according
to the standardized standards (Fig. 27d). An intelligent proce-
dure will be essential to the future of effective LIB recycling
(Fig. 27e).

The direction of battery recycling technology in the near
future is to incorporate AI and robots into the diagnostic phases
of pre-recycling as well as the entire process of disassembly,
separation, and renement to recover the most precious metals
possible in the form of metal salts, lithium salts, and pure foil.
These new technologies will reduce the hazards of gas venting
and chemical emissions during the disassembly and recycling
process, as well as the explosion incidents and toxic exposures
to humans. In addition, breakthrough technological improve-
ments will also be applied to improve traditional recycling
methods such as hydrometallurgy and pyrometallurgy to reduce
process operating costs and increase output product quality.
3 Conclusions

This review comprehensively examines four commercial EV
types (BEVs, HEVs, PHEVs, and FCEVs) with a focus on their LIB
architectures and safety challenges, particularly thermal
runaway risks. By synthesizing recent experimental studies, we
demonstrate that thermal management systems (e.g., liquid
cooling, phase-change materials) and battery design modica-
tions (e.g., ceramic-coated separators, silicon anodes) signi-
cantly enhance safety but require further optimization for
extreme conditions. Our analysis also reveals that while current
recycling methods—pyrometallurgy (80–95% metal recovery),
hydrometallurgy (high purity but energy-intensive), and direct
recycling (cost-effective but scalability-limited)—address LIB
35714 | RSC Adv., 2025, 15, 35687–35725
waste, none yet offer a perfect solution for the impending surge
of end-of-life EV batteries.

The transition to EVs is inevitable, driven by climate policies
and technological advances. However, critical barriers persist,
including: (1) charging infrastructure scalability, (2) renewable
energy integration to ensure true decarbonization, and (3)
sustainable, closed-loop battery recycling systems. Innovations
like solid-state batteries and sodium-ion alternatives show
promise but demand rigorous validation. This work not only
consolidates current knowledge but also provides actionable
insights for policymakers and researchers to accelerate EV
adoption while mitigating environmental trade-offs. Future
efforts must prioritize interdisciplinary collaboration to address
these challenges holistically, ensuring EVs fulll their potential
as a sustainable alternative to ICE vehicles.
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12 M. Şen, M. Özcan and Y. R. Eker, A review on the lithium-
ion battery problems used in electric vehicles, Next
sustain., 2024, 3, 100036, DOI: 10.1016/
j.nxsust.2024.100036.

13 S. S. Rawat, R. Kumar and K. Das, Lithium-ion battery
progress in surface transportation: status, challenges, and
future directions, Multim. Tools Appl., 2024, 84, 32927–
32958, DOI: 10.1007/s11042-024-20505-3.

14 A. L. Cheng, E. R. H. Fuchs, V. J. Karplus and J. J. Michalek,
Electric vehicle battery chemistry affects supply chain
disruption vulnerabilities, Nat. Commun., 2024, 15(1),
2143, DOI: 10.1038/s41467-024-46418-1.

15 M. Dixit, et al., Insights into the Critical Materials Supply
Chain of the Battery Market for Enhanced Energy
Security, ACS Energy Lett., 2024, 9(8), 3780–3789, DOI:
10.1021/acsenergylett.4c01300.

16 P. A. Le, D. T. Vuong, J. Natsuki, and T. Natsuki, ‘Overview of
the Thermal Runaway in Lithium-Ion Batteries with
Application in Electric Vehicles: Working Principles, Early
© 2025 The Author(s). Published by the Royal Society of Chemistry
Warning, and Future Outlooks’, 2023, DOI: 10.1021/
acs.energyfuels.3c02548.

17 J. M. Tarascon and M. Armand, ‘Issues and challenges facing
rechargeable lithium batteries’, 2001, DOI: 10.1038/
35104644.

18 W. Liu, T. Placke, and K. T. Chau, ‘Overview of batteries and
battery management for electric vehicles’, 2022, DOI: 10.1016/
j.egyr.2022.03.016.

19 R. Chen, R. Luo, Y. Huang, F. Wu, and L. Li, ‘Advanced High
Energy Density Secondary Batteries with Multi-Electron
Reaction Materials’, 2016, DOI: 10.1002/advs.201600051.

20 M. S. Koroma, D. Costa, M. Philippot, G. Cardellini,
M. S. Hosen, T. Coosemans and M. Messagie, Life cycle
assessment of battery electric vehicles: implications of
future electricity mix and different battery end-of-life
management, Sci. Total Environ., 2022, 831, 154859, DOI:
10.1016/j.scitotenv.2022.154859.

21 G. Zhao, X. Wang, and M. Negnevitsky, ‘Connecting battery
technologies for electric vehicles from battery materials to
management’, 2022, DOI: 10.1016/j.isci.2022.103744.

22 S. R. Ovshinsky, M. A. Fetcenko and J. Ross, A Nickel Metal
Hydride Battery for Electric Vehicles, Science, 1979,
260(5105), 176–181, DOI: 10.1126/science.260.5105.176.

23 M. Fetcenko, J. Koch, and M. Zelinsky, ‘6 – Nickel–metal
hydride and nickel–zinc batteries for hybrid electric
vehicles and battery electric vehicles’, in Advances in
Battery Technologies for Electric Vehicles, ed. B. Scrosati, J.
Garche, and W. Tillmetz, Woodhead Publishing, 2015, pp.
103–126, DOI: 10.1016/B978-1-78242-377-5.00006-6.

24 A. J. Crawford, Q. Huang, M. C. W. K. Meyer, J. G. Zhang,
D. M. Reed, V. L. Sprenkle, V. V. Viswanathan and
D. Choi, Lifecycle comparison of selected Li-ion battery
chemistries under grid and electric vehicle duty cycle
combinations, J. Power Sources, 2018, 380, 185–193, DOI:
10.1016/j.jpowsour.2018.01.080.

25 B. Cox, C. L. Mutel, C. Bauer, A. Mendoza Beltran and
D. P. Van Vuuren, Uncertain Environmental Footprint of
Current and Future Battery Electric Vehicles, Environ. Sci.
Technol., 2018, 52(8), 4989–4995, DOI: 10.1021/
acs.est.8b00261.

26 M. S. Hossain, L. Kumar, M. El Haj Assad and R. Alayi,
Advancements and Future Prospects of Electric Vehicle
Technologies, A Comprehensive Review, Complexity, 2022,
DOI: 10.1155/2022/3304796.

27 A. Eekhari, Lithium Batteries for Electric Vehicles: From
Economy to Research Strategy, ACS Sustain. Chem. Eng.,
2019, 7(6), 5602–5613, DOI: 10.1021/
acssuschemeng.8b01494.

28 D. Choi, N. Shamim, A. Crawford, Q. Huang,
C. K. Vartanian, V. V. Viswanathan, M. D. Paiss,
M. J. E. Alam, D. M. Reed and V. L. Sprenkle, Li-ion
battery technology for grid application, J. Power Sources,
2021, 511, DOI: 10.1016/j.jpowsour.2021.230419.

29 M. S. H. Lipu, et al., Battery Management, Key
Technologies, Methods, Issues, and Future Trends of
Electric Vehicles: A Pathway toward Achieving Sustainable
RSC Adv., 2025, 15, 35687–35725 | 35715

https://doi.org/10.1016/j.rser.2022.112158
https://doi.org/10.1016/j.rser.2022.112158
https://doi.org/10.1016/j.atmosenv.2018.04.040
https://doi.org/10.1016/j.atmosenv.2019.03.022
https://doi.org/10.1016/j.atmosenv.2019.03.022
https://doi.org/10.1016/j.trd.2022.103472
https://doi.org/10.1016/j.trd.2022.103472
https://doi.org/10.1038/s43247-023-00799-1
https://doi.org/10.1016/j.jenvman.2024.120648
https://doi.org/10.1109/MELECON48756.2020.9140669
https://doi.org/10.1016/j.envint.2023.108116
https://doi.org/10.1016/j.envint.2023.108116
https://doi.org/10.1016/j.nxsust.2024.100036
https://doi.org/10.1016/j.nxsust.2024.100036
https://doi.org/10.1007/s11042-024-20505-3
https://doi.org/10.1038/s41467-024-46418-1
https://doi.org/10.1021/acsenergylett.4c01300
https://doi.org/10.1021/acs.energyfuels.3c02548
https://doi.org/10.1021/acs.energyfuels.3c02548
https://doi.org/10.1038/35104644
https://doi.org/10.1038/35104644
https://doi.org/10.1016/j.egyr.2022.03.016
https://doi.org/10.1016/j.egyr.2022.03.016
https://doi.org/10.1002/advs.201600051
https://doi.org/10.1016/j.scitotenv.2022.154859
https://doi.org/10.1016/j.isci.2022.103744
https://doi.org/10.1126/science.260.5105.176
https://doi.org/10.1016/B978-1-78242-377-5.00006-6
https://doi.org/10.1016/j.jpowsour.2018.01.080
https://doi.org/10.1021/acs.est.8b00261
https://doi.org/10.1021/acs.est.8b00261
https://doi.org/10.1155/2022/3304796
https://doi.org/10.1021/acssuschemeng.8b01494
https://doi.org/10.1021/acssuschemeng.8b01494
https://doi.org/10.1016/j.jpowsour.2021.230419
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra04471e


RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
9/

20
25

 1
1:

43
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Development Goals, Batteries, 2022, 8(9), 119, DOI: 10.3390/
batteries8090119.

30 L. Peiseler, V. Wood and T. S. Schmidt, Reducing the carbon
footprint of lithium-ion batteries, what’s next?, Next Energy,
2023, 1(2), 100017, DOI: 10.1016/j.nxener.2023.100017.

31 M. Fichtner, Recent Research and Progress in Batteries for
Electric Vehicles, Batteries Supercaps, 2022, 5(2),
e202100224, DOI: 10.1002/batt.202100224.

32 J. Zhao, Z. Rao, Y. Huo, X. Liu and Y. Li, Thermal
management of cylindrical power battery module for
extending the life of new energy electric vehicles, Appl.
Therm. Eng., 2015, 85, 33–43, DOI: 10.1016/
j.applthermaleng.2015.04.012.

33 Y. Xu, H. Zhang, Y. Yang, J. Zhang, F. Yang, D. Yan, H. Yang
and Y. Wang, Optimization of energy management strategy
for extended range electric vehicles using multi-island
genetic algorithm, J. Energy Storage, 2023, 61, 106802,
DOI: 10.1016/j.est.2023.106802.

34 X. Sun and J. Fu, Many-objective optimization of BEV
design parameters based on gradient boosting decision
tree models and the NSGA-III algorithm considering the
ambient temperature, Energy, 2024, 288, 129840, DOI:
10.1016/j.energy.2023.129840.

35 M. Q. Elahi, M. Elsaadany, H. Rehman, and
S. Mukhopadhyay, ‘Battery Energy Consumption
Optimization for the EV Traction System’, in 2022 IEEE
16th International Conference on Compatibility, Power
Electronics, and Power Engineering, CPE-POWERENG 2022,
2022, DOI: 10.1109/CPE-POWERENG54966.2022.9880859.

36 A. Bocca and D. Baek, ‘Optimal life-cycle costs of batteries
for different electric cars’, in 2020 AEIT International
Conference of Electrical and Electronic Technologies for
Automotive, AEIT AUTOMOTIVE 2020, 2020, DOI: 10.23919/
aeitautomotive50086.2020.9307426.
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