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les: mapping the intricacies of
electric vehicle battery health in diverse
environments and driving conditions

Sai Krishna Mulpuri, a Bikash Sah *b and Praveen Kumara

As electric two-wheelers become increasingly prevalent in emerging markets, understanding the real-

world degradation of their batteries is crucial for ensuring reliability, longevity, and cost-effectiveness.

Traditional battery aging studies are heavily based on standard drive cycles that do not capture the

variability introduced by diverse user behaviors, regional conditions, and charging habits. This study

proposes a comprehensive and adaptable framework for evaluating the end-of-life (EOL) of EV batteries

in realistic usage scenarios. The methodology incorporates key metrics of the drive cycle, including

acceleration patterns, rest periods, charging frequency, and rates, in multiple daily driving scenarios,

three distinct geographic regions, and varying climatic conditions. By linking these operational

parameters to electrochemical degradation phenomena, this work reveals the critical influence of user-

specific behavior on capacity fade. The insights generated are not only scientifically grounded but also

practically relevant to stakeholders across the EV ecosystem. For cell and vehicle OEMs, the findings

support region-specific cell design and lifecycle prediction; for EV users, the study offers a clearer

understanding of how personal usage affects battery health. Ultimately, this work bridges the gap

between lab-scale testing and real-world degradation, paving the way for smarter battery design,

personalized usage strategies, and sustainable EV adoption.
1 Introduction
1.1 Context and motivation

In recent times, there has been a concerning trend of battery
issues in electric vehicles (EVs), with batteries requiring
replacement even before reaching their expected end-of-life
(EOL) capacity fade of 20%.1,2 This poses not only an opera-
tional issue, but also a considerable cost-related burden since
the battery unit constitutes 35–45% of the overall
manufacturing cost of an EV.3 Lithium-ion batteries, which
dominate the EV market due to their high energy density and
cycle life, remain the primary technology for these applications.
Researchers continue to face challenges in enhancing battery
performance, including improving cycle life, thermal stability,
and safety under diverse real-world conditions. Efforts are also
directed at developing advanced cathode and anode materials
to boost energy density and reduce degradation. Moreover, the
limited availability and increasing cost of lithium4,5 have driven
interest in alternative chemistries such as sodium ion
batteries,6 solid oxide fuel cells,7 and thermal batteries,8 which
offer diversity in energy storage solutions for similar
gineering, Indian Institute of Technology
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31004
applications and promise greater sustainability and material
diversity for future electric vehicles.

Distinct EVs may exhibit varying EOL periods for the battery
packs, even when neighbors use similar models. This discrep-
ancy arises from the inuential role of personal usage patterns
in the degradation of EV batteries. Another pertinent aspect for
vehicle owners is the diversity in charging behavior. Unlike
internal combustion engines (ICEs), where the range is inde-
pendent of fuel rell frequency, EVs face pronounced battery
longevity issues. Despite similar driving behaviors and regional
and climatic factors for EVs and ICEs, the critical factor of
charging a vehicle differs. Consequently, vehicle owners must
understand that the EOL of their vehicle's battery pack depends
on personal usage patterns, the frequency of recharging, and
the rates at which they recharge. Traditionally, original equip-
ment manufacturers (OEMs) primarily assess battery aging
based on standard driving proles provided by manufacturers
or recognized drive cycles nationwide (e.g., Worldwide Harmo-
nized Light Vehicle Test Cycle (WLTC),9 Urban Dynamometer
Driving Schedule (UDDS),10 New European Driving Cycle
(NEDC),11 Indian Driving Cycle (IDC)12,13). However, investi-
gating driving style and regional variations is crucial in deter-
mining the best- and worst-case scenarios specic to a country
or region. Our work emphasizes the need for this generic
framework, highlighting the disparity in EOL periods between
a standardized drive cycle (WLTC) and regional drive cycles
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(Pattern-1, Pattern-2, Pattern-3). Building on this analysis, we
propose a generic framework for conducting such studies,
considering real-time driving behaviours.

The accelerated capacity fade and decline in battery
discharge performance in an EV are characterized by two
factors: the driving style of the EV user and regional variations
in topography and demographics. The driving style of an EV
user is reected in the nature of the drive cycle (e.g., harsh, mild,
gentle). It is measured by drive cycle metrics such as kinetic
intensity (KI), relative positive acceleration (RPA), and positive
kinetic energy (PKE).14 It also includes the frequency of vehicle
charging and the rates at which the user recharges the vehicle.
Secondly, regional variations encompass diverse topographical
and demographical conditions due to altitude, latitude, and
road prole differences. These variations give rise to distinct
driving patterns, impacting acceleration levels, torque require-
ments, and gradients, particularly in hilly areas. Moreover, the
variations in climatic conditions while driving also play
a crucial role in impacting battery degradation. This work
endeavors to present a meticulous analysis to uncover the
underlying reasons behind the accelerated capacity fade and
discharge performance deterioration in batteries, thereby
highlighting the necessity of incorporating the two factors into
aging studies.
1.2 Literature review

The studies reported to date remain focused on evaluating battery
aging based on standard driving proles provided by manufac-
turers or nationwide followed drive cycles.15–18 Relying solely on
one standard driving pattern to generalize battery fading for an
entire country is unreasonable,19–23 especially for countries with
large land areas and diverse topography and demography.
Instead, it is crucial to determine battery fading based on regional
drive cycles that consider the specic geographic locations and
road proles.24 While some studies do consider different regional
drive cycles,25,26 they do not fully account for the environmental
conditions unique to each region. For instance, tropical and cold
countries experience varying climates throughout the year.
Temperature plays a pivotal role in battery performance and
degradation. At lower temperatures, the electrochemical reaction
rates within the battery slow down, resulting in a reduced depth
of discharge. Conversely, operating the battery at higher
temperatures accelerates the degradation rate as the growth of
the solid electrolyte interphase (SEI) layer increases, leading to
electrolyte decomposition.27 Furthermore, overheating of the
battery core causes electrochemical damage,28,29 resulting in
thermal instability eventually leading to thermal runaway,30,31

necessitating efficient thermal management and cooling systems
to dissipate heat and mitigate these detrimental effects.32 There-
fore, it is essential to consider daily temperatures throughout the
year or the specic period of interest when analyzing capacity
fade. Such considerations are critical to assessing battery
performance and degradation under real-world driving condi-
tions accurately.

Drive cycle metrics such as KI, RPA, and PKE and energy
exchange at the battery while driving, charging, and resting
© 2025 The Author(s). Published by the Royal Society of Chemistry
signicantly impact the battery aging and must be explored.
While some studies have highlighted that harsher or more
aggressive driving behaviors (higher KI, PKE, RPA values) lead
to increased battery fading,16,18,19,25,33 it is important to differ-
entiate between driving distance and duration. In cases where
driving distance remains constant, higher energy exchange
(measured in watt-hours) results in greater battery fading. On
the other hand, when driving duration is held constant, drive
cycles featuring higher KI values are associated with increased
battery degradation. However, these statements hold only when
we solely consider the driving pattern and overlook the signi-
cance of rest periods and charge durations. A daily cycle
encompasses more than just driving; it also involves interme-
diate rest periods15,33 when the vehicle is parked and charging
periods. Ignoring these essential aspects will lead to an
incomplete understanding of battery aging and degradation. It
is essential to consider all the operations an EV undergoes in
a typical day, including rest16,18,34 and charge periods, to gain
a deeper insight into the overall battery performance and
degradation over time.

The duration of the rest period within a daily cycle is
inversely related to the amount of energy discharged. Speci-
cally, higher discharge energies result in longer charging times,
reducing the available rest period within a day, and vice versa for
lower discharge energies. This relationship introduces the
concept of calendar aging, wherein the rest period plays
a signicant role in the overall degradation of the battery over
time. Similarly, the impact of charge periods on driving
behavior and battery performance is critical. Different charging
scenarios with varying charge rates must be studied to under-
stand how charging affects battery performance. Table 1 offers
a comprehensive overview of the research conducted by various
groups on battery aging studies due to driving behaviour and
the associated factors and degradation elements considered in
their study. Despite existing studies simulating battery fading
behavior based on driving conditions, charge rates, and
charging scenarios,33 a deeper understanding of cell-level
degradation associated with fading is oen lacking. Most
existing studies lack a comprehensive investigation into SEI
layer growth, lithium plating, particle cracking, and the
complex interplay between calendar and cycling aging, high-
lighting the need for deeper exploration of these critical
degradation mechanisms. Understanding how degradation
occurs during the driving, rest, and charging phases is also
essential.

To bridge these gaps and shed light on the complex inter-
play between driving patterns and battery performance, our
study delves into a meticulous examination of regional and
standard drive cycles. By meticulously generating diverse
regional daily drive cycles from different geographical regions
having varied climatic conditions, we aim to unravel the
intricate relationship between driving patterns and battery
degradationmechanisms. Further, the interplay of rest periods
and charge durations on battery degradation is determined by
performing the design of experiments involving varying charge
rates and frequencies involving rest periods. Through this
rigorous and systematic approach, we present a deeper
RSC Adv., 2025, 15, 30980–31004 | 30981
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Table 1 Overview of existing studies on battery aging due to driving behavior – factors considered/investigated

Standard driving
patterns

Regional driving
patterns

Different daily
scenarios

Different climatic
conditions

Impact of charge rates
on capacity fade

Entire day
analysis

Rest period considered
in daily analysis Reference

Yes Yes Yes Yes Yes Yes Yes 33
Yes Yes No No No No No 25
Yes No Yes Yes No Yes Yes 15
Yes No No No No Yes Yes 16
Yes No No No No Yes No 17
Yes No No Yes Yes Yes Yes 18
Yes No No No No No No 19
Yes No No No No No No 20
Yes No No No No No No 21
Yes No No No No No No 22
Yes No No Yes No No No 23
Yes Yes No No No No No 26
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understanding of the degradation mechanisms affecting
batteries, thereby providing valuable guidance for developing
strategies to enhance battery performance and longevity under
real-world driving conditions.
1.3 Contributions of this work

This study makes targeted and practical contributions to
advancing battery lifespan prediction and customization across
the electric mobility ecosystem, impacting cell manufacturers,
vehicle OEMs, and end users.

1. For cell manufacturers: we introduce a novel framework
that links the parameters of real-world usage to the loss of
capacity, allowing the precise adjustment of the composition of
electrodes and electrolytes according to regional demands. This
sets the groundwork for the design of geographically optimized
next-generation battery cells.

2. For vehicle OEMs: the work offers actionable insights into
how diverse driving styles and climatic proles accelerate or
decelerate battery degradation. These insights enable data-
driven decisions for warranty planning, battery pack size, and
inventory control, while anchoring catalog values in validated,
usage-specic degradation trends.

3. For EV users: the study explains why two identical EVs
driven in different ways, or even similarly but charged differ-
ently, can reach end of life (EOL) at dramatically different times.
By revealing how charging frequency and rates, daily drive
routines, and environmental conditions interplay in shaping
battery aging, this work equips users with the knowledge to
extend battery life through informed behavioral adjustments.

Technically, this work is among the rst to simulate battery
degradation by combining three regional contexts, multiple
climatic conditions, weekday behavioral variations, and distinct
driving behaviors, providing a scalable model for EOL predic-
tion. The modularity of the framework allows easy extension to
other geographies or usage patterns, making it adaptable for
global applications. By integrating diverse driving behaviors,
climatic conditions, and electrochemical analysis, this research
bridges a critical gap between laboratory aging tests and real-
world battery degradation, setting a new benchmark for how
EV battery aging should be studied, understood, and mitigated.
30982 | RSC Adv., 2025, 15, 30980–31004
2 Methodology

To estimate the impact of driving behaviors, regional variations,
daily scenarios, and climatic conditions on battery capacity
fade, this paper assumes different driving behaviors, three
regional variations, two man-made driving scenarios on week-
days, and three temperature zones. It should be noted that
additional behaviors, regions, scenarios, and climatic zones
could be developed to represent the operating conditions of EVs
in specic regions, and similar analyzes can be performed. A
thorough understanding of the underlying phenomena and
electrochemical processes is essential to accurately relate the
impact of different parameters on cell capacity fade.
2.1 Need for real-world driving cycles

Real-world driving cycles play a pivotal role in accurately
assessing battery performance for driving behaviors. Unlike
standardized drive cycles, which offer a limited representation
of regional driving behaviors, real-world conditions exhibit
signicant variations based on traffic patterns, road conditions,
charging patterns, and driving habits. These dynamic factors,
such as sudden start-stops, frequent accelerations, and decel-
erations in response to traffic conditions, demand diverse
power outputs from the battery, rendering the current varia-
tions far from constant. Standard driving cycles fail to capture
these intricate dynamics, leading to an underestimation of
capacity fade compared to real-world scenarios. The absence of
accurate representation in standard cycles overlooks the true
degradation process.

2.1.1 Drive cycle metrics and their signicance. To quantify
the characteristics of the dynamics in a driving cycle, drive cycle
metrics serve as essential tools. These metrics comprehensively
assess driving patterns by capturing information on velocity,
distance covered, acceleration, and more. Key parameters
among these standard drive cycle metrics are KI, RPA, and PKE.
These metrics play a crucial role in understanding the harsh-
ness or gentleness of a driving cycle, shedding light on how
vehicle speed uctuates and the energy involved throughout the
driving process. Kinetic intensity (KI) is a crucial drive cycle
metric that sheds light on the dynamic behavior of vehicles
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra04379d


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
0/

2/
20

25
 1

:0
8:

49
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
during their operational cycles. It quanties the overall changes
in kinetic energy and serves as a time-averaged measure of the
intensity of vehicle dynamics. Comprising two essential
metrics, KI is the ratio of characteristic acceleration (aC) to the
square of the aerodynamic speed (vaerodynamic

2), as shown in the
eqn (1).14 The rst metric, characteristic acceleration, measures
the inertial work required to accelerate or li the vehicle per
unit mass and distance over the cycle (eqn (2)). It captures the
positive part of specic kinetic and potential energy per
distance associated with the vehicle's movement. The second
metric, the square of the aerodynamic speed, gauges the ratio of
the overall average cubic speed to the average speed (eqn (3)).
This element directly accounts for the inuence of aero-
dynamics on vehicle performance.

KI ¼ aC

vaerodynamic
2

(1)

aC ¼

P
i

�
viþ1

2 � vi
2

2
þ gðhiþ1 � hi�1Þ

�
positive

S
(2)

vaerodynamic
2 ¼

1

T

ðT
0

v3dt

1

T

ðT
0

vdt

y

P
i

vi;iþ1
3$Dti;iþ1P

i

vi;iþ1$Dti;iþ1

¼
P
i

vi;iþ1
3$Dti;iþ1

S

(3)

where ‘vi’ is the vehicle speed at ith instant, ‘g’ is the accelera-
tion due to gravity, ‘h’ is the elevation, ‘Dt’ is the successive time
interval between two points, ‘T’ is the total time spent for
driving, and ‘S’ is the total distance travelled. KI is highly
valuable for assessing the intensity of driving conditions and
evaluating the energy demands on vehicles. In particular,
higher KI values indicate aggressive driving behavior, charac-
terized by rapid and frequent speed changes. Conversely, lower
KI values suggest a smoother and more consistent driving
behavior, involving fewer variations in kinetic energy. Moreover,
KI enables a quantitative characterization and comparison of
different drive cycles, such as urban, highway, or specic test
cycles, allowing for a comprehensive understanding of their
varying levels of intensity and aggressiveness. By evaluating the
energy basis using the characteristic acceleration and aero-
dynamic speed metrics, KI provides a holistic representation of
the duty cycle's impact on road loads.

Relative positive acceleration (RPA) measures the positive
acceleration experienced by the vehicle during the drive cycle,
normalized by the average speed during the travel. It is calcu-
lated by taking the speed differences between consecutive
instants at regular intervals, typically every second, and ltering
out vehicle speed changes on time scales less than two seconds.
The result measures specic power averaged by time, consid-
ering only positive acceleration instances (eqn (4)).14 Here, ‘vi’ is
the vehicle speed corresponding to ith data point, ‘Dt’ is the
successive time interval between two data points, and the
© 2025 The Author(s). Published by the Royal Society of Chemistry
numerator contains the summation of only the positive accel-
eration terms. High RPA values indicate frequent and signi-
cant positive accelerations during the drive cycle, which implies
a more aggressive driving style with frequent speed changes,
indicating more stop-and-go traffic conditions. Lower RPA
values indicate a smoother, more consistent driving style with
less frequent positive accelerations. RPA is particularly useful in
assessing the dynamics of urban driving, where traffic conges-
tion and frequent stops can be observed.

RPA ¼
P
i

vi

2
ðviþ1 � vi�1ÞpositiveP

i

viDt
(4)

Positive kinetic energy (PKE) is a metric that quanties the
positive kinetic energy added to the vehicle during the drive
cycle, normalized by the total distance traveled. The calculation
of this metric involves computing the ratio of the sum of posi-
tive differences in vehicle speeds between consecutive data
points, which signies instances of individual positive acceler-
ation, typically measured at regular time intervals, to the total
distance covered during the given period (eqn (5)).14 Here
‘vinitial’ and ‘vnal’ are the initial and nal speeds, respectively,
during the individual positive acceleration instances, and this
summation is divided by the total distance travelled, ‘S’. High
PKE values indicate that the vehicle undergoes signicant
kinetic energy changes, experiencing frequent decelerations. A
drive cycle with high PKE values oen reects a driving pattern
with many speed changes, such as city driving or hilly terrain.
Lower PKE values suggest a steadier, more consistent driving
style with fewer speed changes.

PKE ¼
P�

vfinal
2 � vinitial

2
�

S
(5)

2.1.2 Choice of regions, driving behaviours and their
signicance. Having highlighted the need for real-world driving
cycles and their associated metrics, the subsequent subsection
discusses the process of choosing diverse drive cycle regions,
characterized by different metrics indicating distinct driving
patterns and behaviors. This can effectively capture critical
factors such as sudden start stops, frequent accelerations and
decelerations, and varying power demands from the battery
during driving.

To comprehensively assess battery capacity fade behavior,
a case study in three distinct regions in India is performed:
Eastern India – Panskura, West Bengal, Northern India –

Kapashera, New Delhi, and Southern India – Hyderabad,
Telangana. Our team at E-Mobility Lab, IIT Guwahati, gathered
extensive data, covering over 150 km of driving in each region
over two weeks, capturing diverse traffic and geographical
conditions. The collected data was meticulously analyzed to
generate corresponding real-world driving cycles, following
a detailed process outlined in ref. 35. A standard drive cycle,
WLTC-class2, was also included for comparative analysis with
the diverse driving proles.9 The WLTC is a global standard test
RSC Adv., 2025, 15, 30980–31004 | 30983
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cycle adopted by many countries, including China, Japan, the
United States, India, and the European Union, among others.36

In this study, the four driving patterns observed in Panskura,
New Delhi, Hyderabad, and WLTC, as shown in Fig. 1a, are
referred to as Pattern-1, Pattern-2, Pattern-3, and Pattern-S,
respectively, in further discussions.

The key parameters, such as average speed and maximum
speed for all considered driving patterns, were derived from the
vehicle speed vs. time data (Fig. 1a). The critical drive cycle
metrics were calculated using empirical relations from eqn (1),
(4), and (5). These statistical outcomes are described in the
Table 2 demonstrates that all three real-world driving proles
exhibit higher KI, PKE, and RPA values compared to the stan-
dard driving prole, WLTC-class2. These ndings highlight the
signicant discrepancies between standard driving proles and
actual driving conditions, emphasizing the need for real-world
driving cycles to accurately estimate battery capacity. The
power demanded from the battery output was determined
Fig. 1 (a) Vehicle speed (in kmph) vs. time (in seconds) drive profiles
for four driving patterns, including three regional patterns and one
standard pattern. (b) Battery output power (in W) vs. time (s) profiles
corresponding to the drive profiles.

30984 | RSC Adv., 2025, 15, 30980–31004
based on the distinct driving patterns. For this study, the
LGM50 21 700 cylindrical cell with a nominal voltage of 3.6 V
and a nominal capacity of 5 Ah was chosen. The detailed
process of extracting battery power from vehicle speed and time
proles is outlined in ref. 35. The power demands for the four
driving proles are presented in Fig. 1b.

Furthermore, Fig. 2a illustrates the probability density
functions (PDFs) for C-rates associated with four distinct
driving patterns for a single trip, offering a clear visual repre-
sentation of the variations in driving styles and the corre-
sponding demands they place on a vehicle's battery system.
Here, the C-rate is the measure of the rate at which a battery is
charged/discharged with respect to its capacity. For instance,
a 1C rate corresponds to a full charge or discharge in 1 hour.
Each pattern presents a unique distribution that characterizes
the frequency and intensity of the power requirements during
a single driving trip.

Pattern-1, denoted by the black curve, has a PDF that peaks at
lower C-rates, along with a kinetic intensity value of 0.0023 m−1,
indicating a driving style with moderate energy demands,
reective of a cautious and steady driving style maintaining
consistent speeds and avoiding sudden accelerations. Similarly,
Pattern-S, depicted by the green curve, also has the lowest kinetic
intensity value of 0.0010 m−1, with its peak sharply centered at
the lowest range of C-rates. This distribution represents
a conservative driving pattern, resembling a controlled testing
scenario like a standard drive cycle in a laboratory setting, closer
to an eco-driving style. The driving style associated with Pattern-S
is gentle on the battery, potentially resulting inminimal wear and
the longest possible battery life.

On the contrary, Pattern-2, illustrated by the red curve, shows
a PDF with a higher spread of C-rates and further has the kinetic
intensity of 0.0039 m−1. The broader distribution and shi
towards higher C-rates imply a more dynamic and varied
driving style. This pattern is indicative of a driving style expe-
riencing more frequent stop-and-go conditions or having
a tendency to accelerate more aggressively. Such a driving
pattern could result in increased power demands. Likewise,
Pattern-3, represented by the blue curve, also has the highest
kinetic intensity value of 0.0046 m−1, with its PDF extending
further into the higher C-rate region. This suggests an even
more aggressive driving style than Pattern-2, characterized by
frequent hard accelerations and high-power demands. This
driving behavior may lead to faster battery consumption and
could necessitate more frequent charging intervals.

These ndings highlight the substantial variation in power
demands across different driving cycles, emphasizing the
signicance of capturing such real-world dynamics in battery
performance assessments. The diversity in driving behaviors
inuences how the battery discharges, which is crucial for
designing batteries and battery management systems that cater
to various use cases.37
2.2 Different climatic conditions

This section discusses the methodology employed to investigate
the effect of temperature on battery capacity fade in everyday
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Inclusive critical drive cycle metrics, average speed, and maximum speed information for all considered driving patterns in the study

Pattern KI (1/m) PKE (m/s2) RPA (m/s2) Maximum speed (kmph) Average speed (kmph)

Pattern-1 0.0023 0.41 0.018 66.47 28.70
Pattern-2 0.0039 0.67 0.057 55.42 23.56
Pattern-3 0.0046 0.81 0.083 51.13 23.66
Pattern-S 0.0010 0.29 0.010 74.70 24.51

Fig. 2 (a) Normal probability density function (pdf) distribution of
different C-rates across four driving patterns. (b) Temperature profiles
of three climatic zones across India for the year 2022 alongside their
respective extreme temperature limits.
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driving scenarios for EVs, considering driving conditions,
battery technology, and temperature as critical factors.26,38,39

Temperature signicantly inuences battery life, with high and
low temperatures adversely affecting performance.40 To
comprehensively understand temperature effects, subjecting
the battery to a constant temperature would provide limited
insights, as real-world ambient temperatures are dynamic.
Thus, this study adopts an approach involving hourly temper-
ature variations to capture the impact realistically. Three
© 2025 The Author(s). Published by the Royal Society of Chemistry
distinct temperature zones, Eastern India – Kolkata (Zone-A),
Northern India – Delhi (Zone-B), and Western India – Rajas-
than (Zone-C), were selected based on their diverse temperature
variations throughout the year, aiming to assess how different
temperature proles impact battery performance.

Hourly temperature data for these regions for the entire year
2022 were collected.41 These regions were chosen for their
signicant temperature spreads and extreme conditions expe-
rienced during the year (Fig. 2b). Churu experiences extreme
temperatures ranging from 1.8 °C (extreme low) to 47.2 °C
(extreme high), followed by Delhi with extreme temperatures of
5.6 °C (extreme low) and 45.4 °C (extreme high), both posing
considerable challenges for battery performance. Kolkata, on
the other hand, depicts a more moderate temperature prole
with extreme temperatures ranging from 12 °C to 41 °C. The
impact of these diverse temperature proles on battery perfor-
mance is further discussed and analyzed in subsequent
sections, aiming to provide valuable insights into battery
behavior under varying temperature conditions.

2.3 Daily scenarios

In this section, we address the signicance of considering
a typical daily cycle to accurately estimate an EV battery's
performance. A comprehensive analysis requires accounting for
an EV's various stages during the day, encompassing driving,
resting, and charging periods. Accordingly, two distinct scenarios
are considered: Daily Scenario-1 (DS-1), representing a typical
work cycle, where the EV experiences morning driving, rests
during the day while parked, evening driving returning from
work, and charges at home till reaching full capacity; and Daily
Scenario-2 (DS-2), simulating driving to work, charging at work
until full capacity, resting until evening, driving back from work
to home, and then charging at home until reaching full capacity.
The chargingmethod employed in this study follows the standard
Constant Current Constant Voltage (CCCV) protocol, renowned
for its energy-efficient approach to charging.42,43

These scenarios aim to capture the dynamics of single-day
charging and twice-a-day charging conditions as shown in
Fig. 3a. For a chosen Pattern-1, corresponding State of Charge
(SOC) and terminal voltage prole variations in a day for a fully
charged battery subjected to the two scenarios DS-1 and DS-2
are illustrated in Fig. 3b. Furthermore, within these scenarios,
we explore the impact of multiple charge rates during the
charging stages to assess their inuence on battery perfor-
mance. By varying charge rates, we gain insights into how
different charging speeds affect battery behavior under different
scenarios.
RSC Adv., 2025, 15, 30980–31004 | 30985
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Fig. 3 (a) Two daily scenarios illustrate all the possible phases in an
EV's daily cycle. (b) State of charge (SOC) and terminal voltage profiles
vary daily for the two daily scenarios.
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2.4 Design of experiments

The investigation into the intricate relationship between charge
rates and periods, driving patterns, and resting periods is of
utmost importance to accurately assess battery capacity fade.
This section is dedicated to presenting our meticulously
designed experiments in this paper, aimed at unraveling the
complexities associated with EV driving behaviors and their
impact on battery performance.

Typically, the life cycle of an EV battery pack is measured in
terms of years or kilometers driven. In this work, we consider
a daily driving distance of 60 km, along with charging and rest
periods within a day, subjecting the battery to an end-of-life
(EOL) simulation. For two-wheelers, manufacturers typically
provide a 3 year EOL period.44–46 Battery EOL is dened when the
capacity reaches 80% of its nominal capacity.1,2 Therefore, in this
study, we adopt the EOL criteria as the earlier occurrence of a 3
30986 | RSC Adv., 2025, 15, 30980–31004
year daily cycle simulation or the capacity fade to 20% of its
original capacity. Consequently, an EV would travel approxi-
mately 65 700 km in 3 years if the 20% fade has not yet occurred.
However, real-world driving cycles may yield different life
expectancies compared to manufacturer-specied values since
they oen test battery packs using standard driving proles, less
kinetic-intensive than real-world proles. Additionally, they do
not consider the entire daily cycle with varying charge rates and
temperature proles. As discussed, the two designed scenarios
encompass driving cycles with accompanying rest and charging
stages. In this study, the four selected driving patterns (Pattern-1,
Pattern-2, Pattern-3, Pattern-S) are simulated with charge rates of
0.1C (slow charging), 0.5C (moderate charging), and 1C (fast
charging). Each daily cycle generated is subjected to the EOL
simulation criteria. Furthermore, the designed set of test cases,
obtained through the combination of driving patterns and
charge rates for both scenarios, is subjected to three chosen
temperature zones (Zone-A, Zone-B, Zone-C) until the EOL
simulation. In Scenario 2, the two charging stages in a day
undergo different combinations of the chosen charge rates (0.1C,
0.5C, and 1C). The total simulation cases designed for DS-1 and
DS-2 are illustrated in Fig. 4a and b, respectively. The simulation-
based experiments performed in this work are carried out on
open-source battery modelling soware, Python Battery Mathe-
matical Modelling (PyBaMM).47 PyBaMM facilitates continuum
model simulation with advanced electrochemical models like
DFN, SPM, and SPMe. It also integrates submodels for degra-
dationmechanisms like SEI growth, lithium plating, and particle
cracking. PyBaMM's capability to couple these mechanisms
enables effective observation of various degradation patterns and
electrochemical behaviors.48–50
3 Background synthesis and
methodology formulation
3.1 Mathematical modelling of electrochemical model of
cell

To capture various electrochemical phenomena within a cell,
mathematical models are utilized to replace time-consuming
real-time experiments. Moreover, for designing efficient
battery management systems, mathematical models are vital.
The electrochemical models (EM) and equivalent circuit models
(ECM) are the most commonly used models for developing the
mathematical model of the cell. ECMs are developed using
resistors, capacitors, and voltage sources to form a circuit
network, providing a simplistic framework for modeling battery
behavior.51–53 However, they come with inherent limitations.
ECMs oen fail to capture the nuanced complexities of battery
performance due to their oversimplied nature, rendering them
unable to precisely replicate the intricate electrochemical
processes occurring within the cell.

In contrast, electrochemical models offer a more compre-
hensive approach. Models such as Doyle-Fuller Newman (DFN)54

and Single Particle Model with Electrolyte (SPMe)55 utilize
a sophisticated set of coupled nonlinear differential equations to
describe the intricate phenomena such as diffusion of solutes in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Comprehensive simulation cases were designed, exploring the influence of driving patterns, charge rates, and climatic conditions in (a)
daily scenario-1 and (b) daily scenario-2.
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electrode material, chemical reaction rates, electrode transport
properties, capacity fade and cell degradation within the battery
cell. By incorporating detailed insights into electrode and inter-
facial microstructures, along with fundamental electrochemical
principles, thesemodels can accurately depict the behavior of the
battery under various operating conditions. Despite their
computational complexity and memory requirements, electro-
chemical models stand out for their ability to provide a precise
representation of battery behavior, making them indispensable
tools for understanding and optimizing battery performance in
practical applications. The Doyle-Fuller Newman (DFN) model,
a standard continuum mathematical model for lithium-ion
batteries, is renowned but computationally intensive due to its
complex nonlinear partial differential equations. To address this
challenge, simpler models like the Single Particle Model (SPM)
are employed, yet they oen lack accuracy in voltage prediction
without correction terms. Consequently, this study opted for the
Single Particle Model with electrolyte (SPMe) due to its enhanced
accuracy compared to the basic SPM. This section outlines the
fundamental modeling and governing equations of the SPMe
model. For in-depth derivations and equations, readers are
directed to ref. 55.

The concentration of lithium in the positive and negative
particles, as well as the lithium ion concentration in the three
regions of the electrolyte, are governed by three linearly
© 2025 The Author(s). Published by the Royal Society of Chemistry
independent partial differential equations (PDEs) (eqn
(6a)–(6c)).55 The boundary conditions and the initial conditions
for these three governing equations are dened from eqn (6d) to
(6j). The subscripts “n”, “s”, and “p” represent variables asso-
ciated with the negative electrode, separator, and positive
electrode, respectively. In addition, the subscripts “e” and “s”
are appended to indicate electrolyte variables and solid-phase
variables, respectively. The terminal voltage (eqn (6k)–(6r)) is
determined by solving these equations and can be calculated
using a simple and easily understandable algebraic expres-
sion.55 These equations form the basis of the Single Particle
Model with electrolyte (SPMe) utilized in this study (Table 3).

Governing equations

Ck

vc0s;k

vt
¼ � 1

rk2
v

vrk

 
rk

2
vc0s;k

vrk

!
; k˛fn; pg; (6a)

Ce3kge

vc1e;k

vt
¼ �ge

vN1
e;k

vx
þ

8>>>>>><>>>>>>:

I

Ln

; k ¼ n;

0; k ¼ s;

� I

Lp

; k ¼ p;

k˛fn; s; pg; (6b)
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Table 3 Symbols used in the modelling of the SPMe model

Symbol Parameter

Ln Negative electrode thickness
Ls Separator thickness
Lp Positive electrode thickness
Rn Radius of −ve active material particles
Rp Radius of +ve active material particles
f Electric potentials
j Current densities
c Lithium concentrations
N Molar uxes
x Microscopic spatial variable
r Macroscopic spatial variable
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N1
e;k ¼ �3bkDeð1Þ
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Boundary conditions
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N1
e,njx=0 = 0, N1

e,pjx=1 = 0, (6f)

c1e,njx=Ln
= c1e,sjx=Ln

, N1
e,njx=Ln

= N1
e,sjx=Ln

, (6g)

c1e,sjx=1−Lp
= c1e,pjx=1−Lp

, N1
e,sjx=1−Lp

= N1
e,pjx=1−Lp

. (6h)

Initial conditions

c0s,k(rk,0) = ck,0, k ˛ {n,p}, (6i)

c1e,k(x,0) = 0, k ˛ {n,s,p}. (6j)

Terminal voltage

V ¼ U eq þ hr þ hc þ DFelec þ DFsolid; (6k)

where

U eq ¼ Up
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DFsolid ¼ �I

3

�
Lp

sp
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3.1.1 Electrode parameters. The modeling equations for
the electrode properties (eqn (7) and (8)) utilized in this work
are presented in this subsection.49 The open-circuit potential
curves U�ðc*sÞ were initially measured by Chen et al.56 at 25 °C.
The measurements were conducted using a three-electrode cell
setup for both electrodes. Chen et al. observed considerable
hysteresis in the graphite + SiOx negative electrode. The other
electrode parameters are taken from Chen et al. and they are
presented in Table 4.

The temperature-dependent parameters solid-state diffusion
coefficients D�ðc*a;TÞ and effective conductivity k±(T) are
assumed to have Arrhenius temperature dependence:

D�ðTÞ ¼ D�ðTmeasÞexp
�

ED�
RTmeas

� ED�
RT

�
(7)

k�ðTÞ ¼ k�ðTmeasÞexp
�

Ek�
RTmeas

� Ek�
RT

�
; (8)

where ED± and Ek± are activation energies and Tmeas is 298.15 K
(25 °C).

3.1.2 Electrolyte parameters. This subsection presents the
modeling equations utilized in this work for the electrolyte
properties (eqn (9)–(13)).49 The effective conductivity keff(ce,T)
and diffusion coefficient Deff(ce,T) of electrolyte occupying
volume fraction 3 are related to the corresponding values k(ce,T)
and De(ce,T) in pure electrolyte by

keff(ce,T) = 3e
1.5k(ce,T) and Deff(ce,T) = 3e

1.5De(ce,T). (9)

Both k(ce,T) and De(ce,T) have an Arrhenius temperature
dependence:

kðce;TÞ ¼ kðce;TmeasÞexp
�

Ek

RTmeas

� Ek

RT

�
(10)

Deðce;TÞ ¼ Deðce;TmeasÞexp
�

Ek

RTmeas

� Ek

RT

�
; (11)

where Ek is the activation energy for both k and De, Tmeas is
298.15 K, k(ce, Tmeas) is a cubic polynomial56

k(ce,Tmeas) = 1.297 × 10−10 ce
3 − 7.94 × 10−5 ce

1.5

+ 3.329 × 10−3 ce (12)

and De(ce, T) is a quadratic polynomial56
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Electrode parameters used in this work49

Symbol Denition − Electrode + Electrode

A Total planar electrode area, m2 0.1027 0.1027
a� Surface area to volume ratio, m−1 3.84 × 105 3.82 × 105

cm� Maximum Li+ concentration, mol m−3 33 133 63 104
c0� Initial Li+ concentration, mol m−3 29 866 17 038
D� Li+ diffusion coefficient at 25 °C, m2 s−1 3.3 × 10−14 4 × 10−15

ED� Activation energy for Li+ diffusion, J mol−1 30 300 (ref. 57) 25 000 (ref. 58)
Ek� Activation energy for rate constant, J mol−1 35 000 17 800
k� (De)intercalation rate constant at 25 °C, m s−1 2.12 × 10−10 1.12 × 10−9

r� Electrode particle radius, m 5.86 × 10−6 5.22 × 10−6

d� Electrode thickness, m 8.52 × 10−5 7.56 × 10−5

3e Electrolyte volume fraction 0.25 0.335
3a Active material volume fraction 0.75 0.665
s� Electrode conductivity, S m−1 215 0.18

Table 5 Other parameters used in the model. All values taken from Chen et al.56

Symbol Denition Value

ceq Equilibrium Li+ concentration in electrolyte, mol m−3 1000
Ek Activation energy for electrolyte conductivity, J mol−1 17 100 (ref. 57)
F Faraday's constant, C mol−1 96 485
Qnom Nominal capacity, mAh 5000
R Universal gas constant, J K−1 mol−1 8.314
t+ Li+ transference number 0.2594
Vmax Upper cutoff voltage, V 4.2
Vmin Lower cutoff voltage, V 2.5
ds Separator thickness, m 1.2 × 10−5

3e Separator porosity 0.47
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De(ce, Tmeas) = 8.794 × 10−17 ce
2 − 3.972 × 10−13 ce

+ 4.862 × 10−10. (13)

The remaining parameters are taken from Chen et al.56 and
listed in Table 5.

3.2 Cell-level degradation mechanisms and their
interactions in real-world conditions

The research into the physics of battery degradation has
signicantly increased as the concern towards cycle life, battery
performance, and safety has become the main concern. A
comprehensive exploration of lithium-ion battery degradation
was conducted in 2005, delving into aging mechanisms occur-
ring at both the cell's anode and cathode electrodes59.34,42,60

investigated various degradation modes spanning the battery's
entire life-cycle and elucidated the cause-and-effect relation-
ships governing these degradation mechanisms. Further-
more,61 focused on degradation mechanisms frequently
encountered during high-rate charging. Critical interactions
between different degradation processes under normal opera-
tional conditions, within safety thresholds dened by manu-
facturers, were examined.48 A notable effort to directly correlate
diverse degradation mechanisms at the negative electrode is
made by.49

However, these studies did not specically investigate
degradation patterns and behaviors exhibited by lithium-ion
batteries when subjected to real-world driving conditions
© 2025 The Author(s). Published by the Royal Society of Chemistry
across varying climates and charging scenarios. Understanding
the critical interactions between diverse degradation mecha-
nisms during daily driving cycles is crucial for exploring the
impact of each phase of a typical day on battery health. In this
work, the three primary degradation modes – loss of lithium
inventory (LLI) and loss of active material (LAM) in the positive
and negative electrodes50 – and their interplay under different
operational conditions are discussed.

The overall LLI experienced by a cell, resulting in reduced
cyclable lithium, arises from signicant side reactions, SEI layer
growth, and lithium plating, and an additional, negligible side
reaction involves the loss of lithium to the electrolyte.47,48,62 The
development of the SEI layer immobilizes Li+ ions, causing
impedance changes due to pore blockage, ultimately leading to
LLI.63 Lithium plating involves the deposition of lithium ions
onto the anode surface, forming a thin layer of lithium metal.
This lithium plating creates “dead lithium” by reacting residual
lithium with the electrolyte. This interaction forms a high-
impedance lm, resulting in irreversible lithium loss.64–66

LLI ¼
�
1� mLi

minitial
Li

�
� 100

¼ � 1

minitial
Li

ðt
0

dmLi

dt
dt� 100

(14)

mLi ¼ 3600

F
ðq�C� þ qþCþÞ (15)
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Table 6 LGM50 21 700 cylindrical cell parameters and specifications
provided by the manufacturer

Macroscale geometry

Negative current collector thickness 1.20 × 10−5 [m]
Negative electrode thickness 8.52 × 10−5 [m]
Separator thickness 1.20 × 10−5 [m]
Positive electrode thickness 7.56 × 10−5 [m]
Positive current collector thickness 1.60 × 10−5 [m]
Electrode height 6.50 × 10−2 [m]
Electrode width 1.58 [m]
Cell cooling surface area 5.31 × 10−3 [m2]
Cell volume 2.42 × 10−5 [m3]

Current collector properties

Negative current collector
conductivity

58 411 000 [S m−1]

Positive current collector conductivity 36 914 000 [S m−1]

Density

Negative current collector density 8960 [kg m−3]
Positive current collector density 2700 [kg m−3]

Specic heat capacity

Negative current collector-specic
heat capacity

385 [J kg−1 K−1]

Positive current collector specic heat
capacity

897 [J kg−1 K−1]

Thermal conductivity

Negative current collector thermal
conductivity

401 [W m−1 K−1]

Positive current collector thermal
conductivity

237 [W m−1 K−1]
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Eqn (14),50 denes the overall LLI within a cell, where mLi is
the total moles of usable lithium in the negative and positive
electrode particles, and q− and q+ are the scaled volume-
averaged particle concentrations of negative and positive elec-
trodes respectively. C− and C+ represent the charge capacity of
the negative and positive electrode, respectively.

Due to stresses in the electrode material, Li-ion batteries
experience mechanical damage, leading to LAM.49 This causes
the electrodes to lose their capacity, reducing the available
material for electrochemical interactions.48,50 The stress in the
respective electrodes leads to particle fracture or cracking. The
critical modeling equations for LAM due to particle cracking are
discussed in the SI Section.

LAMe ¼
 
1� Ce

ðCeÞinital
!
� 100

¼ � 1

ðCeÞinital
ðt
0

dCe

dt
dt� 100

(16)

Eqn (16),50 denes the LAM within a cell, where the electrode
charge capacity, Ce, is dened as

Ce ¼ 3eAcL
eðceÞmax

F

3600
(17)

Here, 3e is the electrode active material volume fraction, the
changes that will cause changes in the electrode capacity. Ac and
Le are the surface area of the current collector and electrode
thickness, respectively, effectively representing the total electrode
volume, and ce denes the electrode molar concentration.

Along with the investigation into overall capacity fade, our
focus also centers on comprehending the underlying physics of
degradation processes in diverse operating conditions involving
various daily scenarios and driving patterns across different
climatic conditions. A comprehensive discussion of the design
of experiments, encompassing key conditions and parameters
studied in this work, is presented in the following section.

3.3 Calibration of the electrochemical cell model

In this study, an electrochemical model is employed to simulate
the behavior of the LGM50 21 700 cylindrical cell. The LGM50
cell contains a graphite-based negative electrode with a 10%
SiOx mass fraction and a positive electrode made of NMC-811. It
utilizes Celgard 2325 as the separator, a tri-layer polypropylene/
polyethylene/polypropylene/polyolen membrane. The electro-
lyte consists of a 1 mol dm−3 LiPF6 solution in a mixture of
ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in
a 3 : 7 volume ratio. The model's parameters are acquired from
a comprehensive set of experimental tests conducted by Chen
et al.56 and Nyman et al.67 These published results extensively
characterize the cell's physical, chemical, and electrochemical
properties using various experimental techniques. The key
parameters and specications of the LGM50 21 700 cell are
presented in the Table 6.56 To further validate the electro-
chemical model, experiments are conducted on an LGM50 21
700 cylindrical cell in a climate-controlled chamber, using
a manufacturer-specied cycle life testing method for 50 cycles,
30990 | RSC Adv., 2025, 15, 30980–31004
and a drive cycle test spanning 7 days is conducted for one of
the selected drive cycles, encompassing the entire designed
daily cycle pattern.

The parameters related to the electrode and cell thermody-
namics, kinematics, and transport properties utilized in this
work are determined from electrochemical tests performed by
Chen et al.56 on extracted electrode materials. Utilizing a three-
electrode conguration with a lithiummetal reference electrode
allows for determining individual electrode potentials, cell
stoichiometry, and lithium content in the positive and negative
electrodes. The cell's open circuit voltage (OCV) is also deter-
mined based on data obtained from galvanostatic intermittent
titration technique (GITT) experiments. The current work
employs the physical properties of the cell components,
including electrodes, separators, and current collectors, which
are characterized through direct measurements aer cell tear-
down performed by Chen et al.56 Ion beam milling combined
with scanning electron microscopy is used to investigate the
pore structures of the positive and negative electrodes and the
separator, providing crucial information regarding particle
shapes, densities, packing density, and the distribution of
conductive carbon and binder domains (CBD).
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Furthermore, the chemical and material properties of the
cell components utilized in this work are analyzed by Chen
et al.,56 with the elemental composition of SiOx and graphite in
the negative electrode and NMC composition in the positive
electrode determined using energy-dispersive X-ray spectros-
copy (EDS) and inductively coupled plasma optical emission
spectroscopy (ICP-OES), respectively. Parameters relevant to
mass transport phenomena in the electrolyte used in this work
are derived from experiments by Nyman et al.67 to characterize
mass transport using various electrochemical methods. Deter-
mining ionic conductivity, diffusivity, transport number, diffu-
sion coefficient, and thermodynamic factor of the salt provides
essential data for the simulation.

By utilizing such comprehensive experimental data,56,67 the
simulation results in this work are substantiated, allowing for
accelerated cyclic testing experiments while maintaining the
validity of the outcomes. This approach saves time and
resources, particularly since physically conducting long cycling
experiments involving thousands of cycles can be impractical
and resource-intensive.
3.4 Assumptions

In order to simplify our models and expedite computational
processes, we have introduced certain foundational assump-
tions. These assumptions have been carefully selected to ensure
that they do not compromise the integrity of our results. We
have outlined these weighted assumptions below:

1. One complex interaction, i.e., between SEI layer growth
and particle cracking, which showcases the complex interplay of
chemical and mechanical degradation leading to SEI layer
growth on the crack, is not considered in this work. However,
individually SEI layer growth and particle fatigue happening
together are modelled, but the SEI layer's development on fresh
cracks is not considered to avoid complexity. The reader is
advised to refer to ref. 49 to understand the modeling of SEI on
cracks in detail.

2. We have assumed that the loss of lithium in the electrolyte
is negligible, and the electrolyte remains stable as electro-
chemical processes are anticipated to take place primarily
within the positive and negative electrodes.68 The total lithium
concentration in the electrolyte represents less than 2% of the
overall lithium content within a cell.47 Therefore, neglecting the
loss of lithium in the electrolyte does not signicantly impact
the outcome of our analysis.

3. A key focus of our research involves the phenomenon of
SEI layer growth, which we describe using the solvent-diffusion
mechanism. Most SEI models found in existing literature are
based on the work of Safari et al.63 According to this body of
work, the SEI reaction can bemodeled using either the diffusion
of solvent molecules towards the graphite surface through the
existing SEI (referred to as the diffusion-solvent model) or
solvent reduction kinetics at the graphite surface. Empirical
evidence suggests that the diffusion-limited model aligns better
with experimental data.49 Consequently, we have chosen to
employ solvent-diffusion-limited SEI growth modeling in our
study.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4. Lithium plating on the graphite anode surface is a signif-
icant degradation phenomenon among various aging mecha-
nisms. The lithium deposited can be both reversible and
irreversible.62 Some lithium is deposited on the graphite surface
during intercalation through electrical contact. Following
a charge transfer reaction with the electrolyte, this deposited
lithium will eventually re-integrate into the anode, a process
referred to as lithium-stripping.69,70 The remaining portion of
lithium reacts with the electrolyte to form a high-impedance
lm, termed “dead lithium”.65,71 This loss of lithium is irre-
versible. Our current research assumes that lithium plating is
predominantly reversible, along with dead lithium contributing
to the irreversible portion, causing capacity fade and
accounting for the loss of lithium due to lithium plating.72

5. In this study, a lumped thermal model is considered for
simulating the temperature effects of the battery cell, assuming
a uniform temperature distribution throughout the cell. The
model calculates the volume-averaged cell temperature based
on the balance between heat generation within the cell and heat
dissipation to the environment. The differential equation gov-
erning the temperature evolution incorporates heat generation
from electrochemical reactions and ohmic losses, as well as
a cooling coefficient that accounts for the cell's geometry and
cooling conditions.73
4 Results

This section presents the outcomes of the investigation con-
cerning the effects of various parameters, including driving
behavior, daily scenarios, climatic conditions, and charge rates,
on battery degradation. Fig. 5 depicts the methodology adopted
for developing a holistic framework to assess the end-of-life
(EOL) of an EV battery, illustrating the key factors and
processes considered in this analysis. The analysis explores
capacity fade from both chemical and mechanical degradation
perspectives, categorizing the capacity fade due to SEI layer
growth and lithium plating as chemical degradation, contrib-
uting to Loss of Lithium Inventory (LLI) and the mechanical
degradation contributed by the fracture of particles within the
electrodes due to tensile stress, accounting for the Loss of Active
Material (LAM) in both the negative (LAMne) and positive
(LAMpe) electrodes. The other pivotal parameters remain
constant to discern the specic effects of each analyzed factor in
the subsections, allowing for the presentation of focused
results. Across the results presented in this section, the cycle
number refers to a daily cycle that includes discharge, charge,
and rest instances spanning 24 hours, representing one full day.
Each cycle number corresponds to a single daily cycle. This
study employs simulations on the experimentally veriedmodel
of the LG M50 cell to gain insights into battery performance
under diverse operational conditions.
4.1 Impact of driving behavior on battery aging

The inuence of driving behavior on battery degradation is
dissected through a comprehensive analysis of distinct driving
patterns: Pattern-1, Pattern-2, Pattern-3, and the standard
RSC Adv., 2025, 15, 30980–31004 | 30991

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra04379d


Fig. 5 Methodology overview for developing a holistic framework for assessing EV battery end-of-life (EOL).
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driving pattern (Pattern-S). A consistent examination is main-
tained across climatic zones, charging rates, and recharging
scenarios, isolating the driving behavior's impact on battery
performance. Fig. 6a–f compares driving behaviors for Zone-A
climatic conditions, daily scenario-1, and 0.1C charge rate,
with each case running for 3 years. Fig. 6a reveals the capacity
fade across the 3 years, with Pattern-1 exhibiting the highest
fade due to its minimal discharge energy and extended rest
period. Individual contributions of chemical degradation
phenomena, namely SEI layer growth and Lithium plating, are
illustrated in Fig. 6b. SEI layer growth consistently inuences
varying driving behaviors, while Lithium plating is sensitive to
these behaviors. The variation in driving patterns impacts the
discharge patterns during which de-intercalation of Li+ ions
happens at the negative electrode. The tensile stress induced
during the de-intercalation leads to LAMne. Fig. 6c–e portray
negative electrode particle crack length and LAMne across the
driving patterns, highlighting Pattern-3's higher discharge
energy and correspondingly increased LAMne. Minimal varia-
tion in LAMpe is evident in Fig. 6f, as de-intercalation does not
impact the positive electrode during discharging.

The effects of driving behaviors for Zone-A climatic condi-
tions, daily scenario-2, and 0.1C charge rate, reaching a 20%
capacity fade before 3 years, are scrutinized in the SI Section
30992 | RSC Adv., 2025, 15, 30980–31004
(Fig. S1). Fig. S1a depicts the EOL period for different driving
patterns. Pattern-3 displays a longer EOL due to its higher
discharge energy and reduced rest period. The impact of various
driving patterns on chemical degradation, including SEI layer
growth and lithium plating, is depicted in Fig. S1b. Similarly,
a consistent trend is observed in mechanical degradation
behaviors for this scenario. Fig. S1c and d provide insights into
the negative particle crack length within the negative electrode
and the associated LAMne. Fig. S1e showcases LAMpe across
the EOL periods for the various driving patterns.
4.2 Inuence of daily driving scenarios

This study examines two daily scenarios – single-day charging
(DS-1) and twice-a-day charging (DS-2) – to investigate the
impact of daily scenarios on aging. By keeping driving patterns,
climatic zones, and charge rates constant, the focus remains
solely on daily scenario effects. Fig. 7a–f exemplify chemical and
mechanical degradation patterns for Pattern-1 driving pattern,
considering two daily scenarios DS-1 and DS-2 at Zone-A
climatic conditions and 0.1C charge rate. Twice-a-day
charging inuences capacity fade signicantly, as seen in
Fig. 7a. The corresponding chemical aging related to capacity
fade, including SEI layer growth and lithium plating, is
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Capacity fade and degradation for different driving behaviors in Zone-A under DS-1 with a 0.1C charge rate. (a) Capacity fade (%) over time
(days) for various driving patterns. (b) Contribution of chemical degradation (SEI growth and lithium plating) across patterns. (c) X-averaged
negative electrode particle crack growth (m) over time. (d) Comparison of particle crack lengths at the 3 year EOL. (e) Loss of activematerial in the
negative electrode (LAMne, %) over time. (f) Loss of active material in the positive electrode (LAMpe, %) over time.
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illustrated in Fig. 7b. Increased charging and subsequent de-
intercalation introduce higher tensile stress, leading to
augmented LAMpe, as shown in Fig. 7f. Notably, while the
charging process minimally affects negative electrode tensile
stress, Fig. 7c–e display the marginal variations in negative
particle crack length and LAMne associated with different
driving patterns as de-intercalation doesn't happen at the
negative electrode during discharging. The impact of daily
scenarios on other driving patterns is similarly depicted in the
SI Section (Fig. S2–S4).
4.3 Effect of charging rates

One critical parameter contributing to capacity fade is the rate at
which the batteries are charged. Three different charging rates
are considered in this study: 0.1C, 0.5C, and 1C. Fig. 8a–d depicts
the capacity fade trends and degradation effects for scenario DS-
1, driving Pattern-1 at Zone-A climatic conditions for three
different charge rates. The 1C charging rate results in the
maximum fading by reaching 20% fade by 938 days, i.e., in 2.56
years, as shown in Fig. 8a. Fig. 8b illustrates the specic contri-
butions of SEI layer growth and lithium plating to capacity fade
under different charge rates. As the charging signicantly affects
the LAMpe, the tensile stress at the PE is high for 0.5C and 1C
charge rates, and hence the LAMpe. Fig. 8c shows the impact of
© 2025 The Author(s). Published by the Royal Society of Chemistry
0.5C and 1C charging on LAMpe compared to 0.1C charge rate.
However, the particle crack length in the negative electrode
(LAMne) remains largely unaffected by the varying charge rates,
as shown in Fig. 8d for the same reason that the negative elec-
trode is free from de-intercalation during charging.

In the case of DS-2, the scenario of twice-a-day charging
introduces a notable inuence on the battery's EOL period. The
EOL periods for different charge rates applied to Pattern-1 at
Zone-A climatic conditions are presented in the SI Section
(Fig. S5a). Charging at a rate of 1C twice a day signicantly
reduces the battery's lifetime before reaching a 20% capacity
fade. The corresponding contributions of SEI layer growth and
lithium plating to capacity fade are depicted in Fig. S5b. The
increased mechanical stress induced by high charge rates is
demonstrated by the impact on LAMpe in Fig. S5c. As no de-
intercalation happens, the particle crack length in the nega-
tive electrode shows minor variations across different charge
rates, as shown in Fig. S5d. The SI Section provides additional
insights into the ndings for other driving patterns for DS-1
(Fig. S6–S8) and DS-2 (Fig. S9–S11).

A similar analysis is performed by considering different
combinations of charge rates within the DS-2 scenario. The
morning charge rate is xed at a particular C-rate, while the
evening charge rate is varied for three different rates. Fig. S12
comprehensively illustrates where the morning charge is held at
RSC Adv., 2025, 15, 30980–31004 | 30993
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Fig. 7 Capacity fade and degradation for two daily scenarios: single daily charge (DS-1) and twice-a-day charge (DS-2) in Zone-A, using driving
Pattern-1 and a 0.1C charge rate over 3 years. (a) Capacity fade (%) over time (days). (b) Contribution of chemical degradation (SEI growth and
lithium plating) at the 3 year EOL. (c) X-averaged negative electrode particle crack growth (m) over time. (d) Comparison of particle crack lengths
at EOL. (e) Loss of active material in the negative electrode (LAMne, %) over time. (f) Loss of active material in the positive electrode (LAMpe, %)
over time.
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0.1C, while the evening charge is varied for three charge rates.
Fig. S12a provides insights into the capacity fade behavior for
Pattern-1 at Zone-A climatic conditions under three different
charge rates, showcasing the times before the battery reaches
a 20% capacity fade. Fig. S12b depicts the EOL period for
different charge rate combinations for the chosen DS-2
scenario. The specic contributions of SEI layer growth and
lithium plating to capacity fade are depicted in Fig. S12c.

Importantly, the mechanical stress experienced by varying
charge rates gives rise to distinct EOL periods, resulting in signif-
icant variations in LAMpe, as observed in Fig. S12d. The 1C charge
rate yields 0.12% LAMpe by its EOL of 597 days, while the 0.5C
charge rate achieves 0.19%LAMpe by its EOL period of 785 days. In
contrast, the 0.1C-rate results in merely 0.09% LAMpe even aer
999 days. However, varying charge rate has minimal impact on
particle crack length at the negative electrode and correspondingly
on LAMne as shown in Fig. S12e, as de-intercalation does not occur
at the negative electrode during the charging phase. The SI Section
expands upon these ndings for the scenarios of xed 0.5C and 1C
morning charges (Fig. S13 and S14).

4.4 Across different climatic conditions

The impact of temperature and climatic conditions on battery
degradation is pivotal. Extreme temperatures can signicantly
30994 | RSC Adv., 2025, 15, 30980–31004
aggravate both chemical and mechanical degradation
processes. This study delves into the impact of varying climatic
conditions – Zone-A, Zone-B, and Zone-C – on battery aging.
Zone-A, situated in the eastern region with yearly temperature
extremes of 12 °C and 41 °C, demonstrates minimal fading. On
the other hand, Zone-B and Zone-C, representing Delhi and
Churu respectively, exhibit more substantial degradation due to
extreme yearly temperatures of 5.6 °C to 45.4 °C and 1.8 °C to
47.2 °C, respectively. Notably, Zone-B and Zone-C showcase
similar temperature proles, leading to comparable impacts on
degradation. For the Pattern-1 and 0.1C charge rate under the
DS-1 scenario, the effects of varying climatic zones are evident
in Fig. 9a–f.

As depicted in Fig. 9a, Zone-B and Zone-C, with similar
temperature characteristics, yield almost identical loss of
lithium inventory by the end of the standard 3 year EOL period.
Conversely, Zone-A experiences less fading due to its milder
temperature ranges. The corresponding EOL periods are as
shown in Fig. 9b. Fig. 9c depicts the dependency of chemical
degradations – SEI layer growth and lithium plating – on
climatic conditions. From Fig. 9d, the temperature dependency
of SEI layer growth is evident, where a greater rate of SEI layer
growth is observed under Zone-C climatic conditions. As
temperature effects inuence both positive and negative
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Capacity fade and degradation for three charge rates: 0.1C (slow), 0.5C (moderate), and 1C (fast) under Zone-A climatic conditions, driving
Pattern-1, and daily scenario DS-1. Analysis continues until 20% capacity fade or 3 years. (a) EOL periods (days) for each charge rate, with faster
fade at 1C. (b) Contribution of chemical degradation (SEI growth and lithium plating) at EOL. (c) Loss of active material in the positive electrode
(LAMpe, %) at EOL. (d) Comparison of negative electrode particle crack lengths at EOL.
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electrodes, increased reaction kinetics at higher temperatures
amplify stress in both electrodes. This results in noticeable
variations in LAMpe and LAMne under different temperature
conditions, as shown in Fig. 9e and f. Further details are
available in the SI Section for Pattern-2, Pattern-3, and Pattern-S
driving patterns, using a 0.1C charge rate and the DS-1 scenario,
across the three climatic zones (Fig. S15–S17).

The capacity fade behavior and respective EOL periods
across three zones for Pattern-1, a 0.1C charge rate, and the DS-2
scenario are illustrated in the SI Section (Fig. S18a and b). Zone-
A offers an EOL of 999 days, while Zone-B and Zone-C share
a similar extended EOL period of 915 days and 900 days,
respectively, providing less longevity before a 20% capacity fade
occurs. The inuence of temperature is further highlighted
through the SEI layer growth and Lithium plating contributions
to overall fading, as shown in Fig. S18c. The temperature-
dependence of SEI growth is evident in Fig. S18d, with Zone-C
displaying a 2.33% fade by its EOL of 900 days, while Zone-A
exhibits slightly less degradation than Zone-B and Zone-C
even aer an extended EOL period of 999 days. The mechan-
ical damage incurred at the positive and negative electrodes due
to varying climatic conditions is visually presented in Fig. S18e
and f. These insights are further detailed in the SI Section for
Pattern-2, Pattern-3, and Pattern-S driving patterns, using the
DS-2 scenario, with a 0.1C charge rate, across the three climatic
zones (Fig. S19–S21).

Similarly, Fig. S22 assesses the impact of climatic variation
on battery degradation for Pattern-1, a xed 0.1C morning
© 2025 The Author(s). Published by the Royal Society of Chemistry
charge rate, and a 0.5C evening charge rate. Zone-B and Zone-C
demonstrate an accelerated EOL of 20% capacity fade at 630
and 616 days, respectively, as shown in Fig. S22a and b. In
contrast, Zone-A allows for a more prolonged EOL period,
reaching 785 days due to its milder yearly temperature
extremes. Fig. S22c portrays the associated chemical degrada-
tion effects, and the impact of temperature, specically on SEI
layer growth, is further highlighted in Fig. S22d, while Fig. S22e
and f present the consequential LAMpe and LAMne, showcasing
the differences between Zone-A, Zone-B, and Zone-C. In
conclusion, the presented results underscore the intricate
interplay of parameters on battery degradation, revealing the
multifaceted nature of this phenomenon across diverse opera-
tional conditions.
4.5 Experimental validation of the electrochemical cell
model

The electrochemical model employed in this study has under-
gone rigorous validation through extensive experimental work.
To enhance the credibility of the simulation results, two
different experiments – (1) The manufacturer specied a stan-
dard cycle life experiment and (2). Drive cycle experiments were
conducted on the selected LGM50 cell within our laboratory.
For this purpose, an environmentally controlled battery test
chamber (Fig. 10) was developed in-house, providing precise
temperature control with an accuracy of ±1 °C and robust
temperature leakage protection.74
RSC Adv., 2025, 15, 30980–31004 | 30995
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Fig. 9 Capacity fade and degradation characteristics for three climatic zones (Zone-A, Zone-B, Zone-C) under driving Pattern-1 and daily
scenario DS-1 with a 0.1C charge rate over 3 years. (a) Capacity fade (%) over time (days). (b) EOL period (days) showing time to reach EOL
criterion; all zones reach EOL in 3 years. (c) Contribution of chemical degradation (SEI growth and lithium plating) at EOL. (d) LLI due to SEI layer
growth (%) at EOL, highlighting temperature dependence with higher SEI growth in Zone-C. (e) Loss of active material in the positive electrode
(LAMpe, %) over time. (f) Loss of active material in the negative electrode (LAMne, %) over time.
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The chamber, constructed primarily from acrylic, features
a front-loading design with a hinged lid and an internal volume
capacity of 175 liters. Ceramic cartridge heaters, totaling eight
and operating on a 12 V DC supply each, ensure above-room
Fig. 10 Indigenously developed test chamber with integrated heating/
cooling units. The insulated acrylic chamber is operated by a chamber
controller that manages data acquisition and sends results to a local
desktop for visualization and post-processing.

30996 | RSC Adv., 2025, 15, 30980–31004
temperatures are reached evenly throughout the chamber. A
refrigeration unit based on fundamental thermodynamic heat
exchange processes regulates the chamber's temperature below
room temperature, aided by a strategically placed DC cooling
fan. The chamber accommodates six cells simultaneously with
a six-channel supported battery holder. An advanced three-
layered (plywood-glass wool-plywood) thermal insulation
housing, coated with heat-reective paint, maintains a constant
internal temperature while preventing heat exchange with the
surroundings.

The test bed controller, featuring the central microcontroller
unit (Arduino Mega2560 pro), serves as the central control unit
for the chamber. The microcontroller oversees operations such
as data acquisition, charge–discharge control, and temperature
regulation. Utilizing a comprehensive data acquisition unit
equipped with sensors, including a 4-wire voltage measurement
setup, ACS712 current sensor modules, DHT22 digital sensor,
and DS18B20 waterproof temperature probe, the chamber
accurately measures cell parameters, chamber humidity, and
temperature. Furthermore, a charge–discharge controller unit,
comprising 300 W, 20 A-rated step-down DC–DC buck converter
modules for individual cell charging and programmable elec-
tronic loads with MOSFETs for efficient cell discharging,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Comparison of terminal voltage profiles for LGM50 during
cycle life testing. 200 hour voltage profiles: simulation vs. experiment.

Fig. 12 Comparison of terminal voltage profiles for LGM50 under
drive cycle conditions at 25 °C ambient temperature. (a) Week-long
voltage profiles: simulation vs. experiment. (b) Daily cycle voltage
profiles: simulation vs. experiment.
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ensures precise control over battery currents. The chamber
temperature controller unit, leveraging the DS18B20 tempera-
ture probe and electro-mechanical relays, maintains uniform
temperature distribution within the chamber.

In conducting experiments, addressing experimental
uncertainty is critical to ensure the reliability and accuracy of
the results. This uncertainty primarily stems from sensor
measurements, which must be meticulously calibrated to
ensure precision. Each sensor within the testing chamber and
charge–discharge controller must undergo rigorous calibration
against known values before integration, enhancing measure-
ment accuracy. However, despite calibration efforts, potential
issues may arise during experiments, such as the release of
ammable gases during high-temperature testing, posing risks
of thermal runaway and chamber explosions. To mitigate these
risks, high-temperature-tolerant materials need to be utilized
for chamber construction, and specic gas sensors should be
incorporated for safety monitoring. Additionally, measures
need to be taken to prevent short circuits, chamber leakage, and
temperature instability through proper insulation and sealing
techniques. Addressing these uncertainties not only enhances
the credibility of the experiment results but also ensures the
safety and reliability of the experimental setup.

4.5.1 Manufacturer specied standard cycle life experi-
mentation. A manufacturer-specied standard cycle life exper-
iment in the chamber for 50 cycles. Another experiment
subjected the chosen cell to one of the daily driving cycle tests
for 7 days at different ambient temperatures. The results ob-
tained from the actual experimentation were then compared
with the simulation tests by replicating the same two experi-
ments in the simulation environment using the electrochemical
model coupled with the ageing model by integrating degrada-
tion effects, ensuring their agreement.

In the manufacturer-specied cycle life experiment, the
LGM50 cell underwent a Constant Current Constant Voltage
(CCCV) charging process involving a constant current rate of
0.3C (1.44 A) until the cell voltage reached 4.1 V, followed by
constant voltage charging at 4.1 V until the current reached 240
mA. Subsequently, a rest period of 10 minutes was introduced,
and the cell was discharged at a constant current rate of 0.5C
(2.4 A) until the voltage reached 2.85 V, followed by a rest period
of 20 minutes. This cycle was repeated for 50 cycles at an
ambient temperature of 25 °C. Comparing the terminal voltage
proles obtained from experimental and simulation data over
200 hours (Fig. 11), the two proles displayed a close match,
and the analysis of total energy exchange during the cycle life
experiment further veried the accuracy, as the experimental
and simulation values exhibited a small difference of close to
0.46%.

4.5.2 Drive cycle experimentation. Another drive cycle test
was conducted for one of the chosen patterns (Pattern-1) on the
LGM50 cell, simulating the complete daily cycle an EV would
experience, including charging and rest stages within a daily
scenario-1 (Fig. 3e). The LGM50 cell underwent this daily
pattern for 7 days at two different ambient temperatures, 25 °C
and 40 °C, respectively, and the results were compared with the
simulation data. Fig. 12a and 13a illustrate closely matching
© 2025 The Author(s). Published by the Royal Society of Chemistry
voltage proles from experimental and simulated ambient
temperature data. Additionally, the comparison of total energy
exchange values for both experimental and simulation cases,
which were 150.85 Wh and 151.97 Wh at 25 °C and 153.55 Wh
and 153.30 Wh at 40 °C, respectively, with an error of less than
0.74% at 25 °C and 0.16% at 40 °C, demonstrated further
accuracy. These results establish the accuracy and reliability of
the electrochemical model in replicating the behavior of the
LGM50 cell under various test conditions. Using an accurate
and comprehensive parameter set obtained through thorough
RSC Adv., 2025, 15, 30980–31004 | 30997
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Fig. 13 Comparison of terminal voltage profiles for LGM50 under
drive cycle conditions at 40 °C ambient temperature. (a) Week-long
voltage profiles: simulation vs. experiment. (b) Daily cycle voltage
profiles: simulation vs. experiment.
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experimental work by Chen et al.56 and Nyman et al.,67 coupled
with the experimental results from our laboratory, signicantly
strengthens the validity of the chosen electrochemical model.
Furthermore, it is possible to ne-tune the parameters obtained
from Chen et al.56 and Nyman et al.67 when integrating them
into the electrochemical model, based on the experimental
results obtained.
5 Discussion

In contrast to conventional belief, the analysis uncovered
a rather fascinating trend in battery performance concerning
various drive cycle metrics: KI, RPA, and PKE. Although it's
generally assumed that drive cycles with higher KI, RPA, and
PKE would contribute to more signicant battery fading, the
actual pattern of fading observed was quite intriguing: Pattern-3
< Pattern-S < Pattern-2 < Pattern-1. This deviation from expec-
tations led us to look closely at the underlying factors contrib-
uting to battery degradation. On a comprehensive analysis of
battery usage over a complete day's drive cycle, it is found that
relying solely on the measurements of drive cycle metrics no
longer directly indicates battery fading. Instead, the interplay of
various factors, such as driving duration, charging intervals,
and resting periods, plays a crucial role in determining the
overall extent of fading.
30998 | RSC Adv., 2025, 15, 30980–31004
Further investigation led to the realization that the average
speed during a drive cycle and the drive cycle metrics are pivotal
in determining fading. A drive cycle with high KI but lower
average speed would result in more discharge energy being
expended to cover a prescribed daily driving distance, as it takes
longer to complete the same distance. This extended time frame
for completing the distance results in a shorter resting period
during the day. This resting period's length is a key factor in
battery degradation, as more extended periods of rest lead to
increased calendar aging of the battery.

Interestingly, when considering the discharge energies for
the different drive patterns in this study, they followed this
order: Pattern-1 < Pattern-2 < Pattern-S < Pattern-3. This means
that Pattern-3, with its lower rest period, experiences less
capacity fade. On the contrary, Pattern-1, with lower drive
metrics and higher average speeds, results in lower discharge
energies per day, leading to longer rest periods and, ultimately,
higher overall fading. Given a constant charging rate, the
complex interplay of discharge energy, drive cycle metrics,
average speed, and rest periods gives rise to intricate dynamics
governing battery degradation and capacity fade.

Moreover, our study revealed that extended charging cycles
and higher charging rates lead to notable reductions in battery
capacity due to a loss in usable energy. Rapid charging accel-
erates degradation, causing both capacity and power fade.
Elevated temperatures during charging contribute to acceler-
ated battery aging. Longer charging times amplify temperature
rise and further aggravate fading. In unison, variations in key
parameters – driving behavior, charging scenarios, charging
rates, and temperature – cumulatively contribute to the loss of
lithium inventory and, consequently, overall capacity fade.

Our investigation in the realm of battery degradation
unveiled that the chemical processes play a pivotal role,
emerging as a major reason for the overall capacity fade. A
critical phenomenon within this is lithium plating, a key
chemical degradation process that needs careful attention.
Notably, lithium plating on anode, also known as anode plating,
is signicantly inuenced by charging times and rates.75–78

Longer charging durations facilitate increased intercalation of
Li+ ions into the anode, raising the likelihood of Li+ ions
accumulating on the anode's surface, thereby intensifying
lithium plating. Furthermore, charging at elevated rates,
particularly in CCCV charging protocols, triggers lithium
plating due to the prolonged CV phase.72 At high charging rates,
more Li+ ions get deposited on the electrode/electrolyte inter-
phase as the Li+ ions diffusion coefficient is much higher than
the diffusion coefficient of solid lithium. This results in a high
concentration gradient accumulation of Li+ ions at the anode
interface. The saturation of these Li ion concentrations leads to
anode plating.75

On the other hand, another critical chemical degradation
process involves the growth of the Solid Electrolyte Interphase
(SEI) layer, which progressively thickens over cycles and usage.
Our analysis determined that the capacity loss attributed to SEI
layer growth is primarily time-dependent and remains consis-
tent across various charge rates, charging durations, discharge
patterns, and cyclic conditions. Factors such as the total cycle
© 2025 The Author(s). Published by the Royal Society of Chemistry
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time or the duration under scrutiny (as in this study, a span of 3
years or the period leading to a 20% capacity fade) and oper-
ating temperature are the critical factors that account for the
SEI layer formation.79 Higher temperatures accelerate the
formation rate of the SEI layer.34,80 In totality, while capacity loss
due to stable SEI layer formation is minimal, the dominant
contributor to chemical degradation is the rapid capacity loss
incurred by lithium plating at the electrode surface.79,81,82

An equally signicant phenomenon within the battery
degradation realm is mechanical deformation and fatigue,
which a battery would undergo during daily operations. Elec-
trode particles within the battery experience mechanical stress,
leading to reduced capacity, resulting in LAM. Particle cracking
resulting in LAM is considered in this work and is critically
analysed for different operating conditions.49 During the intri-
cate process of Li+ ion de-intercalation – occurring at the
negative electrode during discharge and at the positive elec-
trode during charge – the respective electrodes experience
positive tensile stress. Notably, LAM is solely inuenced by
tensile stress during de-intercalation.49 Longer charging times
and higher charging rates increase stress on the electrodes,
signicantly leading to LAM.42,48 It is found that the interplay
between varying charge rates and the daily charging scenarios,
including both single and twice-a-day charging patterns,
intensies the mechanical stress experienced by the positive
electrode.

A direct correlation emerges between drive cycle metrics and
mechanical degradation. Increased KI, as well as higher values
of RPA and PKE, are associated with greater mechanical
degradation. Furthermore, our study determined that diverse
discharge patterns, shown by distinct drive cycles, introduce
increased stress to the negative electrode. Moreover, the
Fig. 14 Summary of EOL periods (in years) for all chosen driving patte
scenario-1 (b) within daily-scenario-2.

© 2025 The Author(s). Published by the Royal Society of Chemistry
negative electrode critical stress factor is lower than that of the
positive electrode. Hence, the positive electrode can be sub-
jected to higher tensile stress conditions, resulting in a pro-
portionately less occurrence of LAM.49 It's important to note
that harsher driving behavior leads to elevated mechanical
degradation. However, it doesn't directly contribute to overall
fading, encompassing both chemical and mechanical degra-
dation. Chemical degradation, unlike mechanical degradation,
depends not only on drive cycle metrics but also on rest
conditions. Mechanical degradation also depends on the
operating temperature conditions of the battery. In extreme
temperatures, specically at lower temperatures, the dominant
path of battery degradation is particle fracture.49 Both negative
and positive electrodes are affected by the temperature, and it is
evident from our results that both electrodes show a variation
when subjected to different climatic conditions.

This research offers a comprehensive framework to evaluate
the battery end-of-life (EOL) for electric vehicles, unveiling the
complex interactions between different daily driving behaviors,
varied charge rates and frequencies, and rest periods across
varied climatic conditions, and their combined effect on battery
degradation. The ndings challenge the traditional assump-
tions about battery capacity fade, revealing that high kinetic
intensity (KI) drive cycles don't always lead to quicker fade.
Instead, the collective impact of average speed, charging
frequency, rest duration, and the climate at which the vehicle is
operating appears to be more decisive in battery longevity.
Surprisingly, patterns with lower kinetic intensity and higher
average speeds were found to experience more signicant
degradation due to prolonged rest periods that exacerbate
calendar aging. For instance, although a drive cycle with a high
KI might suggest intense battery use, if such a cycle involves
rns across three climatic zones, for three charge rates (a) within daily

RSC Adv., 2025, 15, 30980–31004 | 30999
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lower average speeds, it could lead to more energy used over
a longer period, reducing the rest time for the battery and
consequently, lessening calendar aging. This unexpected trend
suggests that it’s not just the driving metrics that matter but
a combination of factors, including the length of driving,
frequency of charging, duration of resting periods, and the
environmental conditions that shape a battery's lifespan.

Furthermore, the study underscores the detrimental effects
of rapid charging and elevated temperatures on battery
capacity. Fast charging rates accelerate the onset of lithium
plating, contributing to substantial capacity fade, while high
temperatures during charge cycles exacerbate the aging process,
with the notable processes of lithium plating and SEI layer
Fig. 15 Summary of EOL periods (in years) for all chosen driving patterns
daily scenario-2 (a) at a constant morning charge rate of 0.1C (b) at a cons
of 1C.

31000 | RSC Adv., 2025, 15, 30980–31004
growth playing central roles in capacity fade. Mechanical
factors, particularly the tensile stress exerted on electrode
particles during charge cycles, are also highlighted as a signi-
cant degradation pathway. The study's analysis suggests that
more prolonged charging at higher rates induces greater
mechanical stress, particularly on the positive electrode, which
in turn increases the likelihood of capacity loss due to
mechanical strain.

The combined effect of all these factors together, along with
their examined EOL periods, is integrated and presented in
Fig. 14. Fig. 14a illustrates the EOL periods for DS-1, encom-
passing all four driving patterns, varying charge rates, and
climatic zones. Additionally, Fig. 14b displays the EOL periods
across three climatic zones, and for three evening charge rates within
tant morning charge rate of 0.5C, (c) at a constant morning charge rate

© 2025 The Author(s). Published by the Royal Society of Chemistry
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for DS-2, involving twice-a-day charging with consistent
morning and evening charge rates. Meanwhile, Fig. 15a–c detail
the EOL periods for DS-2, maintaining a xed morning charge
rate while varying the evening charge rate. This study proposes
an EOL assessment framework for two-wheelers, utilizing the
LGM50 21 700 cylindrical cell electrochemical model, which has
a nominal voltage of 3.6 V and a nominal capacity of 5 Ah as the
reference battery. The LGM50 cell is commonly used in two-
wheeler battery packs, making it an appropriate choice for
this study. It should be noted that while the obtained EOL
model values may vary with different cell chemistries and
geometries, the insights developed and the underlying
processes remain consistent, irrespective of the cell geometry
and chemistry. The ndings indicate that driving patterns
characterized by higher average speeds, longer rest periods,
frequent charging sessions throughout the day, and exposure to
elevated temperatures lead to accelerated battery fading
compared to other operating conditions.

In comparison with existing studies, this work advances the
state-of-the-art by providing amore comprehensive and realistic
end-of-life (EOL) evaluation framework for electric vehicle
batteries. For example,33 quantied capacity loss for different
daily driving scenarios using real-world data, observing
a maximum capacity loss of 14.9% aer 100 000 miles, but did
not map the complete degradation trajectory to EOL. Simi-
larly,25 examined the effect of driving styles and traffic condi-
tions using 240 cycles of real highway data and reported
a maximum capacity fade of only 0.5%, again without extending
to full EOL.15 developed a combined calendar and cycle aging
model with a lifetime estimate of 150 000 cycles for elevators
and vehicle V2G use but did not consider realistic two-wheeler
driving patterns, diverse climates, or varying charging prac-
tices.16 assessed combined driving and V2G effects, testing cells
for up to 2400 cycles and then predicting EOL at around 5300
cycles (at 80% SOH) using linear regression, without validating
under region-specic or realistic daily variations. Notably,18

studied impacts of driving cycles, ambient temperatures (0 °C,
20 °C, 40 °C), charging modes, and trip distances on EOL,
showing that low temperatures can reduce battery life by up to
8.6 times compared to optimal conditions, and fast charging
can vary EOL by ±30% depending on ambient temperature. Yet
their driving scenarios relied on standard cycles and xed
conditions rather than realistic, dynamic proles. In contrast,
this work uniquely combines diverse driving styles, customized
regional drive cycles, realistic rest and charging behaviors, and
varying climatic conditions into a unied framework, tracking
the full capacity fade to EOL. This detailed, real-world mapping
lls a critical research gap, providing actionable insights for
OEMs, researchers, and policymakers to improve region-
specic battery design, usage strategies, and lifetime predic-
tion. However, the calibration and experimental validation in
this study rely on fresh cells, but the ndings can be extended to
include validation considering degradation effects. Although
calibrating the degradation effect is both challenging and
costly, if resources and conditions allow, validating the ndings
with degradation effects and the aging process would further
enhance the reliability and strengthen the study.
© 2025 The Author(s). Published by the Royal Society of Chemistry
6 Limitations of the study

This study uses three representative driving patterns from rural,
urban, and high-traffic stop-and-go scenarios in India to high-
light realistic battery usage conditions. While these patterns
offer valuable insights, they do not capture the effects of driving
in mountainous terrains, and road gradients were not explicitly
modeled. Slope-related forces, which can signicantly inuence
traction effort, power demand, and overall battery performance,
were discussed in the motivation section and detailed in prior
reports. However, the proposed framework is designed to be
exible and can easily be extended to include region-specic
driving cycles with gradients and other unique conditions.

Similarly, the study assumes a Constant Current–Constant
Voltage (CCCV) charging protocol, which reects a common
and practical approach but does not account for real-world
charging interruptions that can further impact battery degra-
dation. The framework remains modular and can incorporate
other charging strategies, such as pulse or interrupted charging,
as well as additional climatic proles and usage scenarios.
While the specic EOL gures reported may vary with different
conditions, the methodology provides a robust and adaptable
approach that can be rened to support more comprehensive
battery End-of-Life assessments in future work.

7 Conclusion and future scope

Based on the current ndings and recognized limitations, it is
clear that improving EV battery health requires a more nuanced
approach that considers not just standard drive cycle metrics,
but the complex interplay of average speed, resting periods,
charging behaviors, and real-world conditions such as terrain
and temperature. In conclusion, this work uncovers the
complex dynamics that dictate EV battery aging, shiing the
focus from singular metrics to a broader understanding of
usage patterns and environmental factors. It underscores the
importance of balanced driving habits, thoughtful charging
strategies, and consideration of climate impacts as integral to
enhancing battery longevity and overall vehicle performance.
This comprehensive analysis informs OEMs on customizing
driving patterns, charging scenarios, and rates to extend battery
EOL, alleviate cost burdens, and ensure optimal performance
over time. Stakeholders can optimize battery longevity based on
user behavior, region-specic conditions, and driving patterns.
This deeper understanding shatters common misconceptions
and equips stakeholders with the knowledge needed to combat
capacity fade under real-world driving conditions.

Future work should expand testing to include a wider variety
of region-specic drive patterns, particularly for routes with
signicant road gradients and mountainous terrains, to better
account for additional traction and power demands. Incorpo-
rating these conditions will help develop more realistic models
for predicting battery aging and support strategies that optimize
driving patterns to balance energy use and rest periods, ulti-
mately mitigating unnecessary capacity fade. Additionally,
adapting charging strategies to better reect real-world user
behavior is crucial. Integrating smart charging protocols that
RSC Adv., 2025, 15, 30980–31004 | 31001
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can manage charging interruptions, optimize charge rates, and
adjust for ambient temperature could signicantly reduce
harmful effects like lithium plating and excessive SEI growth.
Further research should focus on dynamic charging manage-
ment, possibly aided by onboard predictive algorithms that
adapt to user routines and local climate conditions. Combined
with the adaptable framework demonstrated in this study, such
advancements can pave the way for more practical, durable, and
user-friendly battery systems that maintain health and perfor-
mance throughout the EV's lifetime.
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Abbreviations
aC
31002 | RSC
Characteristic acceleration

vaerodynamic
 Aerodynamic speed

vi
 Vehicle speed at ith instant

g
 Acceleration due to gravity

h
 Elevation

Dt
 Successive time interval

T
 Total time spent for driving

S
 Total distance travelled

mLi
 Total moles of usable lithium

q−
 Volume-averaged particle concentrations of

negative electrode

q+
 Volume-averaged particle concentrations of

positive electrode

C−
 Charge capacity of the negative electrode

C+
 Charge capacity of the positive electrode

Ce
 Electrode charge capacity

3e
 Electrode active material volume fraction

Ac
 Surface area of the current collector

Le
 Electrode thickness

ce
 Electrode molar concentration

EV
 Electric vehicle

EOL
 End-of-life

OEM
 Original equipment manufacturer

WLTC
 Worldwide harmonized light vehicles test cycle

UDDS
 Urban dynamometer driving schedule

NEDC
 New European driving cycle

IDC
 Indian driving cycle

KI
 Kinetic intensity

RPA
 Relative positive acceleration

PKE
 Positive kinetic energy

SEI
 Solid electrolyte interphase

ICE
 Internal combustion engine

SOC
 State of charge

DS
 Daily scenario

LLI
 Loss of lithium inventory

LAM
 Loss of active material

NMC
 Nickel manganese cobalt

EC
 Ethylene carbonate

EMC
 Ethyl methyl carbonate

OCV
 Open circuit voltage
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GITT
© 2025 Th
Galvanostatic intermittent titration technique

CBD
 Carbon and binder domains

EDS
 Energy-dispersive X-ray spectroscopy

ICP-OES
 Inductively coupled plasma optical emission

spectroscopy

CV
 Constant voltage

CC
 Constant current

CCCV
 Constant current constant voltage
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