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Valorization of citrus processing waste into high-
performance bionanomaterials: green synthesis,

biomedicine, and environmental remediation
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The global citrus industry generates millions of tons of citrus processing waste (CPW), composed primarily
of peel, pulp, and seeds. This agro-industrial byproduct represents both an environmental challenge and
a valuable feedstock for sustainable nanotechnology. This review explores green synthesis approaches
for transforming CPW, rich in bioactive compounds such as flavonoids, essential oils, and pectin, into

high-performance bionanomaterials. Emphasis is placed on their biomedical applications, including

antimicrobial formulations, wound healing agents, and nanocarriers for drug delivery, as well as their use
in environmental remediation and catalysis. In contrast to earlier reviews, this work highlights recent
progress in eco-friendly synthesis techniques (e.g., microwave-assisted, biological, and hydrothermal
methods) while addressing challenges related to scalability, reproducibility, and bioavailability. The review
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also frames CPW valorization within the broader context of circular economy models and the UN

Sustainable Development Goals. By offering a critical synthesis of current knowledge and identification

DOI: 10.1039/d5ra04307g

rsc.li/rsc-advances nanotechnology.

1. Introduction

The food and agriculture (F&A) industry is experiencing rapid
growth, driven by a burgeoning population and improving
economic conditions. This growth has attracted substantial
investments, reaching USD 75 billion in 2017. However, the
industrialization of agriculture has led to significant waste
generation, posing environmental and economic challenges.*
Globally, over five million metric tons of agricultural biomass
are produced annually, including fruit peel, rice bran, sugar-
cane bagasse, and vegetable residues.?

According to the Food and Agriculture Organization (FAO),
global fruit and vegetable production in 2023 reached approxi-
mately 2.1 billion tons, marking a 1 percent increase from 2022
(Agricultural production statistics 2010-2023, Food and Agri-
culture Organization of the United Nations). A significant
portion of this ends up as waste, particularly during food pro-
cessing operations. Among the most prevalent residues is citrus
processing waste (CPW), a mixture of peel, pulp, and seeds,
generated during juice extraction and other industrial applica-
tions (FAO, 2023).

CPW represents up to 50-60% of the total citrus fruit mass,
making it one of the largest sources of agro-industrial waste.***
In many cases, the volume of this waste exceeds the actual
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of key knowledge gaps, this work aims to support future research and industrial translation in green

product yield, especially during large-scale citrus juice produc-
tion. According to FAO, approximately 1 billion tons of food
waste are annually produced, which roughly corresponds to
one-third of the food produced for human consumption (FAO,
2023). Improper management of such waste contributes to
greenhouse gas emissions, soil and water contamination, and
microbial hazards.

In 2023, global trade in food-processing byproducts,
including “residues and waste from the food industries”, sur-
passed USD 102 billion, indicating both the scale of the chal-
lenge and potential value (TrendEconomy, 2023). Agro-
industrial waste is rich in nutrients and, if left inadequately
treated or untreated, can serve as a breeding ground for path-
ogenic microorganisms.’** Traditionally, this waste, including
citrus residues, has been incinerated or dumped into landfills,
releasing harmful compounds such as SO,, CH,4, and N,0, and
increasing environmental burdens.'®>** The lack of efficient
recycling exacerbates these effects.

To address these concerns, valorization of CPW into high-
value bioproducts has emerged as a sustainable strategy to
effectively and economically convert these wastes into valuable
products with industrial and commercial potential, thereby
reducing their detrimental environmental impact.** CPW is rich
in bioactive compounds, including pectin, cellulose, flavonoids,
and essential oils (EOs), making it a promising feedstock for
nanomaterial synthesis via green chemistry routes."**

Citrus is the largest genus in the Rutaceae family, encom-
passing approximately 70 species, including various edible

© 2025 The Author(s). Published by the Royal Society of Chemistry
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varieties such as Citrus limon (lemon), C. medica (citron), C.
aurantium (sour orange), C. paradisi (grapefruit), C. reticulata
(mandarin, tangerine), C. clementina (clementine), C. bergamia
(Bergamot), C. junos (Yuzu), C. japonica (Kumgquat), and C.
sinensis (sweet orange).'®> Citrus species are native to Asiatic
crops growing in the Himalayan foothills of Northern India,
Northern Myanmar, Southern China, and Southeast Asia, from
where they have spread to over 140 worldwide.*** Global
production of citrus fruits reached 158 million tons in 2020,
with oranges being the most widely cultivated (FAOSTAT, 2020).
Approximately 30 million tons of citrus fruits are used annually
for juice production, generating vast quantities of CPW.>*>

These residues are rich in functional compounds and
biopolymers that offer antioxidant, antimicrobial, anti-
inflammatory, and potential anticancer properties.”***?* For
example, external ionotropic gelation has been used to encap-
sulate C. aurantifolia peel extract in alginate-gelatin microbeads
with antibacterial activity against S. aureus and E. coli.*®* In
another study, C. unshiu peel extract demonstrated inhibitory
effects on melanoma in animal models.?**

Nanotechnology is a rapidly evolving field with significant
interactions with other scientific disciplines, leading to inno-
vative applications. It involves the synthesis and application of
nanomaterials with sizes ranging from 1 to 100 nm.** In

Most Predominant Ingredients Extracted From
Citrus Peel

View Article Online

RSC Advances

general, nanomaterials are produced through physical and
chemical methods, which often require substantial energy
inputs and utilize toxic chemicals.®*

Green synthesis refers to the production of nanomaterials
using natural substances or plant extracts and their metabo-
lites. The natural compounds, such as alkaloids, flavonoids,
terpenoids, aldehydes, and amides, act as capping, stabilizing,
and reducing agents. Nanomaterials biosynthesized through
green chemistry approaches are less toxic, more eco-friendly,
reliable, sustainable, and have significant potential for phar-
maceutical and other applications.?”

The green synthesis of nanoparticles (NPs) via the nano-
biotechnology approach has an important role in boosting
production compared to chemical and physical methods.** In
the field of materials science, biogenic synthesis of NPs from
plant derivatives has become a prominent area of research.
Greenly synthesized nanomaterials exhibit various biological
properties, including antimicrobial, anticancer, and antioxi-
dants activities.

For example, C. sinensis peel extract has been used to
produce silver NPs (AgNPs) and cellulose nanofibers that
effectively remove cadmium and chromium from wastewater.
Transmission electron microscopy images revealed that the
average diameters of AgNPs and cellulose nanofibers were 32

I
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Fig. 1 Examples of the most predominant ingredients extracted from Citrus peel with their respective chemical structures. Figure created in

Biorender.
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Fig. 2 Characterization and evaluation of nano-emulsions. (I) Transmission electron microscopy (TEM) images of freshly prepared nano-
emulsions. () Microscopic comparison of fresh nano-emulsion and nano-emulsion stored at ambient temperature for 45 days. (Ill) High-
performance liquid chromatography (HPLC) analysis of kinnow peel extract and nano-emulsion before and after storage. Peaks: gallic acid (1);
chlorogenic acid (2); p-coumaric acid (3); ferulic acid (4); hesperidin (5); naringenin (6); quercetin (7). (IV) Antimicrobial properties of obtained
nano-emulsions against S. paucimodbilis (a), B. subtilis (b), A. niger (c), S. aureus (d), and E. coli (e) (NE: nanoemulsion; C: control). (V) Morpho-
logical changes in Vero-cell lines treated by encapsulated nanoemulsions (12.5 pg mL™Y) (a), compared to the control (b). Reproduced with

permission from ref. 46, copyright 2024 Elsevier.

and 47 nm, respectively. The composite material, composed of
AgNPs and cellulose nanofibers, demonstrated a preference for
eliminating chromium ions over cadmium ions. The efficiency
of chromium removal was measured at 83.5%, while cadmium
removal was 32.2%.%°

Another study demonstrated the use of C. sinensis peel
extract to produce superparamagnetic iron oxide NPs (SPIONS).
TEM examination revealed that the greenly produced SPIONs
were spherical with particle sizes ranging from 20 to 24 nm.
Magnetization = measurements confirmed the  super-
paramagnetic properties of the produced SPIONs at normal
temperatures. This study investigated the antibacterial activity,
minimum inhibitory concentration (MIC), antioxidant poten-
tial, anti-inflammatory effect, and catalytic degradation of
methylene blue by the SPIONs.*®

Given the multifaceted value of CPW, this review critically
examines its role in the green synthesis of nanomaterials and
their applications in biomedicine and environmental remedia-
tion. Two core valorisation strategies are discussed:

36542 | RSC Adv, 2025, 15, 36534-36595

(1) Utilizing CPW-derived extracts as active components
encapsulated in nanocarriers for therapeutic and functional
applications (e.g., drug delivery, wound healing, food packaging).

(2) Employing green synthesis methods to convert CPW
directly into carbon-based, metallic, metal-oxide, and polymeric
nanomaterials.

This review integrates recent findings, compares synthesis
approaches, highlights current limitations, and outlines future
directions to support sustainable nanotechnology rooted in
circular economy principles. Unlike conventional reviews that
focus narrowly on either synthesis methods or biomedical
outcomes, this work offers a holistic perspective from the
extraction of CPW-derived bioactives (e.g., flavonoids, pectin) to
their use in fabricating carbon-based, metallic, polymeric, and
other nanomaterials. By consolidating recent advances and
highlighting emerging strategies such as nano-encapsulation
and magnetic hyperthermia, this review emphasizes sustain-
ability, industrial relevance, and alignment with the UN
Sustainable Development Goals, particularly SDG 12.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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phenolic yield using enzyme-assisted (@) and conventional aqueous ([J) extraction. (Il) Temperature influence on phenolic yield using different
enzyme preparations (Kleepase AFP 106L (1), celluzyme MX (m), celluzyme CL (m)) compared to a control (m). (Ill) Impact of celluzyme MX
concentration on phenolic total content extracted from various citrus peels (mandarin (), orange (I#), grapefruit (H), Meyer lemon peel ((1), Yen
Ben lemon (@)). (IV) Comparison of phenolic yield obtained using different enzymes (Kleepase AFP 106L (), celluzyme MX (), celluzyme CL (m))
and conventional aqueous (m) extraction from various citrus peels. (V) Visual comparison of Meyer lemon peel before and after different
extraction methods (aqueous, ethanolic (72%; 19 °C), enzyme-assisted (50 °C) with celluzyme MX, celluzyme CL, and kleepase AFP 106L). (VI)
Antioxidant activity of extracts from different citrus peels determined by (A) FeSO,4 equivalent per 100 g fresh peel and (B) FeSO,4 equivalent
per mg gallic acid equivalent (GAE) using various extraction methods. (Meyer lemon (m), Yen Ben lemon (m), grapefruit (1), orange (m), mandarin

(@)). Reproduced with permission from ref. 53, copyright 2006 Elsevier.

2. Citrus peel constituents: basis for
valorization

While extensive research has focused on the nutritional and
medicinal properties of citrus fruits, relatively less attention has
been given to their byproducts, particularly CPW, despite a long
history of use in food preservation and traditional medicine.
Phytochemical and nutritional assessments have demonstrated
that CPW is a rich source of bioactive molecules, including
a variety of functional compounds such as flavonoids, limo-
noids, EOs, and pectin, which possess diverse medicinal
purposes.**

To date, approximately 140 compounds have been identified
in CPW, including dietary fibers, polyphenols, and volatile
components. For example, M'hiri et al. (2016) reported that
citrus residues contain fiber (6.30-42.13 g/100 g dry basis),
vitamin C (0.109-1.150 g/100 g), phenolic compounds (0.67-

© 2025 The Author(s). Published by the Royal Society of Chemistry

19.62 g/100 g), and EOs (0.6-1%). Key phenolics include flava-
nones such as narirutin (0.03-26.90 mg g~ '), hesperidin (up to
80.90 mg g~ '), naringin (0.08-14.40 mg g~ '), and neohesperidin
(0.05-11.70 mg g~ '), along with polymethoxylated flavones like
tangeretin (0.16-7.99 mg g '), sinensetin (0.08-0.29 mg g ),
and nobiletin (0.20-14.05 mg g ).

The predominant bioactive groups in CPW are phenolic
compounds, EOs, and dietary fiber, each contributing to anti-
oxidant, antimicrobial, and anti-inflammatory activities.*
Phenolic compounds, in particular, are subclassified into
phenolic acids and flavonoids, as outlined in Table 1 and Fig. 1.
Flavonoids could be further subdivided into four sub-groups:
polymethoxyflavones, flavonoid aglycones, flavone O-
glycosides, and flavone C-glycosides. EOs are mainly
composed of monoterpenes, monoterpenes aldehydes, mono-
terpenes alcohols, and sesquiterpenes, while dietary fiber is
categorized as insoluble fibers (IDF) and soluble fibers (SDF),
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based on water solubility. Table 1 serves as a reference frame-
work by summarizing these classes with their representative
compounds, molecular weights, and chemical structures, which
are later linked to their biomedical and environmental
applications.

2.1. Phenolic compounds

Phenolic compounds are a diverse class of plant-derived
secondary metabolites known for their antioxidant, antimicro-
bial, and anti-inflammatory activities. They are considered one
of the most valuable groups of bioactive molecules in CPW,
particularly in the peel fraction. Their health benefits have been
linked to reducing the risk of chronic diseases, including
cancer, cardiovascular, and neurodegenerative disorders.****
Studies have demonstrated that citrus peels possess higher
phenolic content compared to the pulp or juice. For example,
M'hiri et al. (2016) quantified total phenolics in various citrus
peels and found values ranging from 0.67 to 19.62 g/100 g dry
weight, with hesperidin, narirutin, naringin, and neohesperidin
being dominant.*> These compounds exhibit multiple

36544 | RSC Adv, 2025, 15, 36534-36595

mechanisms of action, including free radical scavenging, metal
chelation, and enzyme inhibition.

However, despite their bioactivity, phenolic compounds are
susceptible to degradation due to exposure to light, tempera-
ture, and oxygen. To overcome these limitations, several
encapsulation approaches have been applied. For instance,
Kaur et al. (2024) developed nanoemulsions containing p-cou-
maric acid (201.43 + 0.81), gallic acid (356.5 + 1.41), chloro-
genic acid (373.93 =+ 4.38), quercetin (419.75 + 4.47) ug g %,
ferulic acid (1278.8 £ 9.09), naringenin (570.63 + 0.88), and
hesperidin (1192.56 + 8.61), extracted from kinnow (C. retic-
ulata) peels, enhancing their stability, antibacterial activity, and
bioavailability. The nanoemulsions showed significant anti-
bacterial action against both Gram-positive and Gram-negative
bacteria, as well as pathogenic molds, indicating a strong
preservation potential (Fig. 2). These formulations were also
shown to be biocompatible with normal cell lines (Vero cells),
with cell viability greater than 85%.

In terms of extraction, both traditional and advanced
techniques have been used to improve phenolic recovery.
These include solvent extraction, enzyme-assisted extraction
(EAE), microwave-assisted extraction (MAE), and supercritical

© 2025 The Author(s). Published by the Royal Society of Chemistry
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fluid extraction (SFE).*”-** Extraction efficiency varies based on
solvent type (e.g., methanol, ethanol, acetone), polarity, pH,
temperature, and time.”? In this regard, Li et al (2006)
investigated the primary characteristics that influenced
phenolic yield, such as peel condition, extraction tempera-
ture, solvent concentration, citrus species, and types of
enzymes and their corresponding concentrations (Fig. 3).
Folin-Ciocalteu assay was used to analyze and compare the
total phenolic contents of five citrus peels (grapefruit, Yen Ben
lemon, orange, Meyer lemon, and mandarin) extracted using
simple water extraction or ethanol. Overall, grapefruit peel
had the highest total phenolic content, followed by mandarin,
Yen Ben lemon, orange, and Meyer lemon peel. Using ethanol
as a solvent resulted in a high extraction rate (about 74%),
which could be enhanced further by heating to 80 °C.
Furthermore, the total antioxidant activity of phenolic
contents isolated from various citrus peels was evaluated
using FRAP assay. Grapefruit peels have the highest overall
antioxidant activity, followed by Yen Ben lemon, mandarin,
orange, and Meyer lemon.**

Furthermore, different varieties of citrus fruit peel have
varying total phenolic contents. For example, Sir Elkhatim et al.
(2018) studied the antioxidant activity, phenolic compounds,
and vitamin C contents of wastes derived from citrus fruits of
grapefruit, lemon, and orange. Each citrus type's whole fruit,
peel, and pulp with seeds were used to make ethanolic extracts.

36546 | RSC Adv, 2025, 15, 36534-36595
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Within each variety of citrus, peels included more phenolic
compounds, flavonoids, vitamin C, and antioxidant activity
than the inner discarded sections (pulp and seeds). Grapefruit
peels exhibited the highest total phenolic content, followed by
lemon and orange peels, with 77.3, 49.8, and 35.6 mg of gallic
acid equivalent per gram of peel, respectively. On the other
hand, orange peels contain the most flavonoids (83.3 mg of
catechin equivalent per g) and vitamin C (110.4 mg/100 g)
compared to the peels of the other citrus fruits studied in this
study (Fig. 4). In general, the high antioxidant capacity and
activity of citrus waste, particularly the peels, suggested that
they could provide health and nutritional benefits when used in
the food sector as a natural antioxidant.>*

2.1.1. Phenolic acids. Phenolic acids are aromatic
compounds possessing one or more hydroxyl groups attached
to a benzene ring. They are primarily synthesized via the shi-
kimic acid and phenylpropanoid pathways in plants and exist
in both free and bound forms in citrus peel.*® They are struc-
turally categorized into: hydroxybenzoic acids (HBAs),
including gallic acid, syringic acid, protocatechuic acid, p-
hydroxybenzoic acid, and vanillic acid, and hydroxycinnamic
acids (HCAs), including caffeic acid, ferulic acid, p-coumaric
acid, and sinapic acid.*>*® Peleg et al. (1999) discovered that
free phenolic acids could be the precursors for vinyl phenols
and off-flavors generated in citrus products during storage.
The free and bound phenolic acids in grapefruit (C. paradisi)
and oranges (C. sinensis) were quantified using ethyl acetate
extraction, silica gel column chromatography, and HPLC
analyses of samples before and after alkaline hydrolysis. The
concentration of free and bound phenolic acids was also
evaluated in juice made from fruit picked early, mid, and late
in the season. Consequently, the bound forms of phenolic
acids were found to be more abundant in C. sinensis and C.
paradisi than free forms. Flavedo tissues (outer peel) typically
contained higher concentrations than albedo (inner white
part). Among these, ferulic acid had been consistently identi-
fied as the most abundant cinnamic acid derivative in citrus
peel (Fig. 5). The results also showed that the content of bound
cinnamic acids remained stable or slightly increased from
early to late season. However, the concentration of free acids
decreased throughout that time.*”

Phenolic acids possess strong antioxidant activity, attributed
to their ability to donate hydrogen atoms or electrons,
neutralize free radicals, and chelate metal ions. These proper-
ties also make them suitable reducing and stabilizing agents in
the biosynthesis of NPs, such as silver, gold, iron oxide, and zinc
oxide NPs.*® In a study by Fejzic et al. (2014), five citrus juice and
peel extracts (pink grapefruit, tangerine, white grapefruit,
lemon, and orange) were evaluated for antioxidant activity and
total phenolic content. The spectrophotometric Folin-Ciocalteu
technique was used to assess total phenolic content. Values
ranged from 0.192 + 0.015 mg GAE per mL for white grapefruit
peel to 0.747 £ 0.098 mg GAE per mL for white grapefruit juice.
The antioxidant activity of the samples was determined using
the total antioxidant technique, which involves the reduction of
molybdenum ions and is represented as IC50. The IC50 values
varied between 6.00 & 0.50 mg mL " for orange juice and 78.11

© 2025 The Author(s). Published by the Royal Society of Chemistry
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+ 6.70 mg mL ™" for lemon juice, suggesting a potential link
between phenolic acid abundance and antioxidant capacity.*
This also supports their inclusion in the formulation of nano-
carriers with improved bioactivity.

Due to their amphiphilic nature, phenolic acids have also
been incorporated into nanoemulsion systems, liposomes, and
biopolymer-based NPs, enhancing their bioavailability and
release kinetics in pharmaceutical and food applications.

2.1.2. Flavonoids. Flavonoids are the most prominent
subclass of phenolic compounds in CPW, accounting for
a significant portion of its bioactivity, with a quantity ranging
from 2.5 to 5.5 g/100 g dry weight, depending on the citrus
species.® These polyphenolic molecules are widely distributed
in the flavedo and albedo layers of the citrus peel and play
essential roles in plant defense, pigmentation, and growth
regulation. Their health-promoting effects in humans include
antioxidant, anti-inflammatory, antiviral, and anticancer
activities.*>**

Structurally, flavonoids consist of a 15-carbon skeleton
arranged in a C6-C3-C6 configuration, forming two aromatic

36548 | RSC Adv,, 2025, 15, 36534-36595

rings (A and B) and a heterocyclic ring (C). Based on variations
in oxidation and substitution patterns of the C ring, flavonoids
are classified into several subclasses: flavanones, flavones,
flavonols, (catechins), anthocyanidins, and
isoflavones.®*

Although flavonoids are generally regarded as non-nutritive
agents, their potential role in the prevention of major chronic
For

flavanols

diseases has attracted increasing research interest.
example, Lai et al. (2007) employed 5-Hydroxy-3,6,7,8,3',4'-
hexamethoxyflavone (5-OH-HXMF), a polymethoxyflavone found
exclusively in the genus Citrus, particularly in sweet orange (C.
sinensis) peels, to study the effects of 12-O-tetradecanoylphorbol
13-acetate (TPA) on skin inflammation and tumor promotion in
mice. Their results demonstrated that pre-application of 5-OH-
HXMF significantly suppressed TPA-induced iNOS and COX-2
mRNA and protein expression in a dose-dependent manner.
Moreover, topical application of 1 and 3 pmol of 5-OH-HXMF
prior to TPA treatment during tumor promotion markedly
reduced both the number and size of papillomas, consistent
with reduced levels of pro-inflammatory markers.*

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Citrus fruits include two types of flavonoids: poly-
methoxylated flavones (e.g., sinensetin, nobiletin, and
tangerine) and flavanone glycosides (e.g., hesperidin, neo-
hesperidin, and naringin).®® The total flavonoid content (TFC) of
citrus peels is mainly composed of flavanones and poly-
methoxylflavones (PMFs), including naringin, hesperidin, nar-
irutin, nobiletin and neohesperidin.®® PMFs from orange peel
comprise approximately 75.1% non-hydroxylated PMFs and
5.44% hydroxylated PMFs, both of which demonstrate a wide
spectrum of biological activities.**

The dominant flavonoids vary among citrus species: C.
reticulata (mandarins) and hybrids are rich in hesperidin, C.
grandis (pummelos) contain more naringin, and C. limon
(lemon) is rich in eriocitrin.®*® Citrus peels, in general, contain
higher levels of PMFs compared to other fruit parts.®”%*

Flavonoids in citrus peel are well-recognized as potent die-
tary antioxidants, exhibiting mechanisms such as hydrogen
atom transfer, free radical scavenging, and divalent metal ion
chelation.®® These molecules also help regulate metabolic
syndrome and type 2 diabetes by mechanisms including o-
glucosidase inhibition, insulin sensitization, and blood lipid
reduction.”

Furthermore, Shehata et al. (2021) investigated the potential
of orange peels as natural antioxidants and antibacterial agents.

© 2025 The Author(s). Published by the Royal Society of Chemistry

The solvent used for extraction had a significant impact on
flavonoid and polyphenol yield. Methanolic extraction yielded
the highest total flavonoid content in sweet orange peel
(approximately 16 g/100 g), while ethanolic extraction enhanced
the total phenolic (345 mg GAE/100 g DW) and flavonoid
content (80 mg CE/100 g DW). The ethanolic extract exhibited
the highest DPPH and ABTS scavenging activity, while the
methanolic extract showed stronger hydroxyl radical scav-
enging. Notably, all extracts displayed excellent antimicrobial
activity against both Gram-positive and Gram-negative bacteria,
as well as fungi. The sweet orange peel extract showed the
strongest antibacterial performance. Further UPLC-ESI-MS/MS
analysis revealed the presence of narirutin (~29 pg g ), quin-
ic acid (~13 pg g~ '), naringin (~27 pg g~ '), hesperetin-7-O-
rutinoside naringenin (~15 pg g~ '), datiscetin-3-O-rutinoside
(~11 pg ¢ '), and hesperetin (~17 pg g~ ).

These findings underscore the therapeutic versatility of
citrus-derived flavonoids, not only for direct bioactivity but also
for their potential role in nanotechnology applications, such as
serving as reducing agents in NPs synthesis or as encapsulated
bioactives in nanoformulations. Their dual function, as bioac-
tives and green synthesis mediators, adds significant value to
CPW-based nanomaterial platforms.
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(E) colonic IL-6 levels, (F) colonic TNF-a levels. (Il) Effect of pectin pre-treatment on IL-6 production in RAW264.7 macrophages: (A) cells were
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2.2. Essential oils (EOs)

Citrus EOs are an important biologically active compounds,
mainly concentrated in the oil glands of citrus peels.** On
average, they represent approximately 0.5-5% of the fresh
weight of citrus peels. These volatile oils contain diverse
phytochemicals, including monoterpene and sesquiterpene
hydrocarbons, along with their oxygenated derivatives (e.g.,
aldehydes, ketones, acids, alcohols, and esters).”

Limonene and y-terpinene, the major constituents of citrus
EO, exhibit a broad spectrum of biological activities, including
antimicrobial, antioxidant, and anticancer effects.”»”* The key
phytochemical components commonly identified in citrus EO
include p-limonene (~90%), citral, n-dodecanal, a-pinene, n-
decanal, citronella, and linalyl acetate.”” These compounds
contribute not only to the distinct aroma but also to their wide
use in the perfume, food, and pharmaceutical industries due to
their low cost and multifunctionality.”

Citrus EOs also exhibit strong antioxidant, insecticidal,
antifungal, and antibacterial properties, making them rele-
vant in applications across food preservation, sanitation,
cosmetics, and medicine.”> For instance, tangerine EO has

been linked to hypolipidemic and anti-inflammatory

36550 | RSC Adv, 2025, 15, 36534-36595

properties, and is widely used for its antidepressant effects.**
In support of this, Castro et al. demonstrated tangerine EO's
potential to prevent atherosclerosis by inhibiting lipid
production and reducing LDL peroxidation.”” Bergamot EO is
well known for its anticancer activities and usefulness in food
preservation.”® Orange EO has demonstrated a variety of
health benefits, including an anti-obesity properties with
a reported 17% reduction in total cholesterol,” as well as
antidepressant, anxiolytic,*® apoptotic and anti-angiogenesis
effects on colon cancer cells,®® anti-inflammatory, neuro-
protective, and analgesic effects.®>*

Koochi et al. (2022) investigated the antioxidant, a-glucosi-
dase, and a-amylase inhibitory activities of EOs derived from
fresh peels of bitter orange, grapefruit, lime, mandarin, lemon,
sweet orange, and pomelo. Citrus EO is primarily composed of
linalool (18.26-29.08%), linalool acetate (17.17-30.47%), limo-
nene (17.08-22.44%), a-geraniol (2.05-6.30%), geranyl acetate
(1.89-2.80%), B-ocimene (1.52-5.02%), terpineol (6.08-11.06%),
nerolidol (2.93-4.00%), B-pinene (2.71-3.29%), and farnesol
(2.08-2.97%). These extracts exhibited high antioxidant
capacity (375-643 mg Trolox equivalents per g) and demon-
strated substantial a-amylase (520-738 mg acarbose equivalents

© 2025 The Author(s). Published by the Royal Society of Chemistry
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per g) and a-glucosidase inhibitory activity (470-780 mg acar-
bose equivalents per g).**

Despite their promising bioactivities, citrus EOs face several
formulation challenges due to their high volatility, photosen-
sitivity, and low water solubility. To address these limitations,
nanoencapsulation techniques have been employed to improve
stability, bioavailability, and controlled release. For example,
orange peel oil (OPO), widely used as a flavoring agent, is prone
to degradation under heat, light, and oxidative conditions.
Encapsulation in biopolymer-based nanocomposites has been
shown to protect OPO and enhance its functional properties.
Ghasemi et al. (2023) evaluated the release behavior of freeze-
dried OPO nanocomposite powders under varying pH (3, 7,
11) and temperature (30, 60, 90 °C) in a simulated salivary
system (Fig. 6). Their findings demonstrated an encapsulation
efficiency ranging from 70-88%, with particle size confirmed in
the nanoscale range via AFM.*

In another study, Ahmed et al. (2023) explored the use of
nano-formulated lemon peel EO (LPEO) encapsulated in poly-
ethylene glycol (PEG) NPs to enhance its insecticidal activity
against Agrotis ipsilon. The nanoformulation significantly
improved performance compared to free LPEO: at 75 mg mL ™,
larval mortality reached 90% with LPEO-NPs versus 80% for free
LPEO. TEM imaging validated the successful formulation, and
the results highlighted the enhanced bioefficacy of EO upon
nano-delivery (Fig. 7).
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These findings emphasize the potential of citrus EO as both
bioactive agents and nanocarrier-friendly compounds, making
them highly valuable in sustainable applications ranging from
insect control and disease prevention to functional foods and
targeted therapy.

2.3. Dietary fiber

Citrus peels contain a variety of useful active compounds, with
dietary fiber (DF) accounting for more than 50%.%” DF is
a complex polymer composed of various monomeric units and
is either part of plant cell walls or extracted from intracellular
regions. While indigestible by human enzymes, DF plays
a crucial role in modulating gut microbiota and overall
metabolic health. Studies confirm that adequate DF intake
can lower blood sugar and cholesterol levels, thus reducing
cancer risk.®®

DF is generally categorized as soluble (SDF) or insoluble
(IDF), based on its water solubility. Among the two, SDF exhibits
stronger antioxidant potential, likely due to its polysaccharide
content.** Carbohydrates account for nearly 80% of citrus
fiber composition, predominantly as pectin (~42.25%) and
cellulose (~15.95%).°> Owing to its acidic and charged nature
(e.g., galacturonic acid), pectin imparts viscosity and gelling
properties, thus contributing significantly to fiber functionality.
Hemicellulose, another major DF component (~10.06%), has
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a highly branched, amorphous, and non-crystalline structure
that provides high viscosity and water-holding capacity.®***
These physicochemical features collectively make citrus DF
a valuable multifunctional additive in health-promoting
formulations.

For example, Fu et al. (2024) investigated the antioxidant
and microbiota-regulating effects of purified SDF (PSDF) from
C. unshiu in a mouse model of oxidative stress. The authors
conducted their investigation on 8-week-old mice that were
artificially aged for 42 days by subcutaneous injections of
a 200 mg per kg per day p-galactose solution, followed by a 28-
day feeding intervention with varied dosages of PSDF,

View Article Online
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insoluble dietary fiber (PIDF), and vitamin C. Following the
intervention, they observed significant reductions in b-
galactose-induced oxidative stress, as seen by weight normal-
ization and decreased oxidative damage. PSDF drastically
altered the makeup of intestinal flora, raising Firmicutes and
decreasing Bacteroidota ratios while enriching colonic short-
chain fatty acids. Further Spearman correlation analysis
revealed a positive link between Firmicutes and isovaleric acid,
as well as negative correlations between Muribaculaceae and
acetic acid and Lachnospiraceae NK4A136 group and caproic
acid (Fig. 8). These data refer to Citrus PSDF's ability to reduce
oxidative damage.*®
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(I) In vitro evaluation of Ag QD cytotoxicity and antibacterial activity. (a) Dose-response curve illustrating the effect of Ag QDs on the

viability of MCF-7 human breast cancer cells. (b1-b4) Light microscopic images of control cells and cells treated with 10, 50, and 100 pug mL™* of
Ag QDs. (c) Fluorescence microscopic images of control cells. (d) Fluorescence microscopic images of cells treated at the IC50 value of Ag QDs
using AO-EB dual staining. () Characterization of synthesized Ag QDs. (a and b) Transmission electron microscopy (TEM) images, (c) high-
resolution TEM (HRTEM) image, (d) selected area electron diffraction (SAED) pattern, (e) size distribution analysis, and (f) UV-vis absorption
spectrum of Ag QDs and a photograph of the Ag QD reaction solution. (lll) Antibacterial activity of Ag QDs against Gram-positive bacteria and
Gram-negative bacteria. (a) Antibacterial activity of Ag QDs at a concentration of 50 pg mL™2. (b) Bacterial growth inhibition of selected path-
ogenic bacteria at various Ag QD concentrations. Reproduced with permission from ref. 104, copyright 2021 Elsevier.

36552 | RSC Adv, 2025, 15, 36534-36595 © 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra04307g

Open Access Article. Published on 03 October 2025. Downloaded on 1/21/2026 9:22:21 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

In another study, Gu et al. (2023) compared purified and
crude SDF extracted from C. unshiu peel using ultrasound-
assisted alkaline extraction. Unpurified soluble dietary fiber
(CSDF) was compared to purified soluble dietary fiber (PSDF) in
terms of content, molecular weight, physicochemical charac-
teristics, antioxidant activity, and intestinal regulating ability.
The PSDF exhibited higher molecular weight (>15 kDa), shear-
thinning properties, and greater thermal stability under 200 ©
C. PSDF also demonstrated enhanced antioxidant activity,
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including DPPH, ABTS', and hydroxyl radical scavenging, and
promoted SCFA production and Bacteroides abundance in
fermentation trials (Fig. 9). These results support PSDF's
potential in functional food applications and intestinal health
enhancement.”

Beyond antioxidant and prebiotic effects, citrus DF, espe-
cially pectin, has shown therapeutic promise in gastrointes-
tinal conditions such as inflammatory bowel disease (IBD).
Ishisono et al. (2019) examined how pectin's side-chain
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(I) Schematic representation of the green synthesis of NiFe,O4@LPE NPs using lime peel extract and their potential applications in

anticancer and antibacterial activities. (Il) Morphological characterization of green synthesized NiFe,O4@LPE NPs. (a) Transmission electron
microscopy (TEM) image revealing internal structural morphology. (b) Scanning electron microscopy (SEM) image showing surface morphology.
(c) Two-dimensional atomic force microscopy (2D AFM) image revealing surface topography. (d) 3D view of NiFe,O,4@LPE NPs. (lll) Evaluation of
antioxidant activity of green synthesized NiFe,O4 NPs mediated by lime peel extract using DPPH radical scavenging assay. Ascorbic acid was used
as a positive control. (IV) In vitro cytotoxicity assessment of NiFe,O4@LPE NPs on Hela cells. (a) Cell viability (%) of Hela cells treated with
NiFe,O4@LPE NPs after 24 h. (b) Linear calibration plot of NiFe,O,@LPE NPs concentration versus cell viability. (V) XRD (a) and FTIR (b) spectra of
NiFe,O4@LPE NPs depicting their chemical constituents. Reproduced from ref. 105, copyright 2022 Elsevier.
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composition modulates colitis severity in mice. Orange and
citrus pectin diets were compared in two colitis models (TNBS
and DSS). Male C57BL/6 mice were provided with pectin-free
diet, diet enriched with high (5% orange pectin) or low (5%
citrus pectin) side chain content for ten to fourteen days before
being given 2,4,6-trinitrobenzene sulfonic acid/dextran sulfate
sodium to induce colitis. Mice fed orange pectin exhibited less
colon damage and reduced levels of IL-1B and IL-6, despite
similar immune cell profiles. Orange pectin also slightly
increased fecal propionic acid concentrations. The protective

View Article Online
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effect extended even to antibiotic-treated mice and macro-
phage cell models, where orange pectin significantly sup-
pressed IL-6 production (Fig. 10 and 11). These findings
suggest that pectin's structural features, particularly its neutral
sugar side chains, play a dual role: enhancing prebiotic effects
and directly modulating host inflammatory responses, even
independently of microbiota.®”

Recent advances have highlighted additional green valori-
zation approaches for citrus pectin. Notably, IntegroPectin,
a novel phyto complex pectin produced via hydrodynamic
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(I) Morphological changes in Hela cells induced by NiFe,O4@LPE NPs. Microscopic images of Hel a cells treated with various doses of

NiFe,0,4@LPE NPs: (a) control, (b) 25 pg mL™, (c) 50 ug mL™?, (d) 100 ug mL~. (Il) Prussian blue staining of HeLa cells to visualize intracellular iron
uptake after treatment with NiFe,O4@LPE NPs. (a) Control, (b) 25 pg mL™%, (c) 50 pg mL™%, (d) 100 pg mL™%. (Ill) Morphological variations di-
splaying NiFe,O4@LPE NPs induced morphological changes (MMP) in Hela cells in a dose-dependent manner: (a) control, (b) 25 pg mL™, (c) 50
ng mL™%, (d) 100 pg mL™% (IV) Antibacterial activity of NiFe,O,@LPE NPs against different microbial strains employing different concentrations
compared to controls. (a): (A) S. aureus, (B) K. pneumoniae, (C) B. subtilis, (D) E. coli. (b) Histogram representing the comparison of zones of
inhibition for increasing concentrations of NiFe,O4@LPE NPs. Reproduced from ref. 105, copyright 2022 Elsevier.
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cavitation, exhibits markedly enhanced antioxidant, antimi- delivering oligosaccharides with distinctive structural attributes
crobial, and neuroprotective properties at the molecular and and bioactive profiles.?****

cellular levels. Computational modeling further supports its These chemical families (Table 1, and Fig. 1) serve as the
broad-spectrum bioactivity, including anticancer and anti- molecular basis for downstream valorization strategies and
inflammatory potential. Additionally, the use of pressurized specifically support the green synthesis approaches discussed
CO, extraction has been demonstrated as an acid-free and in the following section.

sustainable method to obtain pectin from citrus peel waste,
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3. Conventional methods utilized for
waste management

Conventional waste management technologies, such as land-
filling, incineration, downcycling, and upcycling, are associated
with significant environmental drawbacks and high energy
demands. These methods often result in the generation of
toxins, greenhouse gases, and leachates, which pose threats to
both ecosystems and public health.'®

Landfilling, a widely practiced method, contributes
substantially to global anthropogenic greenhouse gas (GHG)
emissions, primarily due to the anaerobic decomposition of
organic matter, which releases large quantities of carbon
dioxide (CO,) and methane (CH,). In addition to GHG emis-
sions, landfilling is linked to groundwater and surface water
contamination, stemming from volatile organic compounds
and landfill leachate, especially in facilities lacking adequate
liners. Other common nuisances include noise from landfill
operations, bioaerosol emissions, and persistent foul odors.
These factors collectively harm nearby ecosystems and
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negatively affect communities situated close to landfill sites.
Njoku et al. (2019) investigated the environmental and social
implications of landfill proximity, highlighting its adverse
impact on public well-being.**

Incineration, another conventional method, also presents
serious concerns. Depending on the waste composition, incin-
erators emit a complex mixture of pollutants, including
nitrogen oxides, sulfur dioxide, acid gases, heavy metals,
particulate matter, and persistent organic pollutants. These
emissions are associated with respiratory diseases, cancer risks,
hormonal disruptions, congenital abnormalities, and other
health issues. From an ecological perspective, incineration
contributes to smog formation, global warming, acidification,
and toxicity to terrestrial and aquatic life.'*

Downcycling and upcycling, while often considered more
sustainable alternatives, are not without limitations. Down-
cycling involves converting waste into lower-quality materials,
which may degrade more rapidly or pose environmental
hazards over time. Upcycling, on the other hand, creates
higher-value products from waste but often lacks scalability
due to labor-intensive processing and the inconsistent quality
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of input materials. Consequently, both processes can incur

high operational costs and limited industrial applicability.
Fig. 12 depicts commonly utilized techniques for citrus peel

waste management and their impact on the environment.

4. Green synthesis of nanomaterials
from CPW

Building on the chemical classes summarized in Section 2, this
section reviews green synthesis approaches that employ CPW
extracts and polysaccharides as reducing, templating, and
capping agents to fabricate carbon-based, metallic, metal-oxide,
and polymeric nanomaterials. Conventional physical and
chemical methods for nanoparticle synthesis are often energy-
intensive, hazardous, and environmentally burdensome. In
contrast, CPW-derived phytochemicals such as flavonoids,
phenols, tannins, carotenoids, anthocyanins, vitamin C, and
essential oils possess intrinsic antioxidant and reducing prop-
erties that make them attractive for sustainable biosynthesis of
nanomaterials. These bioactive compounds enable simple, cost-
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effective, and environmentally benign fabrication of functional
nanomaterials with potential applications in therapeutics,
diagnostics, and environmental remediation.

For example, Pugazhenthiran et al. (2021) successfully green-
synthesized monodispersed silver quantum dots (Ag QDs)
under 5 nm using sweet lime (C. limetta) peel extract. Charac-
terization using XRD confirmed a face-centered cubic structure,
while TEM and SAED (selected area electron diffraction)
affirmed their nanoscale morphology. The QDs exhibited strong
SPR absorption (~415 nm) and photoluminescence quenching,
indicating a low recombination rate and prolonged electron
lifetime. Biochemical analyses (FTIR, LC-MS, and NMR) of the
peel extract identified citrate and carbohydrate macromolecules
as potential capping/reducing agents (Fig. 13). These Ag QDs
showed significant cytotoxicity (71% reduction in MCF-7 breast
cancer cell viability at 100 pg mL ') and antimicrobial efficacy
with an MIC of 50 pg mL ™" against selected bacteria (Fig. 13),
supporting their use as eco-friendly biocidal agents.**

Furthermore, Malik et al. (2022) green-synthesized nickel
ferrites NPs (NiFe,0,) using lime peel extract (LPE). The face-
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Fig. 18 Synthesis, characterization and photocatalytic activity of water-soluble carbon quantum dots (wsCQDs) derived from lemon peel waste
and their composites with TiO, nanofibers. () lllustration of wsCQDs synthesis employing hydrothermal treatment of lemon peel as a waste
precursor. (ll) Morphological characterization of TiO, nanofibers and TiO,-wsCQDs composites. (a) Field Emission Scanning Electron
Microscopy (FESEM) and (b) Transmission Electron Microscopy (TEM) micrograph of TiO, nanofibers. (c) FESEM and (d) TEM micrograph of TiO,—
wsCQDs composites. (lll) Photoluminescence properties of wsCQDs. (a) Fluorescence spectra of wsCQDs obtained at different excitation
wavelengths progressively increasing from 300 to 540 nm in 20 nm increments. (b) Normalized fluorescence intensity. (c) Photostability test of
wsCQDs on continuous 360 nm excitation for 5 h. (d) Excitation spectra at Aemy = 441 nm. (e) Digital fluorescence images of green-emitting
wWsCQDs (Aex = 488 Nnm, Aem = 535 nm). (f) Digital fluorescence images of red-emitting wsCQDs (Aex = 540 nm, Aer, = 605 nm). (IV) Photocatalytic
degradation of methylene blue (MB) dye. (a) Photocatalytic degradation of MB in the presence of TiO, nanofibers and TiO,—wsCQDs composite
under UV light irradiation. (b) Photocatalytic reaction kinetics of MB degradation in the presence of TiO, nanofibers and TiO,-wsCQDs
composite. Reproduced with permission from ref. 107, copyright 2016 RSC.

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv, 2025, 15, 36534-36595 | 36557


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra04307g

Open Access Article. Published on 03 October 2025. Downloaded on 1/21/2026 9:22:21 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

View Article Online

Review

| (a) (b)
= =
s s
v o
(5]
=
: 270 nm g \ /
= = 2940
E £ / 1715
1405
= - [ 3414
< = 1605
[
200 300 400 500 600 700 800 N0 1600 200 3200 4000
Wavelength (nm) Wavenumber cm™)
100-
(C) \ (d) C-CIC-H
80
= " s
~ 60 <
";” E‘- C-OH/C-0-C
‘o 404 2
>
= E
20 \\ —
0 T T T T
200 400 600 800 1000 280 284 288 202 206
Temperature (°C) Binding energy (eV)
@) . (b)
984 — —TiO, nanofibers
1 ‘:é —— TiO,-wsCQDs composite
S z
E 7 2
2 o :
= ——TiO, nanofibers r
g2 —TiO,-wsCQDs composite o
ars 100 200 300 400 500 600 450 500 550 600
Temperature (°C) Wavelength (nm)

Fig. 19

(1) (@) UV-vis absorption spectrum of wsCQDs in aqueous medium; the inset displays photographic images of the solution under natural

light (left) and UV illumination (right). FTIR analysis (b), TGA profile (c), and high-resolution XPS spectrum (d) of wsCQDs, focusing on the Cls
region. (Il) (@) TGA curves comparing TiO, solid nanofibers with the TiO,-wsCQDs composite. (b) Photoluminescence (PL) spectra of TiO,
nanofibers and the TiO,-wsCQDs composite. Reproduced with permission from ref. 107, copyright 2016 RSC.

centered cubic crystal structure of the obtained NPs (31 nm) was
confirmed by XRD and supermagnetic behavior by vibrating
sample magnetometer (VSM), while FTIR analysis assessed the
related functional groups (Fig. 14). TEM and SEM studies
revealed that the average diameter of the NPs was 31-35 nm,
while AFM evaluated the surface morphology in three dimen-
sions (Fig. 14). Their cytotoxicity against HeLa cells revealed

36558 | RSC Adv, 2025, 15, 36534-36595

dose-dependent mitochondrial membrane potential alter-
ations, linked to oxidative stress-mediated anticancer activity
(Fig. 14 and 15). Additionally, these NPs exhibited broad-
spectrum antibacterial activity (against B. subtilis, E. coli, P.
aeruginosa, and S. aureus) and significant DPPH antioxidant
activity, confirming their multifunctional therapeutic promise
(Fig. 14 and 15).**
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Fig. 20 Carbon dots (C-dots) morphological assessment and chemical characterization. (a and b) High-Resolution Transmission Electron
Microscopy (HRTEM) images (scale bar: 20 nm), (c) X-ray Photoelectron Spectroscopy (XPS) spectrum, and (d) high-resolution XPS spectra of Cls
of C-dots. The lower panel shows the FTIR spectrum and UV-vis spectra of C-dots synthesized from lemon juice. Reproduced with from ref. 109,

copyright 2019 John Wiley & Sons.

In another study, Pagar et al. (2023) utilized C. limetta peel
extract as a reducing and stabilizing agent for cadmium oxide
(CdO) NPs green synthesis. The physicochemical properties of
the produced CdO NPs were thoroughly investigated by XRD,
FTIR, SEM, EDX, HR-TEM, photoluminescence (PL), and UV-
DRS analysis (Fig. 16). The resulting NPs (average size 51.5
nm) showed a face-centered cubic structure and a bandgap of
2.6 eV (UV-DRS). FTIR analysis confirmed the functional groups

© 2025 The Author(s). Published by the Royal Society of Chemistry

of the active compounds found in C. limetta peel extract.
Moreover, several biological tests of the green synthesized CdO
NPs were investigated, including their antibacterial (B. subtilis,
E. coli, K. pneumoniae, and S. typhi), antioxidant, anticancer
(A549 cells), DNA damage, and biocompatibility activities. The
obtained NPs demonstrated promising antibacterial activity
(particularly against B. subtilis), anticancer efficacy against A549
lung cancer cells (IC50 = 152.2 pg mL '), and notable
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antioxidant potential (DPPH IC50 = 94.47 pg mL; ABTS IC50 =
68.98 ng mL™"). Furthermore, DNA damage and biocompati-
bility assessments suggested their safe therapeutic applicability
(Fig. 16).1¢

Eldeeb et al. (2023) employed C. sinensis peel extract to
synthesize superparamagnetic iron oxide NPs (SPIONs). UV-
visible, TEM, FTIR, VSM, and XRD were all employed to char-
acterize the manufactured SPIONs (Fig. 17). The UV-vis spectra
investigation revealed a peak at 259 nm due to surface plasmon
resonance. TEM examination revealed that green-produced
SPIONs were spherical, with particle sizes ranging from 20 to

View Article Online

Review

24 nm. The FTIR spectrum exhibited prominent bands at
3306 cm ' and 1616 cm ™', indicating the role of the extract in
NPs formation and capping. Magnetization measurements
show that the produced SPIONs have superparamagnetic
properties at normal temperatures. Furthermore, SPIONSs'
antibacterial activity, antioxidant potential, anti-inflammatory
effect, and catalytic degradation were investigated. The results
showed that SPIONs have varying antibacterial properties
against several pathogenic multidrug-resistant bacteria. SPIONs
inhibited all target isolates at the maximum concentration (400
pg mL 1), with zones ranging from 14.7-37.3 mm. The MICs of
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(I) Left panel shows the FTIR analysis of wood cellulose (a), untreated mandarin peel waste (b), multistep treated mandarin peel waste (c),

hydrothermally treated mandarin peel waste (d) (4000-1200 cm™%). The right panel reveals the FTIR analysis of the hydrothermally treated
mandarin peel waste (3000-3500 cm™). (Il) XRD patterns of the same components: wood cellulose (a), untreated mandarin peel waste (b),
multistep treated mandarin peel waste (c), hydrothermally treated mandarin peel waste (d). (Ill) SEM micrographs of untreated mandarin peel
waste (a), multistep treated mandarin peel waste (b), hydrothermally treated mandarin peel waste (c). (IV) AFM analysis of disk-milled wood
cellulose (a), sonicated multistep treated mandarin peel waste (b), and hydrothermally treated mandarin peel waste (c).**® Reproduced with

permission from ref. 110, copyright 2014 Elsevier.
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Fig. 22 Green synthesis methods of citrus peel NPs. Figure created in Biorender.

the produced SPIONSs against S. aureus, Streptococcus mutans, B.
subtilis, E. coli, K. pneumonia, and Candida albicans were 3, 6.5,
6.5, 12.5, 50, and 25 pg mL ™. SPIONs showed significant anti-
oxidant, anti-inflammatory, and dye degradation properties
(Fig. 17). Remarkably, SPIONs showed excellent magnetic
hyperthermia efficiency in an alternating magnetic field (AMF),
with specific absorption rates (SAR) of 164, 230, and 286 W g~ *
at doses of 1, 5, and 10 mg mL ™", respectively, supporting their
candidacy for biomedical applications including targeted drug
delivery and cancer hyperthermia therapy.*

In the carbon-based nanomaterials domain, Tyagi et al
(2016) reported a simple hydrothermal synthesis of water-
soluble carbon quantum dots (wsCQDs) from lemon peel. The
spherical CQDs (1-3 nm) exhibited a 14% quantum yield and
high photostability. wsCQDs were further employed to serve as
a cost-effective, environmentally friendly, and highly sensitive
fluorescent probe for Cr6+ ions detection, with a detection limit
of around 73 nM. This fluorescent probe based on wsCQDs had
the potential to provide a simple, quick, and convenient method
for sensitive and selective Cr6+ detection in water purification
operations. Furthermore, wsCQDs were immobilized on
electrospun TiO, nanofibers, and the photocatalytic activity of
the TiO,-wsCQDs composite was tested using methylene blue

© 2025 The Author(s). Published by the Royal Society of Chemistry

dye as a model pollutant. The photocatalytic activity of the TiO,-
wsCQDs composite was approximately 2.5-fold higher than TiO,
alone (Fig. 18 and 19). This study suggests wsCQDs as scalable,
low-cost nanomaterials for environmental sensing and
remediation.”

Baig et al. (2023) also used the pyrolysis method to synthesize
nano graphite materials (NGMs) from lemon and orange peel
powders. The structural and compositional properties of the
NGMs were confirmed using XRD and FTIR. The XRD exami-
nation validated the crystalline nature of the NGMs, whilst the
FTIR analysis revealed the functional groups contained in the
materials. The findings indicated that NGMs derived from
lemon and orange peel powders have potential applications in
energy storage and heterogeneous catalysis, underlining the
high carbon yield potential of citrus peels.'®

Hoan et al. (2019) developed highly luminescent carbon dots
(C-dots) from lemon juice using a one-pot hydrothermal tech-
nique. The luminosity of C-dots was controlled by varying
temperatures, time, precursor aging, and diluted solvents. HR-
TEM, XRD, FTIR, DLS, UV-vis spectrophotometry, and photo-
luminescent spectrophotometry were all used to describe the C-
dots (Fig. 20). The C-dots emitted intense green light with
quantum yields ranging from 14.86 to 24.89% as hydrothermal

RSC Adv, 2025, 15, 36534-36595 | 36561
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Fig. 23 (I) FTIR analysis (left panel) and XRD patterns (right panel) of graphene oxide (GO) and reduced graphene oxide (rGO) green synthesized
using citrus lemon. (Il) UV-vis spectrophotometers (upper panel) and Tauc's plots (lower panel) of GO and rGO for the purpose of determining
the optical band gap. (Ill) SEM micrographs of GO (a and b) and green synthesized rGO (c and d).*** Reproduced with permission from ref. 113,

copyright 2023 Elsevier.
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Fig. 24 FTIR (I) and XRD (II) spectra of GO and green synthesized rGO, revealing their chemical and crystalline structures. Reproduced from ref.

114, copyright 2022 MDPI.

temperatures increased (Fig. 20). Furthermore, light emission
was found to be dependent on hydrothermal time, precursor
age, and diluted solvent. With their green light emission and
excellent physicochemical properties, they have potential for
use in bioimaging and optoelectronics.'*

© 2025 The Author(s). Published by the Royal Society of Chemistry

Hiasa et al. (2014) isolated cellulose nanofibrils (CNFs) from
C. unshiu peels via multistep and hydrothermal pectin removal.
The process involved removing metal from pectin, and depoly-
merizing and dissolving it. Following that, hydrothermal treat-
ment was applied using a solution of 0.18 wt% hydrochloric

RSC Adv, 2025, 15, 36534-36595 | 36563
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(1) Morphological characterization of reduced graphene oxide (rGO) obtained from different graphene oxide (GO)—extract ratios. (a) GO,

(b) 1:1 GO :extract, (c) 1: 2 GO : extract, (d) 1: 3 GO : extract, (e) 1: 4 GO : extract. (Il) Proposed mechanism for the reduction of graphene oxide
(GO) by polyphenols present in kaffir lime peel extract. Hesperidin was used as a representative polyphenol. (lll) Methylene blue removal effi-
ciency using rGO. Initial methylene blue concentration (C,) = 50 mg L™, Adsorbent dosage of 5 mg was utilized for 400 min. (IV) Methylene blue
adsorption isotherms onto rGO (Langmuir (a) and Freundlich (b) models). (V) Methylene blue adsorption kinetics onto rGO. Pseudo-first-order
(a), pseudo-second order (b), and Elovich kinetic (c) models. Reproduced from ref. 114, copyright 2022 MDPI.

acid. FTIR spectroscopy and neutral sugar content analysis of
the purified cellulose, from mandarin peel waste, revealed that
the hydrothermal treatment was more effective in purifying
cellulose than the multistep treatment. XRD showed that the
purified cellulose had a smaller crystal width (2.5 nm) than
wood cellulose (3.9 nm) (Fig. 21). Following pectin removal, the
purified cellulose from mandarin peel waste was sonicated to
produce cellulose nanofibrils, resulting in cellulose fibers with
diameters of 2-3 nm, as measured by atomic force microscopy
(Fig. 21). The detected fiber width matched the crystal width,
showing that the cellulose nanofibrils were totally individual-
ized by sonication (Fig. 21). These cellulose nanofibrils are ideal
for bio-based packaging and medical materials.'*®

Similarly, Hideno et al. (2019) used pectinase to produce
cellulose nanofibers from Japanese citrus peels (C. iyo and C.
unshiu), and the resulting nanofibers were studied in terms of
shape and other features. First, pectinase treatment and diluted
alkali treatment were applied as pretreatments for the
mechanical nanofibrillation of Japanese orange peels. Second,

36564 | RSC Adv, 2025, 15, 36534-36595

surface morphology was used to characterize and compare the
nanofibrillated peels. When cellulose from Japanese citrus
inner peels was treated with pectinase, it was easier to fibrillate
than cellulose from other materials, such as woody pulp.
Nanofibers obtained from citrus inner peels were easier to mix
with the oil and kept the oil drops smaller than cellulose
nanofibers derived from hardwood pulp. These findings
showed cellulose nanofibers with superior emulsification
properties, maintaining small oil droplets, making them suit-
able as stabilizers in food and cosmetic formulations."™*

The following figure (Fig. 22) illustrates the green synthesis
of various NPs employing the waste of Citrus peels extracts.

4.1. Carbon-based nanomaterials

CPW represents a rich, sustainable source of carbon that can be
transformed into diverse carbon-based nanomaterials. The
abundant bio-organic content, eco-friendliness, biodegrad-
ability, and porous structure of CPW make it an attractive
precursor for green nanomaterial synthesis. Current strategies

© 2025 The Author(s). Published by the Royal Society of Chemistry
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for converting CPW into carbon-based nanomaterials often
involve thermal, hydrothermal, and microwave-assisted tech-
niques to disintegrate complex macromolecules. These
approaches not only reduce waste but also provide an
economical and sustainable alternative to conventional carbon
sources for nanomaterial fabrication.'*?

For example, Rani et al. (2023) reported a cost-effective and
eco-friendly approach for the reduction of graphene oxide (GO)

© 2025 The Author(s). Published by the Royal Society of Chemistry

using C. limon (lemon) peel extract. Initially, exfoliated GO
sheets were synthesized via the Tour method, followed by green
reduction using phytochemicals present in the extract as
reducing agents. The transformation of GO to reduced GO (rGO)
was confirmed through FTIR, XRD, and UV-vis analyses, while
SEM revealed changes in surface morphology (Fig. 23). A
notable narrowing of the band gap upon reduction was
observed, indicating improved electronic properties. This study

RSC Adv, 2025, 15, 36534-36595 | 36565
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Fig. 27 Characterization and biological applications of CQD@Arg. (I) Evaluation of the antioxidant activity of prepared carbon quantum dots
(CQDs) using the DPPH free radical scavenging assay. Antioxidant activity was assessed for (A) pure CQD, (B) CQD@Gly (CQDs coated with
glycine), (C) CQD@Arg (CQDs coated with arginine), and (D) C. clementina extract. (II) Investigation of the fluorescence properties of CQD@Arg.
(A) Fluorescence response of CQD@Arg to different metal ions and ascorbic acid. (B) Fluorescence spectral quenching upon the addition of
different Fe** concentrations (0.5-300 pmol dm—>). (C) Relative fluorescence response (lo — /)/lq of CQD@Arg with the Fe** addition confirming
exponential behavior. (lll) Characterization and cellular imaging of CQD@Arg. (A) Microspectrofluorimetry of CQD@Arg in the visible light range.
The double-lambda plot of CQD@Arg adhered to the glass surface was obtained using excitation between 470-650 nm and detecting emission
of fluorescence between 490-770 nm. The maximum emission was detected using excitation at 610 nm, and those conditions were used for cell
imaging. (B) Confocal microscopy images of living MCF-7 cells labeled with CQD@Arg. Images are shown in transmission (upper row) and
fluorescence (lower row) channels (Aeyc = 610 NM; Ay, = 620-690 Nm). Average fluorescence intensity projections of 3D stacks covering the cell
thickness are shown in the fluorescence channel. Scale bar: 20 pm. Reproduced from ref. 115, copyright 2021 MDPI.

supports the utility of citrus-derived phytochemicals as natural
reducing agents under hydrothermal conditions for high-
quality rGO production.**

In another study, Priliana et al. (2022) utilized C. hystrix
(kaffir lime) peel extract to reduce GO into rGO at room
temperature through a dispersion method. The GO was
produced through the Hummers process, while different GO-to-
extract ratios were explored (1:1, 1:2, 1:3, and 1:4). The

36566 | RSC Adv, 2025, 15, 36534-36595

production of rGO was validated by SEM, FTIR, XPS, XRD, and
N2 sorption characterization (Fig. 24 and 25). Consequently, the
1:2 GO-to-extract ratio yielded rGO with the highest adsorption
capacity for methylene blue dye. This was attributed to the
greater restoration of C=C bonds and fewer oxygen-containing
groups, as validated by XPS and FTIR analyses. Adsorption
studies indicated that the Langmuir isotherm model and
pseudo-second-order kinetics best described the dye removal

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(I) Characterization of AuNPs green synthesized using citrus peel extract, including zeta potential (A), particle size distribution (B), SEM

(C), and (D) FT-TEM. (ll) HPLC chromatograph of (A) phytochemical standards, (B) citrus peel extract (CPE) before synthesis, and (C) CPE after
synthesis at 280 nm; compounds followed by their peaks numbers shown: chlorogenic acid (1), caffeic acid (2), P-coumaric acid (3), ferulic acid
(4), narirutin (5), hesperidin (6), naringenin (7), hesperetin (8), nobiletin (9), tangeretin (10). Reproduced with permission from ref. 117, copyright

2022 Elsevier.

process, with an equilibrium capacity of 118 mg g~ . The results
highlight the potential of citrus-extract-reduced GO as an effi-
cient adsorbent for wastewater treatment.***

Furthermore, Safranko et al. (2021) synthesized nitrogen-
doped carbon quantum dots (N-CQDs) from C. clementina
peels using glycine (Gly) and arginine (Arg) as N-dopants via
a hydrothermal process (Fig. 26). The quantum yield of the
CQDs increased with nitrogen content. CQDs demonstrated
high aqueous stability, biocompatibility, and fluorescence
properties. CQD@G]y exhibited inhibitory effects on CFPAC-1
pancreatic cancer cells, while CQD@Arg showed strong anti-
oxidant activity (81.39 + 0.39% DPPH inhibition) and high
sensitivity for Fe** ion detection (LOD = 4.57 + 0.27 pmol dm ™)
(Fig. 27). These multifunctional CQDs also enabled effective cell
imaging, reinforcing their biomedical and sensing potential."*®

© 2025 The Author(s). Published by the Royal Society of Chemistry

More recently, Aouadi et al. (2024) synthesized CQDs from
aqueous extracts of lemon and orange peels. The CQDs
appeared as small, spherical, closely packed particles with an
average size of 2.18 and 2.66 nm. The antioxidant activity tests
demonstrated a significant scavenging capacity in CQDs. The
IC50 values for lemon-derived CQDs were 2.378 mg mL '
(DPPH) and 2.815 mg mL ™' (ABTS), whereas orange-derived
CQDs showed values of 3.059 mg mL ™' (DPPH) and 3.038 mg
mL~" (ABTS). In the total antioxidant capacity test, lemon-
derived CQDs exhibited lower antioxidant activity (293.44 mg
mL™") than orange-derived CQDs (277.62 mg mL'). Addition-
ally, FRAP test revealed lemon-derived CQDs with higher anti-
oxidant activity (382.45 pug mL™") than orange-derived CQDs
(364.542 pg mL ). Despite similar total antioxidant capacity,
differences in radical scavenging efficiency suggested that the

RSC Adv, 2025, 15, 36534-36595 | 36567
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Fig. 29 (I) Effect of ultrasound-treated and untreated AuNPs on nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells. (A) AuNPs-U
(ultrasound-treated AuNPs), (B) AuNPs-NU (non-ultrasound-treated AuNPs). RAW 264.7 cells were pre-treated with the indicated concentra-
tions of AUNPs for 1 hour and then stimulated with LPS (0.1 pg mL™) for 24 hours. (I) Effect of ultrasound-treated AuNPs (AuNPs-U) on the
expression of INOS and COX-2 in LPS-stimulated RAW 264.7 cells. (A) INOS mRNA; (B) COX-2 mRNA; (C) iNOS protein; (D) COX-2 protein. RAW
264.7 cells were pre-treated with the indicated concentrations of AuNPs for 1 hour and then stimulated with LPS (0.1 ug mL™?) for 24 hours. (lIl)
EDS (A), XRD (B), and FTIR (C) analyses of AuNPs green synthesized using citrus peel extract (CPE). Reproduced with permission from ref. 117,
copyright 2022 Elsevier.

composition of the peels influenced the CQDs' bioactivity.
These findings support the use of CPW-derived CQDs in anti-
oxidant therapies and functional materials."**

4.2. Metallic and plasmonic-based nanoparticles

Metal NPs that are commonly used include gold, silver, copper,
platinum, iron, and others. Green synthesis routes using plant-

36568 | RSC Adv, 2025, 15, 36534-36595 © 2025 The Author(s). Published by the Royal Society of Chemistry
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based materials have emerged as sustainable and eco-friendly
methods for producing these NPs. Citrus peels, rich in pheno-
lics, flavonoids, and terpenoids, offer natural reducing and
stabilizing agents for NPs formation.

Gao et al. (2022) explored the ultrasound-assisted green
synthesis of gold NPs (AuNPs) using citrus peel extract and
evaluated their anti-inflammatory properties. Characteriza-
tion via UV-vis, DLS, SEM, TEM, EDS, XRD, and FTIR
confirmed the successful synthesis of monodispersed, nega-
tively charged spherical AuNPs (Fig. 28 and 29). Compared to
non-ultrasound  synthesized AuNPs (AuNPs-NU), the
ultrasound-treated AuNPs (AuNPs-U) had smaller sizes
(13.65 nm vs. 16.80 nm) and greater anti-inflammatory activity
(1C50, 82.91 vs. 157.71 pg mL™'). HPLC analysis revealed
hesperidin as the main reductant. AuNPs-U significantly
suppressed iNOS and COX-2 mRNA and protein expression in
LPS-stimulated RAW 264.7 cells.”

In another study, Alkhulaifi et al. (2020) synthesized silver
NPs (AgNPs) using citrus limon peel extract and assessed their
characteristics (UV-vis, TEM, DLS, EDX, and FTIR), antimi-
crobial, and cytotoxic properties. The AgNPs were spherical
(average size 59.74 nm) and showed few agglomerations. FTIR

© 2025 The Author(s). Published by the Royal Society of Chemistry

analysis indicated the presence of diverse functional groups
contributing to reduction and stabilization (Fig. 30). Addi-
tionally, the obtained AgNPs exhibited excellent antibacterial
effects against several pathogens (Fig. 31). The cytotoxicity
assay revealed dose-dependent effects on human breast (MCF-
7) and colon (HCT-116) cancer cell lines with IC50 values of
23.5 £ 097 and 37.48 £ 5.93 pL/100 uL, respectively
(Fig. 31).118

Moreover, Nhi et al. (2022) developed an eco-friendly method
for synthesizing AgNPs using pectin as both reducing and
stabilizing agent. Using response surface methodology, the
optimal conditions for NPs synthesis were identified as: 1.64 mg
per mL pectin, 3.26 mM AgNOj3, 36.6 °C, and 9.6 h. The resulting
particles, approximately 6.62 nm in diameter, were confirmed
via UV-vis, TEM, DLS, XRD, and FTIR. This work demonstrated
the feasibility of using citrus-derived pectin for NPs synthesis
without toxic chemicals (Fig. 32).*

4.3. Metal oxide-based nanoparticles

Green synthesis of metal oxide NPs has gained significant
attention due to its environmental compatibility and safety

RSC Adv, 2025, 15, 36534-36595 | 36569
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advantages over traditional chemical and physical routes. In
contrast to conventional methods, green synthesis offers lower
energy demands, reduced production costs, and minimized use
of hazardous reagents, thereby facilitating more sustainable
and scalable nanomaterial development.**®

For example, Supreetha et al. (2021) synthesized a citrus
pectin-magnesium oxide (MgO) nanocomposite using pectin
extracted from C. sinensis peels through acid hydrolysis and
ethanol precipitation. The extracted pectin (yield: 12.25%) was
characterized by its equivalent weight, methoxyl content, an-
hydrouronic acid content, and molecular weight. The MgO
nanocomposite was prepared via co-precipitation and charac-
terized by XRD, FTIR, and SEM. The nanocomposite displayed
enhanced biological performance compared to pectin alone,
showing significant antibacterial activity against B. subtilis and

© 2025 The Author(s). Published by the Royal Society of Chemistry

Lactobacillus, and antifungal effects against Microsporum gyp-
seum and Trichophyton mentagrophytes. It also demonstrated
stronger DPPH radical scavenging activity, suggesting superior
antioxidant properties (Fig. 33).***

Similarly, Thi et al. (2020) developed an eco-friendly method
to synthesize ZnO NPs (ZnO NPs) using C. sinensis (orange) peel
aqueous extract as the reducing agent. The synthesis involved
zinc acetate dihydrate as the precursor, and parameters such as
pH and annealing temperature were optimized to tune particle
size and morphology. At a concentration of 0.025 mg mL ™", the
ZnO NPs demonstrated potent antibacterial activity against E.
coli and S. aureus without the need for UV activation. Variations
in synthesis conditions notably influenced bactericidal effi-
ciency, highlighting the importance of optimization for
biomedical use (Fig. 34).'*

RSC Adv, 2025, 15, 36534-36595 | 36571
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Fig. 33

(1) Microscopic characterization of citrus pectin and citrus pectin-MgO Nanocomposite. (A) Scanning Electron Microscopy (SEM) image

of extracted citrus pectin. (B) SEM image of citrus pectin-MgO nanocomposite. (Il) Antimicrobial activity of (A) extracted citrus pectin and (B)
citrus pectin-MgO Nanocomposite. (lll) Evaluation of antioxidant activity of citrus pectin and (V) citrus pectin-MgO nanocomposite using the
DPPH assay. FTIR analysis (V) of extracted citrus pectin (A) and citrus pectin-MgO Nanocomposite (B). TG-DTA thermogram (VI) of (A) extracted
citrus pectin and (B) citrus pectin-MgO nanocomposite. Reproduced with permission from ref. 121, copyright 2021 Elsevier.

In another study, Baglari et al. (2023) synthesized copper
oxide NPs (CuO NPs) from C. maxima (pomelo) peel extract.
Structural and morphological characterization (XRD, SEM, EDS,
FTIR, PL, and UV-vis spectroscopy) confirmed the monoclinic
phase and spherical morphology of the CuO NPs, with a mean
crystallite size of ~20 nm. The optical bandgap was ~1.5 eV.
Electrical characterization revealed a strong photo-response,
attributed to enhanced photogenerated electron mobility
under light exposure, suggesting potential optoelectronic and
sensing applications (Fig. 35).'*

4.4. Polymeric-based nanoparticles

Biomass-derived polymeric nanomaterials have attracted

increasing interest due to their low-cost synthesis, reduced

36572 | RSC Adv, 2025, 15, 36534-36595

environmental impact, and promising applications as biopoly-
mers. Among these, cellulose and lignin, two abundant
components of lignocellulosic biomass, have been widely
investigated for the fabrication of nano-sized polymeric
particles.

For instance, Matsedisho et al. (2024) enhanced the chemical
and physical characteristics of cellulose nanofibers derived
from chemically modified orange peel (OP) for application in
heavy metal adsorption. The peels were modified with phos-
phoric acid (POP) and sodium hydroxide (NaOP) to improve
biosorption performance for Ni(u) ions from wastewater. FTIR
spectroscopy confirmed the introduction of carboxyl groups,
crucial for metal ion binding, while XRD and TEM/SEM anal-
yses verified increased crystallinity and successful nanofiber

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 34 (l) Bactericidal activity of ZnO NPs against E. coli and S. aureus. The figure illustrates the bactericidal rates of the as-prepared ZnO NPs
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rates of ZnO NPs synthesized at different pH values. (lll) TGA investigation of the synthesized ZnO NPs was conducted for both as-prepared
samples and those annealed at 300-900 °C. (a) Thermogravimetric curves. (b) Weight loss measured at 500 °C. Reproduced from ref. 122,

copyright 2020 RSC.

formation (Fig. 36). Surface area analysis revealed improve-
ments from 0.948 m> g~ " (raw) to 1.428 m* g~ ' (modified). Batch
adsorption studies indicated that the POP biosorbent exhibited
the highest adsorption capacity (37.5 mg g~ '), outperforming
NaOP (21.08 mg ¢~ ') and unmodified OP (8.4 mg g~ ). Optimal
adsorption occurred at pH 5-6, with equilibrium reached within
90 min (Fig. 37)."**

In another study, Yu et al. (2021) prepared nanofibrillated
cellulose from grapefruit peel (GNFC) using a TEMPO-mediated
oxidation method. The GNFC exhibited rod-like morphology
(40-80 nm in diameter, ~200 nm in length), as confirmed by
TEM, SEM, and XRD. The incorporation of GNFC into ice cream
formulations was explored to enhance texture and reduce fat
content by examining their texture, rheological properties,
melting resistance, sensory characteristics, microstructure, and
gross energy. The addition of 0.4% GNFC yielded the most
favorable texture and sensory evaluation, with notable
improvements in elasticity and chewiness. Furthermore, GNFC
inclusion significantly reduced the gross energy and fat

© 2025 The Author(s). Published by the Royal Society of Chemistry

digestibility of ice cream, as demonstrated through in vitro
simulated digestion, suggesting its utility as a sustainable fat
replacer in food products (Fig. 38 and 39).'*

These examples support the potential of citrus peel-derived
polymers in the development of functional nanomaterials
with diverse applications in environmental remediation, food
formulation, and biomedicine, while supporting waste valori-
zation principles.

A comparative summary of reported methods for synthe-
sizing nanomaterials from CPW, together with particle sizes
and representative applications, is presented in Table 2.

5. Biomedical and environmental
applications

Citrus peels are managed in a variety of ways (Fig. 12), with the
environmental impact ranging from the worst (conventional) to
the best (beneficial). Beneficial procedures emphasize making
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the melting rate of ice cream. Reproduced with permission from ref. 125, copyright 2021 Elsevier.

the best use of citrus peels rather than wasting them or
expending a lot of energy by recycling them. Recent research has
emphasized the multifaceted utility of citrus peel biomass in
high-value applications, encompassing biomedical, environ-
mental, and packaging technologies. Citrus peel has recently
been the subject of extensive research into its usage in a variety
of applications, including antibacterial activity, wound healing,
additives in food packaging, membranes for water treatment,
scaffolds for bone regeneration, and so on.

Considering scalability and industrial relevance, CPW-
derived small molecules (sugars, organic acids, and alcohols)
may serve as convenient reductants for lab-scale synthesis of
metallic nanoparticles, but the more promising near-term
valorization routes for citrus processors are those that
generate co-marketable, saleable products (e.g., pectin and
essential oils) and then utilize residual streams for materials
synthesis or bioenergy. Recent advances in pectin recovery
using pressurized CO, reduce the need for mineral acids and

36576 | RSC Adv, 2025, 15, 36534-36595

generate pectin with distinct physicochemical properties that
are attractive for biomedical and material applications.”®
Coupling established EO recovery (cold-press/steam methods)
with pectin extraction and targeted downstream conversion
(e.g., pectin-templated nanocomposites, carbon precursors)
improves process economics and is particularly relevant for
Egypt, one of the world's largest citrus producers and exporters,
where vast amounts of peel waste are generated annually.
Adopting such integrated valorization strategies could reduce
environmental burdens while strengthening industrial
competitiveness in Egypt and other citrus-producing coun-
tries.”®**® These approaches not only improve the economic
viability of citrus processing but also create downstream
opportunities in biomedical applications (e.g., antimicrobial
agents, wound healing scaffolds, drug carriers) and environ-
mental remediation (e.g., biosorbents, membranes, and bio-
packaging). The following subsections highlight these dual
application domains in detail.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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For example, Yun et al. (2023) employed four different types
of citrus peel powder to prepare packaging films (Fig. 40). The
structural and functional features of films made from peel
powder from four distinct citrus fruits (pomelo, orange,
mandarin, and lemon) were compared. The results revealed
that the four types of citrus peel powder contained 11.45-
15.47 mg GAE per g polyphenols, 5.68-8.23% protein, 2.88-
6.27% crude fiber, 3.17-7.65% fat, and 16.36-23.80% pectin.
These films had the following characteristics: water contact
angle of 51.98-121.64°, thickness of 0.124-0.157 mm, water
vapor permeability of 1.34-1.92 x 107" g m™' s~" Pa~', mois-
ture content of 18.16-25.25%, tensile strength of 8.26-
9.14 MPa, oxygen permeability of 0.36-0.69 cm® mm per m” per
day per atm, and elongation at break of 8.05-17.18%. Addi-
tionally, these films exhibited significant antibacterial and
antioxidant properties that delayed the oxidation of corn oil
(Fig. 40). Because of its superior light and oxygen barrier

© 2025 The Author(s). Published by the Royal Society of Chemistry

capacity as well as antioxidant activity, the mandarin peel
powder-based film proved to be the most successful at delaying
the oxidation of oil among the other films. This highlights the
feasibility of transforming citrus peel into biodegradable
packaging with potential to extend food shelf life. The film
based on powdered mandarin peel was found to be appropriate
for the active packing of corn o0il.**”

Also, according to Dev et al. (2020), three waste-derived/low-
cost biosorbents, citrus peels (bare), Ca-alginate gel beads, and
Ca-alginate-citrus peels composite beads (Ca-alginate@citrus),
were used to biosorb Se(v) from a liquid solution. Citrus
peels, Ca-alginate, and Ca-alginate@citrus all had maximal
Se(v) biosorption capacities of 116.2, 72.1, and 111.9 mg g~ "
overall, with citrus peels (bare and immobilized). These find-
ings support the development of affordable and effective bi-
osorbents for environmental remediation, particularly in
treating selenium-contaminated wastewater. This research lays

RSC Adv, 2025, 15, 36534-36595 | 36577
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from ref. 157, copyright 2023 Elsevier.

the groundwork for the future development of an affordable,
innovative, and sustainable biosorbent called Ca-
alginate@citrus, which may be used to treat Se(iv) contami-
nated water in an effective filtering system."*

In addition, Dahmani et al. (2020) found that applying
Citrus reticulata peel extract topically resulted in considerable
wound healing activity. Biochemical screening revealed that C.
reticulata peel contains the highest amount of total vitamin C
(13.20 mg g '), polyphenols (13.19 mg g '), carotenoids
(0.032 mg g "), flavonoids (4.07 mg g '), and the lowest
content of macronutrients (lipids: 1.5%, proteins: 0.40%,
reducing sugars: 7.21%). On day 16 of treatment, wound area
reduction was 100% for both treated groups (0.5% and 10%),
compared to 100% and 98.32% for the positive and negative
control groups on day 22. Furthermore, both treated groups
showed a higher rate of wound contraction (100% on day 16).
The extract also demonstrated promising antibacterial activity
and antioxidant potential, confirming the therapeutic rele-
vance of citrus peel constituents in wound management.
Furthermore, C. reticulata peel showed exceptional antioxidant
activity using DPPH and phosphomolybdate techniques, and
the extract had antibacterial properties against pathogen
microorganisms.**

36580 | RSC Adv, 2025, 15, 36534-36595

Moreover, Sumathra et al (2024) reported that
morphology-focused hydroxyapatite (HAP) was created using
pectin derived from the citrus fruit peel (C. limonum), which is
then utilized to synthesize nano HAP by altering the quantity
of pectin as a template (Fig. 41). The chemical structure,
crystallinity, and morphology were measured using FTIR,
XRD, and SEM, respectively. To improve the biocompatibility
of HAP, pectin-aided HAP (tHAP) and HAP/pectin composites
were created with varying pectin concentrations. The
compatibility of HAP and pectin was tested in a human oste-
oblast cell line (Fig. 41). These results illustrate the feasibility
of utilizing citrus-derived polysaccharides as a natural scaffold
to tailor hydroxyapatite nanocomposites for bone regenera-
tion applications. The physicochemical and biocompatibility
properties of HAP/pectin revealed that HAP/pectin composites
are promising materials for bone tissue engineering
applications.*®’

Building on these examples, encapsulation has emerged as
a particularly promising strategy to protect citrus peel-derived
bioactive compounds, enhance their stability, and enable
controlled release under specific physiological conditions.
Encapsulation typically involves coating a bioactive substance
with a protective polymeric or nanomaterial matrix, which not

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 41 () Schematic representation of the fabrication of HAP/pectin composite and its application in bone tissue regeneration. This figure
illustrates the process of extracting pectin from lemon peel, its subsequent use as a template for synthesizing hydroxyapatite (HAP) composites,
and their potential application in bone tissue regeneration. (ll) Transmission electron microscopy (TEM) images and selected area electron
diffraction (SAED) patterns of (a) template-free HAP (tHAP) and (b) HAP/pectin composites synthesized using 0.15% (w/v) pectin template. (I11)
Alkaline phosphatase (ALP) activity of HAP/pectin composite after 1, 3, and 7 days of culture. (V) In vitro evaluation of cell-material interactions.
(a) Cell viability of MG63 cells cultured in the presence of tHAP and HAP/pectin composite. (b) Morphological assessment of MG63 cells cultured
on the as-synthesized HAP and HAP/pectin composite, observed by optical microscopy at 1, 3, and 7 days. (V) FTIR spectra of HAP/pectin
composite and its corresponding single components of pectin and HAP. Extracted pectin (a), HAP (b), t-HAP 0.01, 0.05, 0.15% (w/v) (c—e), HAP/
pectin composite 0.01, 0.05, 0.15% (w/v) (f—h). (VI) XRD spectra of HAP/pectin composite and its corresponding single components of pectin and
HAP. Extracted pectin (a), t-HAP 0.01, 0.05, 0.15% (w/v) (b—d), HAP/pectin composite 0.01, 0.05, 0.15% (w/v) (e—g). Reproduced with permission
from ref. 160, copyright 2017 Elsevier.
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applications.

only shields it from degradation but also improves sensory
attributes by masking undesirable odors or tastes. Importantly,
the nanoscale dimension of these carriers offers high surface-
to-volume ratios, improving encapsulation efficiency, bioavail-
ability, and release kinetics.'**"*** A schematic overview of this
concept is provided in Fig. 42.

For instance, Ghasemi et al. (2023) investigated the release
profile of orange peel oil (OPO) encapsulated in freeze-dried
modified nanocomposite powders under varying pH (3, 7, 11)
and temperature (30, 60, 90 °C) conditions, as well as within
a simulated salivary system. The encapsulated particles, evalu-
ated via atomic force microscopy (AFM), exhibited nanoscale
dimensions and encapsulation efficiencies ranging from 70% to
88%. The release behavior followed the Higuchi kinetic model
across all conditions, with slower release observed at pH 3 and
30 °C and faster release at pH 11 and 90 °C. These findings
demonstrate the potential of OPO nanocarriers for flavor-
controlled food applications under different environmental
and processing conditions.*

36582 | RSC Adv, 2025, 15, 36534-36595

Similarly, Santos et al. (2024) developed nanostructured
lipid carriers (NLCs) for delivering C. sinensis EO (CSEO) and
its primary component, R-limonene, for leishmaniasis treat-
ment. The NLCs were synthesized using microemulsion
technique and modified with chitosan to improve surface
characteristics. Physicochemical characterization (DSC, XRD,
TEM, and DLS) confirmed spherical particles ranging from
97.9 to 111.3 nm in diameter and a positive surface charge
(45.8 mV to 59.0 mV) in chitosan-coated systems (Fig. 43).
Cytotoxicity tests in L929 and RAW 264.7 cells indicated
promising biocompatibility (showing >70% cell viability on
L1929 cells), while the surface-modified NLCs exhibited
significantly enhanced antipromastigote and antiamastigote
activity (reducing survival of promastigotes by 93%),
compared to uncoated carriers and free compounds (Fig. 44).
These findings highlight the therapeutic promise of citrus-
based NLCs in parasitic disease treatment.*®*

In another study, Luque-Alcaraz et al. (2022) encapsulated
orange extract (OE) obtained from orange peels (C. sinensis), rich

© 2025 The Author(s). Published by the Royal Society of Chemistry
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icochemical characterization of NLCs formulations: (a) DSC investigations of beeswax (a), poloxamer 188 (b), Lim-NLCs (c), CSEO-NLCs (d), Lim-
NLCs-CH (e), and CSEO-NLCs-CH (f). (b) XRD profile of beeswax (a), poloxamer 188 (b), Lim-NLC (c), CSEO-NLCs (d), Lim-NLCs-CH (e), and
CSEO-NLCs-CH (f). (IV) NLCs stability studies over 90 days of storage employing two different temperatures (25 °C and 4 °C): (a) particle size, (b)
polydispersity index, and (c) zeta potential. Reproduced with permission from ref. 164, copyright 2024 Elsevier.

in phenolics and flavonoids, into a zein-based nanoparticulate
system. The extract was obtained via ultrasound-assisted
extraction (UAE), and the encapsulation process used nano-
precipitation. The resulting zein NPs (NpZOE) displayed
a hydrodynamic diameter of 159.26 + 5.96 nm and spherical

© 2025 The Author(s). Published by the Royal Society of Chemistry

morphology confirmed by SEM. FTIR and {-potential analyses
supported successful OE incorporation. Antioxidant assessments
using ABTS and DPPH assays revealed comparable or improved
activity of NpZOE versus unencapsulated OE at lower concen-
trations, indicating the benefit of encapsulation in enhancing
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Fig. 44 (l) In vitro cytotoxicity evaluation of R-limonene, CSEO, and their NLC formulations on L929 fibroblasts. Cell viability was assessed after
24 h of treatment with concentrations ranging from 12.5 to 200 ug mL ™. Miltefosine and amphotericin B were used as positive controls. Dashed
line indicated 70% of L929 cell viability. (ll) In vitro cytotoxicity evaluation of R-limonene, CSEO, and their NLC formulations on RAW 264.7
macrophages. Cell viability was assessed after 48 h of treatment with concentrations ranging from 12.5 to 200 pg mL™. Miltefosine and
amphotericin B were used as positive controls. Dashed line indicated 50% of RAW 264.7 cell viability. (Ill) /n vitro anti-leishmanial activity of R-
limonene, CSEO, and their NLC formulations against Leishmania amazonensis promastigotes. The figure shows the inhibitory concentration 50%
(IC50) values after 48 h of incubation. Miltefosine and amphotericin B were used as positive controls. (IV) Dose-dependent anti-leishmanial
activity of CSEO (a), R-limonene, Lim-NLCs, CSEO-NLCs, Lim-NLCs-CH, and CSEO-NLCs-CH (b), and amphotericin B (c) against Leishmania
amazonensis promastigotes after 48 h of incubation. Dashed line indicated 50% of cell viability. Reproduced with permission from ref. 164,
copyright 2024 Elsevier.

antioxidant delivery (Fig. 45).'®® These studies -collectively The diverse biomedical applications of citrus-derived
support the growing interest in incorporating citrus-derived bioactive compounds, including citrus flavonoids, citrus EOs,
bioactives into nanocarrier systems for enhanced stability, and citrus dietary fibers, in nanomaterial-based formulations

controlled release, and application-specific performance. are summarized in Table 3.
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Fig. 45 Synthesis, characterization, and antioxidant activity of zein NPs loaded with orange extract. (I) Schematic representation of the synthesis
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matrix. (I) Scanning electron microscopy (SEM) micrographs of zein NPs (NpZ) and zein NPs loaded with orange extract (NpZOE). These images
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NpZ. Reproduced from ref. 165, copyright 2022 MDPI.
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6. Conclusions and perspectives

The rapid growth of global food production has led to
a proportional increase in agricultural waste, including citrus
peels, which present notable environmental management
challenges. As a major byproduct of the food processing
industry, citrus peel waste has attracted considerable attention
due to its rich content of bioactive compounds and potential as
a low-cost, sustainable feedstock for value-added applications.
This review evaluated recent advances in the utilization of citrus
peel waste, particularly its role in the green synthesis of nano-
materials and extraction of bioactive compounds for biomed-
ical, environmental, and technological purposes.

Among the most promising approaches is the green
synthesis of nanomaterials using citrus peel extracts, which act
as reducing and stabilizing agents. Compared to conventional
chemical synthesis methods, this strategy offers advantages
such as reduced toxicity, environmental compatibility, and cost-
effectiveness. Studies have demonstrated successful fabrication
of various nanomaterials, including carbon-based nano-
structures, metallic and plasmonic NPs, metal oxide NPs, and
polymeric nanomaterials, using citrus peel extracts. These
nanomaterials have been investigated for potential applications
in drug delivery, antimicrobial therapies, wound healing, water
treatment, and biosensing.

In parallel, citrus peels serve as a valuable source of bioactive
compounds, notably flavonoids, EOs, polyphenols, and dietary
fibers, that exhibit antioxidant, antimicrobial, and anti-
inflammatory activities. These compounds can be directly
applied or encapsulated within nanocarriers to improve their
stability, bioavailability, and targeted ability in diverse fields,
including pharmaceuticals, nutraceuticals, food packaging, and
cosmeceuticals.

Despite the growing body of literature supporting the value
of citrus peel-derived nanomaterials and bioactives, several
challenges must be addressed to facilitate broader industrial
and clinical adoption, including scalability (developing robust,
reproducible, and cost-effective green synthesis methods suit-
able for large-scale NPs production), comprehensive character-
ization (standardizing protocols for evaluating physicochemical
properties such as size, surface charge, stability of the synthe-
sized nanomaterials), in vivo validation (conducting systematic
preclinical studies to assess the biosafety, toxicity, and thera-
peutic efficacy of citrus peel-derived nanomaterials), expanding
applications (exploring emerging uses in biosensors, catalysis,
energy storage, and smart packaging), and life cycle analysis
(implementing full cycling analysis models to assess the envi-
ronmental and economic sustainability of citrus peel valoriza-
tion approaches).

The valorization of citrus peel waste offers not only envi-
ronmental benefits but also economic feasibility. Many of the
reviewed studies demonstrated the use of simple, cost-effective
extraction and synthesis methods, such as ethanol precipita-
tion, hydrothermal treatments, and aqueous extraction, that
eliminate the need for costly purification steps. Furthermore, by
transforming low- or zero-cost waste streams into functional
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nanomaterials with high value in biomedicine, packaging, and
remediation, these approaches support economically viable
circular bioeconomy models.

In conclusion, citrus peel waste presents a viable and
underutilized biomass for sustainable material development.
Continued interdisciplinary research will be essential for opti-
mizing these processes, understanding long-term implications,
and translating laboratory findings into real-world solutions
that align with circular economy principles and global
sustainability goals.
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