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ed catalytic co-pyrolysis of banana
peels and polypropylene: experimentation and
machine learning optimization
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and Harshini Dasari *b

The growing accumulation of agricultural and plastic waste poses serious environmental challenges,

necessitating sustainable and efficient valorization strategies. This study investigates the microwave-

assisted catalytic co-pyrolysis of banana peels and polypropylene, using graphite as a susceptor and

potassium hydroxide as a catalyst. Experiments were conducted by varying biomass and plastic

quantities and microwave power levels to study their effects on product yields and thermal performance.

The process effectively converted waste materials into valuable products, with oil yield increasing with

microwave power and optimized biomass-to-plastic ratios. The rate of mass loss and heating rate were

found to significantly influence overall conversion efficiency. A support vector regression (SVR) model

was developed to predict yields based on input parameters, achieving a coefficient of determination

ranging from 0.81 to 0.99, which demonstrates the reliability of machine learning in capturing complex

thermochemical behavior. 3D plots illustrated the nonlinear effects of process variables on yields. Fourier

Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) analyses of char confirmed functional

groups and crystalline phases, suggesting its suitability for applications like adsorbents or catalysts.

Brunauer–Emmett–Teller (BET) analysis showed multilayer adsorption, while thermogravimetric analysis

(TGA) highlighted distinct thermal degradation patterns of the feedstocks. These results affirm the

promise of integrating experiments with ML for efficient waste-to-energy conversion.
1 Introduction

When compared to non-renewable energy sources, biomass as
a renewable energy source has several benets. Biomass is
derived from biological elements that can quickly regenerate or
rell, unlike fossil fuels like coal, oil, and natural gas.1 Biomass
becomes a sustainable and environmentally responsible energy
source due to this replenishing cycle.2 Non-renewable energy
sources, in contrast, are limited and gradually decrease, raising
challenging questions about energy security and driving up
costs.3 Biomass combustion is considered nearly carbon-
neutral, as the CO2 emitted is largely offset by that absorbed
during growth. In contrast, non-renewable energy sources
generate substantial CO2 emissions, contributing to climate
change.4 Biomass converts forestry and agricultural waste into
useful energy, reducing waste and offering a sustainable
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alternative to non-renewable sources with lower environmental
impact.5

With diminishing fossil fuel availability, researchers are
exploring thermochemical routes to convert biomass waste into
hydrocarbon fuels. Key methods include gasication, liquefac-
tion, combustion, and pyrolysis.6 Among these, pyrolysis has
received particular attention for its effectiveness in processing
various biomass sources such as forestry residues, agricultural
waste, and food industry by-products.7 Pyrolysis is a thermo-
chemical process that involves the thermal decomposition of
carbon-rich solid materials under an inert atmosphere, typically
using gases such as nitrogen, argon, or helium. This method is
widely employed for converting various types of waste, ranging
from biomass and plastics to electronic waste, sewage sludge,
and used tires, into valuable products.8 The technique is
recognized for its rapid reaction kinetics, high conversion rates,
and operational adaptability.9 Co-pyrolysis, a variation of this
process, offers several benets compared to traditional pyrol-
ysis. Notably, it enables the simultaneous processing of
different feedstocks, such as blending biomass with plastic,
rubber, or other waste materials, leading to synergistic inter-
actions that can improve both the yield and quality of the end
products.10 This approach also broadens the scope for valo-
rizing heterogeneous and otherwise challenging waste streams,
RSC Adv., 2025, 15, 28325–28337 | 28325
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thus enhancing material recovery and reducing environmental
burden.11

Co-pyrolysis offers feedstock exibility and process optimi-
zation, while catalysts enhance efficiency and selectivity by
reducing unwanted byproducts.12 This makes it a promising
approach for sustainable waste management and circular
economy development.13 Microwave-assisted co-pyrolysis offers
several advantages over conventional methods, including
reduced reaction time,14 rapid and uniform heating,15 and
improved control over temperature and heat distribution,
enhancing product selectivity and minimizing byproducts.16 It
also improves energy efficiency by directly heating feedstocks17

and facilitates better moisture removal, enhancing product
quality.18,19 Microwave-assisted co-pyrolysis offers the exibility
to process a broad spectrum of biomass and plastic waste as
feedstocks. The co-processing of biomass and plastics not only
facilitates the simultaneous valorization of renewable and
synthetic waste materials but also enhances overall waste
management efficiency. This synergistic approach supports
both environmental sustainability and resource recovery. In
microwave-assisted systems, susceptors that efficiently absorb
microwave energy are oen incorporated to improve thermal
distribution and promote uniform, localized heating within the
reaction medium, thereby optimizing the pyrolytic conversion
process.20 These susceptor materials have high dielectric prop-
erties, allowing them to absorb microwaves and convert them
into heat. Examples of commonly used susceptor materials
include carbonaceous materials like activated carbon, graphite,
or carbon black.21 Potassium hydroxide (KOH) has been widely
identied as an effective catalyst in microwave-assisted co-
pyrolysis processes, offering signicant improvements in both
conversion efficiency and product yield.22 Its catalytic role is
primarily attributed to its ability to enhance cracking and
reforming reactions, thereby facilitating the breakdown of
complex organic structures present in biomass and plastic
feedstocks. Through these mechanisms, KOH promotes the
formation of valuable gaseous, liquid, and solid products,
contributing to the overall efficiency and selectivity of the
pyrolytic process.23

For modeling and optimizing the complicated processes
involved in biomass conversion, machine learning (ML)
approaches provide useful tools. First, predictive models based
on historical data and test results can be created using ML
algorithms.24 The relationships between different input
parameters, such as biomass composition, reaction conditions,
and catalyst qualities, and the resulting yields of desired prod-
ucts can be captured by these models. Large datasets can be
analyzed by ML to nd patterns and connections that would not
be visible using more conventional analytical techniques.25 This
makes it possible for researchers to forecast yields with greater
accuracy and to optimize process variables for optimal effec-
tiveness.23 These algorithms are capable of modifying and
optimizing reaction conditions in response to changing factors
by continually observing and examining real-time data from the
thermochemical system. Higher yields and less energy use are
the results of this adaptive control's contribution to the
28326 | RSC Adv., 2025, 15, 28325–28337
maintenance of ideal conditions and improved overall
performance.26

This study investigates the microwave-assisted co-pyrolysis
of banana peel powder, a low-cost renewable agro waste, and
polypropylene, a widely used plastic contributing to environ-
mental pollution. Although co-pyrolysis has attracted consid-
erable attention as a sustainable waste management strategy,
limited studies have explored the combined valorization of fruit
waste and synthetic polymers using microwave energy, partic-
ularly through integrating experimental techniques with
machine learning based optimization. To address this research
gap, the present work examines the inuence of varying feed-
stock quantities and microwave power levels on process effi-
ciency and product yields. Graphite and potassium hydroxide
were used as a susceptor and a catalyst, respectively, to improve
microwave absorption and catalytic reactivity. A design of
experiments approach was employed to assess the combined
effects of biomass-to-plastic ratios and operating power on the
distribution of pyrolysis products. The solid, liquid, and
gaseous products were carefully collected and analyzed. Key
process parameters, including average heating rate, susceptor
thermal efficiency, mass loss rate, and conversion, were evalu-
ated using machine learning algorithms to identify optimal
operating conditions. The solid char product was further char-
acterized using Brunauer–Emmett–Teller surface area analysis,
X-ray diffraction, and Fourier transform infrared spectroscopy
to determine its structural and functional properties. This
integrated approach offers new insights into the efficient utili-
zation of organic and plastic waste through microwave-assisted
co-pyrolysis supported by predictive modeling and material
characterization.
2 Experimental section
2.1 Materials and methods

Banana peels were procured from a local vendor in Surathkal,
Karnataka, India. The peels were cut into smaller pieces and
dried in a hot air oven at 120 °C to remove moisture. The dried
material was then ground and sieved to obtain banana peel
powder with particle sizes ranging from 0.2 mm to 1 mm.
Graphite powder with a particle size of 150 mm was utilized as
the microwave susceptor to enhance heat absorption. Potas-
sium hydroxide pellets, initially around 100 mm in diameter,
were pulverized into ne powder before being used as a catalyst.
Polypropylene, used as the plastic feedstock, was obtained
directly from a commercial supplier (Otto Biochemicals). The
microwave-assisted co-pyrolysis experiments employed banana
peel powder and polypropylene as feedstocks, graphite as the
susceptor, and potassium hydroxide as the catalyst. Fig. 1 shows
the biomass, plastic, susceptor, and catalyst used in the exper-
iment. The feed mixture, along with the susceptor, was placed
in a at-bottomed borosilicate glass ask, which functioned as
the pyrolysis reactor. This reactor was positioned inside
a ceramic wool-insulated muffle to minimize heat loss, and
Teon® tape was used to secure the insulation and provide
structural stability to the setup.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra03913d


Fig. 1 (a) Banana peels powder biomass, (b) polypropylene plastic, (c) graphite susceptor, (d) KOH catalyst.
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2.2 Experimental setup and procedure

The pyrolysis experiments were conducted in a microwave oven
with a 23-L capacity (Make: Samsung MS23A). A circular
opening was created on the upper part of the oven to facilitate
the integration of the thermocouple, gas purging line, and
condenser with the borosilicate ask. The feedstock (biomass
and plastic), catalyst, and susceptor mixture were maintained in
a single-neck, round-bottom ask with a volume capacity of 500
mL. During the pyrolysis process, the temperature of the sample
bed was monitored using a microwave-compatible K-type ther-
mocouple. To maintain thermal stability within the oven, the
borosilicate ask was encased in ceramic wool insulation. Two
water-cooled condensers were used in series to condense the
vapors produced during pyrolysis and collect the condensate as
oil. The experimental setup for the microwave-assisted pyrolysis
is shown in Fig. 2.

A total of 13 sets of experiments were performed with
biomass and plastic of varying weights of 5 g, 10 g, and 15 g,
respectively. Also, microwave power was varied to 300 W, 450 W,
and 600 W along the runs. Graphite susceptor and KOH catalyst
were used in a xed amount of 5 g each during the run.
Microwave-assisted pyrolysis experiment was conducted for
a total time of 10 min each. During the experiment, the
temperature was noted at an interval of 30 seconds, and the
average heating rate was calculated from it. Aer the experi-
ment, the setup is allowed to cool. The initial weight of the
setup and the nal weight are noted down. In each experimental
run, the residual solid remaining in the reactor, comprising
both char and graphite, was quantied using an analytical
balance. The net char yield was determined by deducting the
Fig. 2 The experimental setup for the microwave assisted copyrolysis.

© 2025 The Author(s). Published by the Royal Society of Chemistry
initial mass of graphite from the total solid residue. Themass of
bio-oil recovered post-condensation, consisting of both
aqueous and organic components, was also measured. To
isolate the organic constituents in the aqueous phase of the bio-
oil, a solvent extraction was performed using dichloromethane.
The quantity of non-condensable gases was estimated through
a mass balance approach. Table 1 outlines the specic experi-
mental parameters, including reaction duration (mins),
biomass and plastic feedstock weights (g), applied microwave
power (W), quantities of susceptor and catalyst (g), heating rate
(°C min−1), and the resulting product yields char, gas, and oil
along with overall conversion efficiency, mass loss rate, and
susceptor thermal energy.
2.3 Energy balance calculations

The design of large scale pyrolysis systems requires careful
consideration of thermal and microwave energy demands to
ensure process efficiency and scalability. In evaluating the
energy balance, multiple factors were accounted for, including
conductive heat losses, the input of microwave energy, the
sensible heat retained by the char, susceptor, and borosilicate
reactor components, the effective microwave energy output, and
the thermal energy utilized for the decomposition of the feed-
stock. These parameters collectively inuence the overall energy
efficiency and feasibility of microwave-assisted pyrolysis at
industrial scales. The following eqn (1) can calculate the
microwave energy requirement.

Em = Ep × t (1)
RSC Adv., 2025, 15, 28325–28337 | 28327
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Table 1 Experimental data for microwave assisted co pyrolysis of banana peels biomass and polypropylene plastica

Expt. run BP (g) PP (g) MP (W) HR (°C min−1) Char yield (%) Oil yield (%) Gas yield (%) Conv. (%)
Rate of mass loss
(wt% min−1)

Susceptor thermal
energy (J g−1)

1 5 5 450 39.2 32.2 35.7 32.0 67.8 6.7 465.7
2 15 5 450 50.4 35.0 33.8 31.1 64.9 6.5 631.5
3 5 15 450 45.3 37.7 26.6 35.7 62.30 6.2 556.3
4 15 15 450 45.7 23.6 37.9 38.3 76.3 7.6 561.8
5 5 10 300 44.8 44.7 27.1 28.1 55.2 5.5 526.9
6 15 10 300 32.8 60.1 20.3 19.4 39.8 3.9 376.3
7 5 10 600 55.3 15.9 50.2 33.8 84.0 8.4 687.0
8 15 10 600 66.0 20.7 27.0 52.2 79.2 7.9 880.2
9 10 5 300 37.6 41.2 26.4 32.3 58.7 5.8 432.5
10 10 15 300 28.3 60.9 18.0 20.9 39.0 3.9 315.6
11 10 5 600 59.2 12.4 31.2 56.4 87.6 8.7 751.0
12 10 15 600 54.4 21.0 38.7 40.2 79.0 7.9 691.0
13 10 10 450 61.2 34.4 22.4 43.0 65.5 6.5 775.5

a BP: banana peel, PP: polypropylene, MP: microwave power, HR: heating rate.
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Here, Em represents the total microwave energy consumed
during the process, while Ep denotes the applied microwave
power. The variable t corresponds to the duration of the pyrol-
ysis operation. The sensible heat retained by the graphite sus-
ceptor and the borosilicate reactor ask was estimated using
eqn (2) and (3), respectively.

Qsusceptor = ms × Cps × dT (2)

Qborosilicate = mB × CpB × dT (3)

where, Qsusceptor and Qborosilicate refer to the sensible heat stored
in the char susceptor powder and the borosilicate ask,
respectively. mS and mB correspond to the mass of the char
susceptor and the borosilicate ask. The specic heat capacities
of the char susceptor and the borosilicate material were deter-
mined using eqn (4) and (5).

CpS

�
cal mol�1 K�1� ¼ 2673

103
þ 2671

106
T � 116900

T2
(4)

CpB

�
cal mol�1 K�1� ¼ 1095

102
þ 55

104
T (5)

where CpS and CpB represent the specic heat capacities of the
graphite susceptor and the borosilicate ask, respectively,
reecting their ability to store thermal energy per unit mass
under constant pressure conditions. Susceptor thermal energy
(J g−1) is calculated using the following eqn (6)

Susceptor thermal energy
�
J g�1

� ¼ QsusceptorðJÞ
mass of susceptor

(6)
2.4 Support vector regression machine learning model

Support Vector Regression (SVR) is based on the principles of
Support Vector Machines (SVM), which enable the modeling of
non-linear relationships by mapping input features to a higher-
dimensional space. The primary objective of SVR is to identify
a hyperplane that best ts the data while maintaining
28328 | RSC Adv., 2025, 15, 28325–28337
deviations within a predened margin, known as the epsilon
tube.27 The data points lying within or on the boundary of this
tube, referred to as support vectors, play a critical role in
dening the model.28 The mathematical basis for the SVR is
given in the SI. In this study, an SVR model was developed with
three input variables: biomass weight, plastic weight, and
microwave power. Further, standard scaling was performed on
the input variables to bring them to the same scale and improve
the model's prediction. In machine learning, standard scaling,
commonly referred to as z-score normalization, is a common
method for preparing data. It entails changing the feature
values of a dataset to have unit variance and a zero mean.
Standard scaling aims to scale all features similarly, which is
advantageous for some machine learning methods. Standard
scaling entails dividing by the standard deviation aer
subtraction each feature's mean from its values. Each feature
will have a mean of zero and a standard deviation of one thanks
to this change. The usual scaling formula is as follows:

z = (x − m)/s (7)

where z represents the standardized value, x is the original
feature value, m is the mean of the feature, and s is the standard
deviation of the feature.

Hyperparameter tuning for the SVR model was performed
using the GridSearchCV method, which conducts an exhaustive
search over a predened grid of hyperparameters to identify the
optimal combination.29 Common SVR hyperparameters include
the regularization parameter (C), epsilon-tube width (3), and
Kernel type. GridSearchCV evaluates each combination using K-
fold cross-validation, where the dataset is split into K folds: the
model is trained on K-1 folds and validated on the remaining
one, rotating this process K times. The average performance
metric (e.g., mean squared error) across all folds determines the
best conguration. The optimal model and corresponding
hyperparameters are accessible via the best_estimator_ and
best_params_ attributes of the GridSearchCV object.30 This
approach enables systematic and robust tuning of SVR
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Ultimate analysis and proximate analysis of banana peels and
polypropylenea

Sr. no.

Ultimate analysis
(wt%)

Proximate analysis
(wt%)

N C H S O FC VM Ash MC

1 Banana peels 1.2 44.8 8.4 0 45.3 23.1 71.5 4.7 0
2 Polypropylene 0 84.6 7.0 0 8.3 5.3 93.7 0 1

a M-moisture, VM-volatile matter, FC-xed carbon, A-ash content, C-
carbon, H-hydrogen, N-nitrogen, S-sulphur, O-oxygen.
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hyperparameters, improving the model's generalization to
unseen data.31 The model is evaluated based on the coefficient
of determination (R2)

R2 ¼ 1�
Pn

i¼1

ðyi � ŷiÞ2

Pn

i¼1

�
yi � yavg

�2
(8)

where ŷi, yi, and yavg are predicted output value, actual output
value, and an average of actual output values, respectively, and n
is the number of samples. The model is said to be more precise
if R2 is close to 1. The SVR model is chosen over other models
such as Random Forest Regression, Articial Neural Networks,
and Gradient Boosted Trees. These models were initially tested;
however, due to the limited size of the experimental dataset,
they demonstrated inferior performance and signs of over-
tting. SVR, being more suitable for small datasets with non-
linear behavior, showed better generalization capability and
prediction accuracy.

The steps involved in SVR modeling are given as
1. Data collection
Experimental data from microwave-assisted co-pyrolysis of

BP and PP were generated in the laboratory.
2. Data preprocessing
Features (biomass weight, plastic weight, and microwave

power) and target variable (e.g., oil yield, char yield, gas yield,
etc.) were extracted.

Feature scaling was applied using StandardScaler to
normalize the data.

3. Model selection
Support Vector Regression (SVR) was selected based on its

suitability for small datasets and its robustness in handling
nonlinear regression problems.

4. Train-test split
The dataset was split into 80% training and 20% testing

using a xed random seed to ensure reproducibility.
5. Hyperparameter optimization
A GridSearchCV method with 4-fold cross-validation was

used to identify the optimal values of SVR parameters:
i. Kernel function: rbf
ii. Regularization parameter (C)
iii. Kernel coefficient (gamma)
6. Model training
The optimized SVR model was trained using the scaled

training dataset.
7. Model evaluation
The model performance was evaluated using the following

metrics
i. R2 (Co-efficient of Determination)
ii. MAE (Mean Absolute Error)
iii. MAPE (Mean Absolute Percentage Error)
iv. RMSE (Root Mean Squared Error)
8. Visualization
A parity plot (actual vs. predicted values) was generated to

visualize model accuracy and agreement.
Model results were analyzed to understand prediction trends

using 3D-surface plots.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3 Results and discussion
3.1 Feedstock characterization

Table 2 shows the proximate and elemental composition of the
feedstocks, reported on a dry basis. It is observed that banana
peels have a moisture content of 0.49%. Banana peels have
a high volatile matter content of 71.5 wt%, xed carbon content
is around 23.1 wt% and ash is 4.7 wt%. Fixed carbon (FC)
represents the carbonaceous portion of the biomass that
remains aer volatile matter (VM) andmoisture has been driven
off during combustion. In this case, banana peels have relatively
low xed carbon content, indicating that they may have limited
energy content compared to other biomass sources with higher
xed carbon content. The high volatile matter content suggests
that banana peels would be readily combustible and could be
used for thermal energy generation. The low ash content is
desirable for biomass applications, as high ash content can lead
to increased slagging and fouling during combustion. Banana
peels' low ash content indicates their potential suitability for
combustion-based applications. The low moisture content is
advantageous for energy applications, as moisture contributes
to the energy required for drying the biomass before
combustion.32

The ultimate analysis of banana peels shows that it has
a high amount of carbon content at 44.87 wt% and very low
nitrogen content at 1.28 wt%. Sulphur content in biomass is not
detected and biomass has around 45.38% oxygen content.
Nitrogen (N) is a vital element in biomass, as it contributes to
the protein content. The relatively low nitrogen content in
banana peels indicates limited protein content, consistent with
the biomass's non-proteinaceous nature. The high carbon and
oxygen content suggests that banana peels primarily consist of
carbohydrates, cellulose, and hemicellulose, which are typical
constituents of plant material.33

For polypropylene, it is observed that the carbon content is
very high (84.6 wt%) and the hydrogen content is 7.03 wt%. %
with no detection of nitrogen and sulfur content. The absence
of detectable nitrogen and sulfur indicates that polypropylene is
primarily composed of carbon, hydrogen, and oxygen. This
composition is consistent with the elemental makeup of most
hydrocarbon-based polymers.34 Proximate analysis of poly-
propylene gives a higher amount of VM present with very little
amount of moisture content (MC) and FC. Polypropylene's high
VM content indicates that it is highly combustible and can
RSC Adv., 2025, 15, 28325–28337 | 28329
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release a substantial amount of energy when burned. The
absence of ash content suggests that polypropylene leaves
behind virtually no residue upon combustion, which can be
advantageous in applications where minimal ash production is
desired, such as in certain industrial processes. The low MC is
favorable for applications involving combustion or heat
treatment.35
3.2 Thermogravimetric Analysis (TGA)

Thermogravimetric analysis, oen referred to as TGA, is a vital
analytical technique employed across a wide spectrum of
scientic and industrial disciplines. This technique serves as
a cornerstone in the investigation of materials' thermal
behavior, providing insights into their decomposition, subli-
mation, phase transitions, and overall thermal stability. A
biomass sample of weight 8.2 mg was used for analysis with
a heating rate of 50 °C min−1. The sample was heated at
temperatures from 50 °C to 900 °C at 50 °C min−1. TGA analysis
for banana peel powder is shown in Fig. 3. It can be observed
that around 500 °C, there is a mass loss of around 65% and
23.03% of the initial weight of the sample is le at the end of the
experiment. The initial mass loss in the TGA curve is oen
attributed to the removal of moisture or water content from the
banana peel biomass.36 This is a common feature in TGA curves
for many organic materials. The moisture content evaporates
quickly when exposed to elevated temperatures, resulting in an
abrupt drop in mass. Cellulose is one of the primary compo-
nents of plant-based biomass, including banana peels.37 The
sudden mass loss might also correspond to the thermal
degradation of cellulose, which typically occurs in a distinct
temperature range. This decomposition process can involve the
cleavage of glycosidic bonds within the cellulose structure.
Hemicellulose is another component of plant biomass that
decomposes upon heating. The sudden mass loss could be
associated with the decomposition of hemicellulose, which
typically occurs at lower temperatures than cellulose.38

Similarly, Fig. 3 shows the TGA analysis of polypropylene
plastic. A plastic sample of 22.4 mg was used, which was heated
Fig. 3 TGA analysis of banana peels biomass and polypropylene
plastic.

28330 | RSC Adv., 2025, 15, 28325–28337
from 50 °C to 900 °C at a heating rate of 50 °C min−1. It can be
observed that there is a sudden loss in the weight of the sample
in the temperature range of 425 to 520 °C, where around 95 wt%
of the weight is lost. Polypropylene is a thermoplastic polymer
composed of repeating propylene units. When subjected to
elevated temperatures, thermoplastic polymers typically
undergo thermal degradation, which involves the breaking of
chemical bonds within the polymer chains.39 The fact that
around 95% of the weight is lost in this temperature range
indicates that the thermal decomposition of polypropylene is
quite extensive. During this process, the polymer chains break
down into smaller fragments, resulting in the release of volatile
products, such as hydrocarbons and gases, which are respon-
sible for the mass loss.39 Aer the signicant mass loss in this
temperature range, there is typically a residue le behind. This
residue may contain char or non-volatile compounds that are
more thermally stable than the original polypropylene.
3.3 Predictions of pyro-product yields

3.3.1 Oil yield. The SVR model was developed using the
GridSearchCV method from the experimental data collected. To
determine the prediction of the model, R2 plots were generated
with the x-axis representing the actual oil yield values from the
experimental data and the y-axis representing the predicted oil
yield values by the machine learning model. Fig. 4(a) shows the
R2 plots for oil yield prediction. It can be observed that the SVR
model developed was able to predict the oil yield with higher
accuracy, giving an R2 value of 0.99. The error metrics obtained
are given in Table S1 (SI). Fig. 5(a) shows 3-D plots for oil yield
variation with changes in biomass quantity and plastic quan-
tity. It can be observed that a higher amount of biomass, while
keeping plastic quantity low, leads to an overall decrease in oil
yield. Increasing the amount of banana peel biomass while
keeping the plastic quantity low can result in a higher ratio of
biomass to plastic. This higher biomass-to-plastic ratio may
dilute the heating and catalytic properties of the plastic. As
a result, the overall efficiency of the pyrolysis process may
decrease, leading to a lower oil yield. With a lower quantity of
plastic, there might be insufficient heat generation in the
system. Polypropylene plastic is known to absorb microwave
energy efficiently and convert it into heat, promoting pyrolysis
reactions. When the plastic quantity is low, the amount of heat
generated may not be sufficient to drive the pyrolysis process
effectively, leading to a decrease in oil yield.40

Also, it is observed that increasing the amount of plastic
while keeping biomass quantity low leads to an overall increase
in oil yield. Polypropylene plastic has good dielectric properties,
meaning it can efficiently absorb microwave energy and convert
it into heat. By increasing the amount of plastic, more micro-
wave energy is absorbed, resulting in higher temperatures
within the system. This enhanced heating efficiency can
promote the pyrolysis of both the plastic and the banana peel
biomass, leading to increased oil yield. The combination of
polypropylene plastic and banana peel biomass in microwave
co-pyrolysis can create synergistic effects. The plastic acts as
a heating source, providing additional thermal energy to the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Parity plots of (a) oil yield, (b) char yield, (c) gas yield, (d) avg. heating rate, (e) conversion, (f) rate of mass loss, (g) susceptor thermal energy
(%).

Fig. 5 3D surface plots of (a) oil yield with biomass and plastic, (b) with biomass andmicrowave power, (c) with plastic and microwave power, (d)
Char yield with biomass and plastic, (e) with biomass and microwave power, (f) with plastic and microwave power, (g) gas yield with biomass and
plastic, (h) with biomass and microwave power, (i) with plastic and microwave power.
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system. This extra heat can help in the decomposition of the
biomass, releasing more volatile compounds, including oil. The
interaction between the plastic and the biomass can enhance
the overall pyrolysis process, leading to a higher oil yield
compared to using biomass alone. Also, higher amount of both
biomass and plastic leads to higher oil yield because when
higher amounts of biomass and plastic are present, there is an
increased surface area for energy absorption, resulting in higher
heat generation within the system. This elevated temperature
facilitates the pyrolysis process and enhances the release of oil
from the biomass.41

Fig. 5(b) shows 3-D plots for oil yield variation with changes
in biomass quantity and microwave power. It can be observed
that with low biomass quantity, when microwave power is
increased, it leads to an increase in oil yield. Increasing the
microwave power results in higher energy input into the system.
This increased energy generates higher temperatures within the
reactor. With low biomass quantity, there is less material to
absorb the heat, allowingmore energy to be concentrated on the
available biomass. The higher temperatures facilitate more
efficient pyrolysis reactions, leading to an increased oil yield.
Also, with higher biomass quantity, when microwave power is
increased it leads to an increase in oil yield till 450 W and then
there is a decrease in oil yield till 600 W power. With higher
biomass quantity, more material needs to be heated to achieve
the desired pyrolysis temperature. Increasing the microwave
power can initially improve the heating efficiency and accelerate
the heating process. This leads to a higher oil yield as the
biomass reaches the optimal temperature for co-pyrolysis.
However, at higher microwave power levels beyond 450 W, the
residence time might be insufficient for complete pyrolysis.
This can result in incomplete conversion of the biomass and
a subsequent decrease in oil yield. As the biomass quantity
increases, the heat transfer within the reactor can become less
efficient. The larger biomass mass may impede the uniform
distribution of heat, resulting in temperature gradients and
localized overheating. This uneven heat distribution can lead to
incomplete pyrolysis and reduced oil yield. At higher microwave
power levels, the heat transfer limitations may become more
pronounced, causing a decrease in oil yield.42

Fig. 5(c) shows 3-D plots for oil yield variation with changes
in plastic quantity and microwave power. Here, as microwave
power is increased with low plastic quantity, oil yield is also
increased. The microwave power increases, resulting in higher
energy input into the system. This increased energy generates
higher temperatures within the reactor, promoting more effi-
cient pyrolysis reactions. With a low PP plastic quantity, more of
the microwave energy is absorbed by the biomass, leading to
higher temperatures within the biomass and enhanced thermal
decomposition. The higher temperatures facilitate the release
of oil from the biomass, resulting in an increased oil yield.
Higher microwave power levels result in more rapid heating of
the biomass. This rapid heating increases the reaction rates
within the biomass, accelerating the decomposition of organic
compounds and the release of oil. The higher reaction rates
contribute to an increased oil yield in microwave co-pyrolysis.43

Increasing microwave power from 300 W to 600 W with a higher
28332 | RSC Adv., 2025, 15, 28325–28337
amount of PP plastic leads to a signicant increase in oil yield.
Increasing the microwave power results in higher energy input
into the system, leading to increased heating. With a higher
amount of PP plastic, there is a greater capacity to absorb and
convert microwave energy into heat. This enhanced heating
raises the temperature within the reactor, promoting more
efficient pyrolysis reactions. The higher temperatures facilitate
the thermal decomposition of the biomass, resulting in an
increased oil yield.

3.3.2 Char yield. Similarly, the SVR model developed for
the experimental data was used to predict the char yield.
Fig. 4(b) shows an R2 plot for char yield prediction for
microwave-assisted co-pyrolysis of biomass and plastic, with
actual experimental values on the x-axis and predicted char
yield values on the y-axis. It is observed that the model was able
to t in line with the experimental results with an R2 value of
0.99. It is observed in Fig. 5(d), which is a 3D plot to see varia-
tion in char yield with biomass quantity and plastic quantity.
When plastic quantity is increased with lower biomass quantity
there is a small increment in char yield. Polypropylene plastic is
primarily composed of carbon-based polymers. When the PP
plastic quantity is increased, the carbon content in the reactor
also increases. This higher carbon content contributes to the
formation of char during the pyrolysis process. The presence of
PP plastic, even in small amounts, provides additional carbon-
rich material that can contribute to the increment in char yield.
As observed from the ultimate analysis of banana peels and PP,
where the carbon content is higher, it can be concluded that as
the quantity of both plastic and biomass increases, it will lead to
an overall increase in char yield.44

With a low banana peel biomass quantity, the available
biomass material for pyrolysis is relatively limited. As a result,
the remaining material, which includes polypropylene plastic,
becomes a major contributor to the char yield. The higher
microwave power levels enhance the conversion of the
remaining material into char, leading to a signicant increase
in char yield in microwave co-pyrolysis (Fig. 5(e)). Polypropylene
plastic, when exposed to high temperatures, undergoes thermal
degradation and carbonization. Increasing the microwave
power facilitates the carbonization of the plastic, leading to the
formation of char. The presence of polypropylene plastic, even
in low quantities, contributes to the overall carbon content
available for char formation. The higher microwave power levels
enhance the carbonization process and result in a higher char
yield.40 It can be observed that with high biomass content as
microwave power is increased it leads to lower char yield. At
higher microwave power levels, the availability of oxygen in the
system may become limited, increasing in the carbon gasica-
tion process. The high temperature and the presence of volatile
compounds promote the reaction between carbon and available
oxygen, leading to the formation of carbon dioxide (CO2) and
carbon monoxide (CO) gases. This gasication process
consumes the carbon content, reducing the amount of carbon
available for char formation and resulting in a decrease in char
yield. With a high biomass quantity, the residence time of the
material within the reactor may be relatively short, especially at
higher microwave power levels. The limited residence time may
© 2025 The Author(s). Published by the Royal Society of Chemistry
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not allow sufficient time for complete pyrolysis and char
formation. Instead, the biomass undergoes partial decomposi-
tion, yielding more volatile compounds and reducing the char
yield.

In the absence of a signicant PP plastic quantity, the char
yield is primarily inuenced by the carbon content present in
the biomass material. With a low PP plastic quantity, a larger
proportion of the carbon content from the biomass contributes
to the formation of char. The increased microwave power levels
enhance the thermal decomposition of the biomass, resulting
in a higher production of char.45 With a low PP plastic quantity,
the contribution of the plastic material to the overall char
formation may be relatively minimal. The absence of a signi-
cant PP plastic quantity allows biomass to play a more domi-
nant role in char formation. The increased microwave power
levels mainly affect the thermal decomposition of the biomass,
leading to an increase in char yield, as observed in Fig. 5(f). It is
also observed that with higher plastic content as microwave
power is increased from 300 W to 600 W, there is a decrease in
char yield.

3.3.3 Gas yield. The R2 plot for gas yield prediction for
microwave-assisted co-pyrolysis of biomass and plastic is shown
in Fig. 4(c). The SVR model developed predicted the gas yield
with an R2 value of 0.9408, which gives a high-accuracy result
when compared to experimental data. A higher R2 value implies
that the model developed is in line with the experimental data
provided to it. The 3D plot for the effect on gas yield with
biomass quantity and plastic quantity is shown in Fig. 5(g). It is
observed that increasing the plastic quantity with lower
biomass leads to a marginal increase in gas yield. Increasing the
PP plastic quantity, especially with a lower biomass content, can
promote the generation of volatile compounds during pyrolysis.
Polypropylene plastic undergoes thermal decomposition,
releasing volatile compounds such as hydrocarbons and gases.
These volatile compounds contribute to the gas yield in
microwave co-pyrolysis. With a higher PP plastic quantity, there
is a greater supply of plastic material available for thermal
decomposition and volatile compound formation, resulting in
a marginal increase in gas yield.42

Low microwave power levels may result in longer residence
times or insufficient temperatures for complete pyrolysis.
Incomplete pyrolysis means that a portion of the biomass and
plastic materials remain unconverted, resulting in lower gas
yield. With a higher banana peel biomass quantity, the available
microwave energy may be further distributed among the
increased material, reducing the energy available for each
component's efficient pyrolysis. This incomplete pyrolysis can
contribute to the observed decrease in gas yield, as shown in
Fig. 5(h). Increasingmicrowave power with low or high amounts
of biomass leads to higher gas yield as there is more heating of
feedstock at higher power. Similarly, Fig. 5(i) shows that with an
increase in microwave power gas yield increases signicantly.
Higher microwave power levels generate more intense heat
within the reactor. This elevated temperature promotes the
rapid breakdown of biomass and plastic materials, resulting in
a greater release of volatile gases. The increased energy input
© 2025 The Author(s). Published by the Royal Society of Chemistry
enables more efficient conversion of the organic compounds
into gases, leading to a signicant increase in gas yield.41

3.3.4 Energy consumption parameters. The heating rate in
microwave-assisted co-pyrolysis refers to the rate at which the
temperature increases within the reactor during the co-pyrolysis
process of banana peel biomass and polypropylene (PP) plastic
using microwave energy. The heating rate is an important
parameter that affects the overall reaction kinetics and product
yields. The amount of energy delivered to the system is deter-
mined by the microwave power level. Higher microwave power
results in a faster heating rate because the materials absorb
more energy, generating a rapid temperature increase. The
dielectric characteristics and thermal conductivity of banana
peels and PP plastic determine how successfully they absorb
microwave energy. Microwave radiation is more efficiently
absorbed by materials with greater dielectric constants and
lower thermal conductivity, resulting in a faster heating rate.
The distribution of microwave energy and, as a result, the
heating rate can be inuenced by the size and form of the
sample. Smaller samples or nely powdered materials oen
heat up faster than larger or bulkier samples. The heating rate
can be affected by the reactor's design and geometry. The size of
the reactor and the arrangement of materials within the reactor
can all inuence how microwave energy is disseminated and
absorbed by the biomass and plastic.

In this study, the average heating rate was calculated from
the experimental readings and then this data was used to
develop an SVR model to predict the average heating rate. It can
be observed in Fig. 4(d) that the model developed was able to
predict the average heating rate with high accuracy and an R2

value of 0.98.
The percentage of conversion was calculated to nd the

amount of initial mass of feedstock converted to oil and gas.
The percentage of conversion gives useful information about
the pyrolysis process's efficiency and the extent to which start-
ing materials are turned into useable products. Fig. 4(e) shows
the R2 plot for the prediction of the percentage of conversion by
using the SVR model. It can be observed that the model pre-
dicted the percentage of conversion with a high R2 value of 0.99.
Monitoring and optimizing the percentage of conversion in
microwave co-pyrolysis can aid in understanding and
improving overall process efficiency, selecting the best condi-
tions for targeted product yields, and assessing the possibility of
resource recovery from biomass and plastic waste.

In microwave co-pyrolysis, the rate of mass loss (wt% min−1)
refers to the rate at which the overall mass of the biomass and
plastic components reduces overtime during the pyrolysis
process. It is the weight percentage of material lost per unit of
time, and it provides information about the kinetics of the co-
pyrolysis reaction. The rate of mass loss is frequently used to
evaluate and compare the pyrolysis behavior of various
biomass-plastic combinations and to optimize process settings
for desired results. It assists in comprehending the time-
dependent changes in material composition as well as the
efficiency of conversion into various products such as gases,
liquids, and solids. Insights into the pyrolysis kinetics,
comparing different experimental conditions, and assessing the
RSC Adv., 2025, 15, 28325–28337 | 28333
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Fig. 6 FTIR plots for char obtained from microwave assisted co-
pyrolysis of biomass.
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appropriateness of microwave co-pyrolysis as a viable waste-to-
energy conversion technology can be found by analyzing the
rate of mass loss. Fig. 4(f) gives an R2 plot of the rate of mass loss
predicted by the SVR model with an R2 value of 0.98.

The susceptor thermal energy has a direct impact on the
heating efficiency and temperature distribution within the
reactor. By precisely identifying the thermal energy of the sus-
ceptor, researchers may optimize its design and features to
maximize microwave energy absorption and conversion into
thermal energy. This optimization improves heating unifor-
mity, reaction speeds, and control over the pyrolysis process
parameters. The susceptor thermal energy has a direct impact
on the heating efficiency and temperature distribution within
the reactor. By precisely identifying the thermal energy of the
susceptor, researchers may optimize its design and features to
maximize microwave energy absorption and conversion into
thermal energy. This optimization improves heating unifor-
mity, reaction speeds, and control over the pyrolysis process
parameters. The determination of the susceptor thermal energy
allows for a complete investigation of the heating prole within
the reactor. It aids in the detection of temperature gradients,
hot patches, and uneven heating. This knowledge can be used
to ne-tune the location and distribution of the susceptor
material, resulting in more uniform and controlled heating. A
greater understanding of the heating prole allows for more
exact temperature control, allowing the pyrolysis conditions to
be optimized for desired product yields and compositions. The
SVR model was developed to predict the susceptor thermal
energy (J g−1) and it predicted the output with an R2 value of
0.81 as shown in Fig. 4(g).
3.4 Solid product characterization

3.4.1 Fourier transform infrared spectroscopy. Fourier
Transform Infrared (FTIR) spectroscopy is a widely used tech-
nique to analyze the interaction between infrared radiation and
molecular bonds in a sample. When exposed to varying IR
wavelengths, molecules absorb specic frequencies, causing
vibrational transitions that produce characteristic absorption
peaks. These peaks reveal the presence of functional groups,
enabling qualitative and semi-quantitative analysis of the
sample's chemical composition. In this study, FTIR analysis was
conducted on char obtained from microwave-assisted co-
pyrolysis of biomass and plastic. Selected samples with the
highest char yields were analyzed, and the corresponding FTIR
spectra are shown in Fig. 6. It can be observed that there are
absorption peaks at wavenumbers like 1006.60 cm−1 and
669.02 cm−1. This peak corresponds to a specic wavenumber
where the char material absorbs infrared light. The fact that the
transmittance is relatively high at this wavenumber suggests
that there is not much absorption occurring at this point.46 This
could indicate that there might not be a strong presence of
functional groups or chemical bonds that absorb this wave-
number. Based on these peaks, it appears that the char sample
contains functional groups associated with C–O stretching
vibrations and C–H bending vibrations.47 This suggests the
28334 | RSC Adv., 2025, 15, 28325–28337
presence of oxygen-containing compounds and organic
compounds with hydrocarbon chains in the char sample.

3.4.2 X-ray diffraction. X-ray diffraction (XRD) is a powerful
technique for analyzing the crystal structure of materials based
on the diffraction of X-rays by the regular atomic arrangement
in a crystal lattice. By measuring the angles and intensities of
diffracted beams, key information on lattice parameters, phase
composition, and atomic structure can be obtained. In this
study, XRD analysis was performed on char samples with the
highest yield from microwave-assisted co-pyrolysis to evaluate
their structural properties and phase composition. To quantify
the structural features, the crystallite size (D) of the graphitic
domains was estimated using the Scherrer equation.

D ¼ Kl

b cos q
(9)

where K is the shape factor (0.9), l is the X-ray wavelength
(0.15406 nm for Cu Ka radiation), b is the full width at half
maximum (FWHM) in radians, and q is the Bragg angle.48 A
crystallinity index can be calculated to assess the degree of
structural ordering within the carbon matrix. This detailed
analysis provides valuable insights into the phase composition,
crystal structure, and thermal behavior of the char, contributing
to the understanding of pyrolysis mechanisms and enabling the
optimization of process parameters for targeted material
properties.

The diffraction patterns, shown in Fig. 7, provide insights
into the crystalline changes occurring during pyrolysis and help
assess char quality for process optimization.49 XRD analysis of
char obtained from microwave-assisted co-pyrolysis involves
exposing the samples to X-ray radiation and examining the
resulting diffraction patterns. The presence of sharp peaks in
the XRD spectra indicates the existence of crystalline phases
within the char structure.50 These crystalline phases could be
mineral residues from the original biomass or other
compounds that have undergone crystallization during the co-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 XRD plots for char obtained from microwave-assisted co-
pyrolysis of biomass and plastic.
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pyrolysis process. The sharpness of the peaks indicates that the
atoms or molecules within these crystalline phases are arranged
in a highly ordered and repetitive manner.51 As observed from
Fig. 7 that prominent peaks were observed at 2q = 26.6°, 28.5°,
and 32.5°, and these were identied using standard reference
patterns from the Joint Committee on Powder Diffraction
Standards (JCPDS) database.52 Specically, the peak at 26.6°
corresponds to the (002) plane of graphitic carbon (JCPDS no.
41-1487), indicating the development of ordered, turbostratic
graphite-like structures. The peak at 28.5° is attributed to calcite
(CaCO3) (JCPDS no. 05-0586), while the peak at 32.5° corre-
sponds to potassium carbonate (K2CO3) (JCPDS no. 01-077-
1086).53 These mineral phases likely originated from the inor-
ganic constituents of the biomass or formed through thermally
induced reactions during the pyrolysis process.

3.4.3 Brunauer–Emmett–Teller. Brunauer–Emmett–Teller
(BET) analysis is a widely used technique for determining the
specic surface area and porosity of solid materials, including
char derived from co-pyrolysis. It is based on the adsorption of
gas molecules, typically nitrogen, onto the surface of the
material at varying relative pressures. By applying the BET
equation, the total surface area, including both external and
internal surfaces, can be quantied in m2 g−1. This parameter is
critical for evaluating the performance of porous materials in
applications such as adsorption, catalysis, and material design,
and is extensively used in materials science and related elds.
Table 3 BET analysis char obtained from microwave-assisted co-
pyrolysis of biomass and plastic

Relative pressure (P/P0) Volume @STP cm3 g−1 1/[W((Po/P) − 1)] 1 g−1

5.04672 × 10−2 0.2592 1.6407 × 102

1.12661 × 10−1 0.6257 1.6235 × 102

1.75537 × 10−1 0.9078 1.8765 × 102

2.37866 × 10−1 1.3838 1.8047 × 102

3.00196 × 10−1 1.7407 1.9178 × 102

© 2025 The Author(s). Published by the Royal Society of Chemistry
The BET equation describes this adsorption process:

P

ðVm � VÞ ¼
1

N0

þ c� 1

N0 � C
(10)

where P is the equilibrium pressure of the adsorbate (nitrogen
gas), Vm is the molar volume of the adsorbate, V is the volume of
gas adsorbed at equilibrium, N0 is the number of moles of gas
required to form a complete monolayer, C is the BET constant, c
is the ratio of the amount of gas adsorbed on the surface at
a particular pressure to the amount adsorbed in a complete
monolayer.

BET surface area analysis of char produced from microwave-
assisted co-pyrolysis of biomass and plastic was conducted
using the Autosorb iQ Station 1 analyzer. The results of the
multipoint BET analysis for the sample with the highest char
yield are given in Table 3. The nitrogen adsorption isotherm
exhibits a gradual increase in adsorbed volume at low relative
pressures, indicative of monolayer formation. Specically,
monolayer adsorption is observed at a relative pressure (P/Po) of
0.0505, corresponding to an adsorbed volume of
0.2592 cm3 g−1. As the relative pressure increases, the adsorp-
tion curve shows a steeper increase, suggesting multilayer
adsorption behavior. Across the measured range of relative
pressures (0.005 to 0.3), the adsorbed volume increases from
0.25 cm3 g−1 to 1.74 cm3 g−1, highlighting the porous nature of
the char and its capacity for multilayer adsorption. These
results provide key insights into the surface characteristics of
the char, which are important for evaluating its suitability in
adsorption and catalytic applications.
4 Conclusion

In this study, 13 experiments were performed for microwave-
assisted co-pyrolysis of biomass and plastic with banana peel
powder (0.2–1 mm) as biomass and polypropylene as plastic.
Design of experiments was performed in which biomass
quantity, plastic quantity, and microwave power were varied as
5 g, 10 g, 15 g, and 300 W, 450 W, 600 W, respectively. Oil yield,
char yield, gas yield, and heating rate were noted aer every run
of experiments for 10 minutes. Aer the collection of data, the
percentage of conversion, the rate of mass loss, and the sus-
ceptor thermal energy were calculated. Further, this data was
used to train the SVR model and predict the outputs using
biomass quantity, plastic quantity, and microwave power as
input variables. The SVR model was able to predict the outputs
with higher accuracy, with an R2 value between 0.81–0.99. 3D
plots were generated to see the effect of input variables on
product yields. Further product analysis of char obtained from
microwave-assisted co-pyrolysis was done using FTIR. XRD and
BET. FTIR analysis shows the presence of functional groups
associated with C–O stretching vibrations and C–H bending
vibrations. XRD of char shows sharp peaks, suggesting that the
char sample contains crystalline phases. BET of char shows how
multilayer adsorption takes place as the relative pressure is
increased. TGA of banana peel biomass shows the presence of
moisture content and thermal degradation of cellulose. Also,
the TGA of polypropylene plastic shows how polymer chains
RSC Adv., 2025, 15, 28325–28337 | 28335
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View Article Online
break down into smaller fragments, resulting in the release of
volatile products, such as hydrocarbons and gases, which are
responsible for the mass loss. Key challenges are associated
with scaling up microwave-assisted co-pyrolysis, including
achieving uniformmicrowave heating in larger reactor volumes,
managing increased energy demands, and ensuring catalyst
stability and reusability over extended cycles.
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