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esign of ascorbic acid
derivative-mediated drug delivery

Caroline Lamie,ac Enas Elmowafy, *b Dalia A. Attia a and Nahed D. Mortadab

Antioxidant-based pharmaceutical products are currently experiencing a surge in popularity and

satisfaction, demonstrating promising preclinical and clinical prospects. These products exert their

beneficial effects by displaying protection against mischievous free radicals. One potent antioxidant is

ascorbic acid (AA), which plays numerous crucial biochemical roles and is typically distinguished as

a primary hydrophilic, non-enzymatic antioxidant in tissues. AA is a water-soluble essential antioxidant

vitamin that can only be obtained from the diet. However, AA's instability, coupled with challenges

related to its delivery, has presented formulation challenges for chemists. As a result, various stable

hydrophilic and lipophilic derivatizations of AA have been devised. Capitalizing on their potential, delivery

platforms, particularly nano-sized ones utilizing ascorbic acid derivatives, have been extensively

investigated in recent years. Two such derivatives, namely, ascorbyl-6-palmitate (AP; a lipophilic

derivative) and ascorbyl-2-glucoside (AA-2G; a hydrophilic derivative), have been extensively studied in

previous works. Herein, the scientific data related to their utilization, either as a drug or as an integral

component in delivery vehicles, and their pharmaceutical applications are evaluated.
1. Introduction

The term “antioxidant” is widely used and can be broadly
depicted as an agent that considerably decreases or prevents the
oxidation of oxidizable substrates; it is usually administered at
a low concentration relative to that of the substrates.1,2 Gener-
ally, antioxidants exert their protective effects employing the
following mechanisms: (i) scavenging of free radicals to
neutralize and remove them, preventing oxidative damage; (ii)
inactivation of peroxides and other reactive oxygen species,
inhibiting their formation or neutralizing their reactivity; (iii)
metal chelation, rendering pro-oxidant metal ions unavailable
for harmful Fenton-type reactions; and (iv) quenching of
subsequent lipid oxidation products, interrupting the chain
reaction of lipid peroxidation. Through these diverse mecha-
nisms, antioxidants play a pivotal part in defending biological
systems from the deleterious effects of oxidative stress,
preserving cellular integrity and function.3–6 Oxidative stress
stems from an imbalance between the output of reactive free
radicals and the body's ability to neutralize them, leading to
potential cellular damage (Scheme 1).7–9
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The antioxidant defense against oxidative stress can be done
enzymatically and non-enzymatically. The primary enzymatic
repairing systems include superoxide dismutase (SOD), gluta-
thione peroxidase (GPx), and catalase.10,11 Conversely, the non-
enzymatic systems include compounds that are able to scav-
enge the free radicals, such as vitamin C, carotenes, vitamin E,
ferritin, selenium, melatonin, zinc, avonoids, and cysteine.12–14

Current biomedicine theories suggest that oxidative stress is
a key pathophysiological factor contributing to signicant
diseases related to stress and aging, such as cancer, lung
disorders, and cardiovascular conditions.9,15–19

Vitamin C or L-ascorbic acid (L-AA) is a water-soluble, non-
enzymatic antioxidant. It appears as a white or pale-yellow
powder or powdery crystal with a slightly acidic taste. AA is
freely soluble in water, slightly soluble in alcohol, and insoluble
in chloroform and ether. The term “vitamin C” is used to refer
AA in chemistry, which has a molecular weight of 176.13 Da and
empirical formula of C6H8O6 (Fig. 1A). AA is a highly effective
free radical scavenger in aqueous media, but it exhibits a rela-
tively low antioxidant effect in hydrophobic phases.20 It has
been identied as a potent skincare agent with considerable
whitening and anti-wrinkle effects.21,22

Interestingly, AA is utilized as a drug or functional material
in the pharmaceutical scene.23–27 However, the exploitation of
AA as a drug is highly challenging due to its instability.24,28–32

Several strategies have been developed to overcome such chal-
lenges, including its incorporation in an assortment of delivery
platforms. Instead, the synthesis of more stable AA derivatives
with different chemical characteristics has been attempted,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Balance between oxidative stress and antioxidant activity, highlighting the crucial role of AA and its derivatives. The left panel depicts
the impact of oxidative stress, marked by an imbalance between the levels of reactive oxygen species (ROS) and antioxidants within the body. The
central panel emphasizes the antioxidant properties of AA, explaining how it works to neutralize free radicals and mitigate oxidative damage. The
right panel showcases various AA derivatives, including ascorbyl-6-palmitate and ascorbyl-2-glucoside, alongside innovative nano vesicular
systems, such as aspasomes and glucospanlastics. Collectively, this figure underscores the importance of AA and its derivatives in combating
oxidative stress and enhancing therapeutic efficacy through advanced delivery systems.

Fig. 1 The structure of some representative derivatives of ascorbic acid. (A) Ascorbic acid, (B) ascorbyl 6-palmitate, (C) ascorbyl 2,6-palmitate,
(D) ascorbyl 6-octanoate, (E) ascorbyl 6-stearate, (F) ascorbyl 2-glucoside, (G) ascorbyl tetra-isopalmitate, (H) ascorbyl 2-O coumarate, and (I)
ascorbyl 3-O coumarate.

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 37482–37510 | 37483
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outperforming AA and showing better benecial biological
prospects.33–35 Beyond their non-derivatized types, both hydro-
philic and lipophilic AA derivatives have been employed for the
integration of novel multi-functional formulations in diverse
pharmaceuticals. Clinically, such a perspective could highlight
the relevance of such derivatives as therapeutics and as
competent carriers, supporting nanotechnology and drug
delivery in general.

Working on such considerations, the current review explores
the exploitation and recent advances of AA derivatives in the
pharmaceutical arena. Information was collected about the
employed AA derivatives regarding their chemical nature and
related features. Of note, two lipophilic and hydrophilic deriv-
atives, namely ascorbyl 6-palmitate (AP) and ascorbyl 2-gluco-
side (AA-2G), were prioritized in the present review, due to their
Fig. 2 Diagram representing the role of ascorbic acid in the skin. In the co
(i) biosynthesis of collagen, supporting dermal structure and elasticity, (ii) s
depigmentation applications, (iii) exfoliation, acting as mild exfoliator du
terious influences of UVA and UVB radiation upon sun exposure, (v)
management and control of various inflammatory skin ailments, and (vi
figure was created with BioRender.

37484 | RSC Adv., 2025, 15, 37482–37510
extensive utilization in drug-delivery systems. Specically, an
example of a greatly exploited nanoplatform: aspasomes (ASP)
based on AP, was fully addressed, covering their delivery target
and indication, composition, and efficacy.
2. Beneficial effects and roles of
ascorbic acid in the body

AA is a crucial nutrient that performs an assortment of physi-
ological tasks. It participates in the repair and maintenance of
diverse tissues throughout the body. Additionally, AA is
involved in the enzymatic production of certain neurotrans-
mitters, highlighting its importance in supporting neurological
function.36–41 As a potent antioxidant, mitigating oxidative
ntext of cutaneous physiology, AA is substantial for the following roles:
uppression of melanogenesis, benefiting skin lightening, whitening and
e to its acidity (iv) photoprotection, shielding the skin from the dele-
anti-inflammatory potential, possessing curative competence in the
) countering skin cancer and aging via mitigating oxidative stress. This

© 2025 The Author(s). Published by the Royal Society of Chemistry
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stress, which is the key driver of inammation, AA exhibits
strong anti-inammatory properties through several
mechanisms.42–47 Recently, it has been identied that AAmay be
a benecial adjunct therapy for inammatory bowel diseases
due to its anti-inammatory properties, immune support, and
potential to promote gut health.48,49

In the context of cutaneous physiology, AA is valuable for the
biosynthesis and retention of collagen, a critical structural
protein that provides strength, elasticity, and integrity to the
dermal layer of the skin. Beyond its structural and antioxidant
functions, AA also exhibits profound modulatory effects on key
cellular signaling pathways governing skin cell growth and
differentiation. Intriguingly, emerging research has pinpointed
the potential of AA in the context of skin cancer, demonstrating
its ability to reduce the viability and invasive potential of certain
cutaneous malignant cells.50–52 Several dermatological clinical
trials have investigated the role of AA in the remediation of skin
diseases, such as atopic dermatitis,53 herpes zoster,54 malignant
melanoma,55 as adjuvant therapy in acne,56 allergic contact
dermatitis,57 and psoriasis.58 AA offers a multitude of additional
benets for cutaneous health and function. As a photo-
protective agent, it can shield the skin from the deleterious
inuences of UVA and UVB radiation, mitigating the harmful
impacts of sun exposure.59,60 The vitamin also promotes
neocollagenesis, stimulating the synthesis of new collagen
bers to support dermal structure and elasticity.61,62 Moreover,
AA exhibits the power to suppress melanogenesis, making it
a valuable ingredient in skin lightening and depigmentation
applications.63–65 It has also been studied for its curative
competence in the management and control of various
inammatory skin ailments46,66 (Fig. 2).

AA has been demonstrated to have direct anti-tumor poten-
tials, with the ability to induce apoptosis (programmed cell
death) and suppress the proliferation of an assortment of cancer
cell types.67–71 AA can also exert indirect anti-cancer impacts by
enhancing the mission of the immune system, promoting the
differentiation, proliferation, and activation of various immune
cell types.72,73 AA can increase the cytotoxicity and cytokine
production of natural killer (NK) cells, being crucial for the
immune-mediated termination of cancerous cells.74–76

Collectively, the multifaceted benets of AA, ranging from
photoprotection and collagen synthesis to melanogenesis
suppression and potential anti-cancer applications, solidify its
status as a versatile and indispensable nutrient for maintaining
optimal body health and function.
3. Ascorbic acid utilization in delivery
systems

Importantly, beneting from its anti-oxidant potential, AA has
been exploited as a drug and incorporated in delivery systems to
tackle its instability. Indeed, AA is highly susceptible to degra-
dation in aqueous environments, particularly at elevated pH
levels, in the presence of oxygen, and when exposed to metal
ions, oen leading to a noticeable color change in AA-
containing formulations.28,77–79
© 2025 The Author(s). Published by the Royal Society of Chemistry
To overcome these stability challenges and harness the
benets of AA, researchers have incorporated it into various
delivery approaches aimed at protecting the vitamin from the
factors that contribute to its degradation.80–82 As a conse-
quence, AA is formulated in an assortment of delivery modes
for various administration routes, specically the topical
route.83–88 Interestingly, the incorporation of AA along with
various drugs and bioactive compounds such as oxaliplatin
and olaparib into nanoplatforms has emerged as a promising
strategy to boost their therapeutic performance across
different applications.89–91

On the other hand, lately, AA has been utilized as a func-
tional component in delivery systems. It is exploited as
a reducing agent in the synthesis of metallic nanoparticles,
including silver, gold, selenium, iron oxide and copper
ones.26,92–96 AA is also employed to modify the surfaces of
different NPs, imparting desirable merits to the surface-
modied ones, such as titanium dioxide NPs.26 In cosmetic-
directed research, for modulating skin hyperpigmentation
and whitening, AA has been incorporated in various nano-
platforms, such as nanoemulsions,97 and liposomes98 and ethyl
cellulose NPs in hydroxypropyl methyl gels.99
4. Exploitation of ascorbic acid
derivatives in the pharmaceutical arena

As aforementioned, one of the greatest challenges in the
exploitation of AA is maintaining its stability. The high aqueous
solubility and inherent instability of AA, particularly in the
presence of factors, such as oxygen, pH changes, and metal
ions, can limit its effective administration and formulation. To
address this challenge, lately, researchers have developed
striking strategies to limit the degradation processes that affect
AA, including the use of stable derivatives, which exhibit
enhanced stability compared to the parent compound.100–102 To
address the stability challenges of AA, researchers have
synthesized a wide range of stable hydrophilic and lipophilic
derivatives of the vitamin. The preponderance of these deriva-
tives over AA has been veried, concerning their stability and
functionality (Fig. 3).

The structural alteration of the AA ring in position 2, 3, 5 or 6
to produce different AA derivatives not only improves its
stability but also maintains its antioxidant activity. Represen-
tative examples of such AA derivatives are shown in Fig. 1. One
example of a water-soluble AA derivative, ascorbyl-2-glucoside
(AA-2G) or 2-O-glucopyranosyl-AA, with an added glucose
moiety bound to AA, was synthesized and revealed to prevent AA
oxidative degradation.103,104 Other lipophilic AA derivatives have
also been synthesized via the esterication of AA with various
acids. Ascorbyl 6-octanoate is formed by the esterication of AA
with the 6-carbon saturated fatty acid, octanoic acid (also
known as caprylic acid). Ascorbyl-2,6-dipalmitate105 and
ascorbyl-6-palmitate are fat-soluble esters of AA and palmitic
acid, possessing good skin penetration and antioxidant activi-
ties.106,107 3-O-Ethyl-L-ascorbyl-6-ferulate is formed by the ester-
ication of AA at the C-3 position with ferulic acid (a phenolic
RSC Adv., 2025, 15, 37482–37510 | 37485

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra03825a


Fig. 3 Comprehensive overview highlights the significance of ascorbic acid derivatives in pharmaceutical and drug delivery applications. The
central circle identifies ascorbic acid as the primary component, emphasizing its inherent instability and high aqueous solubility. Surrounding this
core are AA derivatives designed to enhance the stability and efficacy of ascorbic acid. The outer ring illustrates the therapeutic potential of these
derivatives, detailing their roles as antioxidants, antiviral agents, anti-inflammatory compounds, anti-cancer agents, and antimicrobial
substances. Additionally, these derivatives serve as functional excipients, such as solubilizers, emulsifiers, and stabilizers, and play a crucial role in
the formation of nanoparticles, including asposomes and glucospanlastics. This figure was created with BioRender.
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compound in plant cell walls possessing antioxidant potential).
3-O-Ethyl-L-ascorbyl-6-palmitate is formed by the esterication
of palmitic acid at the C-6 position, and there is an ethyl group
attached at the C-3 position of the AA molecule. It was found
that the encapsulation of these novel AA esters within lignin-
based nanoparticles resulted in a boost to the antioxidant
power and in the prevention of the degradation of AA
compounds.108
37486 | RSC Adv., 2025, 15, 37482–37510
Ascorbyl-6-stearate, in which the stearic acid is attached to
the C-6 hydroxyl group of the AA molecule, was found to be
similar to ascorbyl 6-palmitate and veried to have anti-tumor
activity.109 Ascorbyl 2-O-coumarate and ascorbyl 3-O-coumarate
are formed via the esterication of the C-2 or C-3 hydroxyl group
of the AA molecule and coumaric acid.22 Ascorbyl tetra-
isopalmitate is a liquid form of AA. Four isopalmitic acid
molecules are attached to the AA at different hydroxyl groups
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(likely the 2-, 3-, 5-, and 6-positions). The multiple esterication
steps enhance the lipophilicity and stability of AA.22

Indeed, the newly designed AA derivatives have secured
a substantial place in pharmaceutical research, breaking new
ground in the pharmaceutical industry and redirecting toward
integrative approaches, which necessitate collaboration among
the chemical, pharmaceutical, and pharmacology elds, to
elucidate their full potential. AA derivatives offer a promising
therapeutic framework for enriching the drug-delivery arena.

AA derivative-based therapies could possess a wide-ranging
leverage on diversied ailments affected by oxidative stress.
AA derivatives can provide a therapeutic avenue for the treat-
ment of oxidative stress comorbidities.

Earlier work has demonstrated that AA-2G can inhibit Heli-
cobacter pylori-induced apoptosis in epithelial cells of the
stomach through a mitochondrial pathway.110,111 Similarly, in
the small intestine, the derivative promotes expansion of Mur-
ibaculaceae and modulates Paenibacillus populations, suggest-
ing a comprehensive approach to restoring gut ecosystem
balance.112 Beyond direct microbiota modulation, AA-2G has
been shown to ameliorate high fructose-induced neuro-
inammation through gut microbiota and leaky gut mecha-
nisms, demonstrating the compound's ability to inuence the
gut–brain axis and prevent diet-induced metabolic dysfunction.

Additionally, the derivative 2-O-b-D-glucopyranosyl-L-AA has
been shown to exert immunomodulatory effects and positively
inuence gut microbiota composition.110,113 Studies indicate
that this compound can alleviate conditions, such as colitis and
neuroinammation linked to high fructose intake, suggesting
its role in maintaining gut integrity and function.

Considerably, some AA derivatives have been well-
documented to exert a complex and multifaceted role in the
regulation of melanogenesis, demonstrating both stimulatory
and inhibitory impacts related to the specic compound and
experimental conditions. The study found that various AA
derivatives, such as AA-2G and 3-O-ethyl L-AA, were able to
inhibit the autoxidation of L-DOPA in vitro. Additionally,
magnesium L-ascorbyl 2-phosphate and L-cysteine were shown
to attenuate the cytotoxicity induced by high concentrations of
L-DOPA. Interestingly, while magnesium L-ascorbyl 2-phosphate
and AA-2G increased the intracellular levels of melanin and the
darkly pigmented cell count, the cysteine derivative L-cys-
teinamide exhibited the opposite effect, decreasing both the
melanin levels and the count of pigmented cells.114,115

One of the novel AA derivatives is the 1,2,3-triazole L-AA (L-
ASA) conjugate, which was synthesized and evaluated in one
study.116 This compound features a p-bromophenyl substituent
on the 1,2,3-triazole moiety, connected to the L-ASA core via
a hydroxyethylene linker. In the antiproliferative evaluation,
compound 4e demonstrated selective cytotoxicity against breast
adenocarcinoma MCF-7 cells, exhibiting an IC50 value of 6.72
mM. Importantly, L-ASA did not inhibit the growth of foreskin
broblasts, indicating its selective antiproliferative power. Such
promising results highlight that the potent growth-inhibition of
4e on the MCF-7 breast cancer cells may involve the modulation
of the HIF-1 signaling pathway.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Hydrophilic AA derivatives also demonstrate improved
intracellular uptake compared to AA, as the modied
compounds can more readily permeate the cell membrane and
accumulate within the cells.117 Interestingly, the topical appli-
cation of AA glucosides is well-documented to constantly release
the active form of AA through enzymatic hydrolysis in the
skin.118 In general, developing multifunctional hybrid materials
via the covalent combination of two substances with featured
biological properties can provide additional advantages
compared to the individual components.119

Hydrophobic derivatives excel at preventing diverse harmful
effects induced by X-ray radiation. AP, demonstrating high free
radical-scavenging abilities, more effectively suppressed X-ray-
induced increases in intracellular ROS levels and lipid perox-
idation in keratinocytes, and it signicantly prevented X-ray-
induced apoptosis. The studies presented here highlight the
superior antioxidant and protective properties of lipophilic VC
derivatives. The lipophilic AP exhibits enhanced activities
compared to AA. AP has demonstrated higher free radical-
scavenging abilities, more effective suppression of X-ray-
induced oxidative damage, and better prevention of radiation-
induced cell death in human cells, likely due to its improved
lipophilicity.120 It potently inhibits the activity of 5-lipoxygenase,
an enzyme participating in inammatory pathways, more than
15-lipoxygenase, and this inhibitory effect is stronger than those
of known synthetic drugs. Correspondingly, enzyme kinetics
and molecular docking analyses have revealed AP as a non-
competitive, reversible 5-lipoxygenase inhibitor, highlighting
the importance of its lipophilic nature.121 The enhanced lip-
ophilicity conferred by the palmitate moiety likely contributes
to AP's improved protective effects compared to the more
hydrophilic AA, suggesting that the lipophilic VC derivative
could be a promising countermeasure against radiation-
induced oxidative damage.
5. Characteristic methodologies of
ascorbic acid derivatives as functional
components of delivery systems

As therapeutic entities, a series of structural derivatives of AA
bearing different moieties have been synthesized using diverse
chemical approaches, offering strikingly advanced scaffolds
mostly for the design of antioxidant, anti-inammatory and
anticancer molecules. Indeed, continued characterization and
evaluation seem necessary to investigate their benets via an
assortment of preliminary and screening tests.

In order to demonstrate their stability and hence supremacy
over AA, the stability of the fabricated derivatives in aqueous
solution was tested by dissolving them in a suitable buffer and
storing at 37 °C for a specied period, followed by measuring
the three obtained concentrations and comparing them with
the initial concentration.122–125

Importantly, the structural and conformational properties of
the synthesized derivatives were elucidated to identify their
chemical entities using 1H and 13C NMR.126,127 Other solid-state
depiction tests, such as DSC, FTIR and X-ray diffraction, were
RSC Adv., 2025, 15, 37482–37510 | 37487
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also carried out. Considerably, structure–activity relationship
analysis was performed to demonstrate the impact of derivati-
zation and substitution on their bioactive potencies.

In vitro screening of proliferation across different cancer cell
lines, employing the MTT test, was carried out to demonstrate
the anticancer activity of some promising derivatives. For
example, the anticancer potential of the 2,3-di-O-aryl/alkyl
sulfonate derivatives of L-AA on breast and lung cancer cells
was investigated, showing noticeable cytotoxicity and selectivity
for cancer cells.128

Another instance involves evaluating the antiproliferative
effectiveness of 1,2,3-triazolyl-L-AA derivatives on various
malignant tumor cell lines, including cervical carcinoma
(HeLa), breast adenocarcinoma (MCF-7), colorectal carcinoma
(HCT-116), lung adenocarcinoma (A549), ductal pancreatic
adenocarcinoma (CFPAC-1), hepatocellular carcinoma (HepG2),
colorectal adenocarcinoma, and metastatic cells (SW620). The
ndings indicated that some synthesized derivatives exhibited
selective antiproliferative activity against HeLa, HCT-116, and
MCF-7 cells, as well as A549 cells, which appeared to be asso-
ciated with the nature of their substitutions. Additionally, an
Annexin V assay was done to assess the type of cell death,
particularly apoptosis, associated with the antiproliferative
effects. The study measured the percentages of apoptotic cells,
along with necrosis, to emphasize the signicant inhibition of
cell growth.116

An antioxidant potential test was also done using the
commonly employed reagent, DPPH, involving incubating the
tested compounds with this reagent and monitoring its reduc-
tion through measuring the resultant absorbance as well as that
of DPPH alone.116 The values of IC50 (concentration causing
50% of the absorbance) and the antiradical efficiency (1000-fold
inverse of IC50) were determined as indicators of the free
radical-scavenging activity and compared with those for AA.129

Interestingly, the results attained in earlier studies pinpointed
the formation of AA derivatives that can act as potent radical
scavengers based on the substitution pattern relative to AA.130,131

It is to be noted that other radicals, such as ABTS and galvinoxyl,
were also utilized in assays of the radical-scavenging activity.132

Specically, the investigation of the binding interactions
with different targets to demonstrate their mechanism of action
and specicity and the prediction of their pharmacokinetic
features were done utilizing in silico molecular docking simu-
lations and ADME proling, respectively. Investigating the
binding interactions between non-pancreatic secretory phos-
pholipase A2 and the halo 6-fatty acid esters of L-AA, as well as
the 6-fatty acid esters of L-AA, which demonstrate signicant
interactions with secretory phospholipase A2.133 A high binding
affinity of 6-amino-6-deoxy-L-AA (D1) and N-methyl-6-amino-6-
deoxy-L-AA with human peroxiredoxin was also veried, and the
docking score was found to be comparable to that for AA.131

Interestingly, when assessing its binding with poly-
morphonuclear lymphocyte 5-LOX and soybean 15-LOX, the
lipophilic derivative, AA 6-palmitate, showed greater MolDock
and Rerank scores than AA yet comparable scores to the refer-
ence inhibitors, pinpointing its capability to inhibit lipid per-
oxidation (sLOX).121
37488 | RSC Adv., 2025, 15, 37482–37510
Other tests have also been conducted to verify that they fulll
the intended purpose for their manufacture, such as testing the
effect of alkylglyceryl-L-AA derivatives on the melanogenesis of
B16 melanoma 4A5 cells and normal melanocytes.125 The anti-
viral potential of some AA derivatives against various viruses,
including Herpes simplex virus and Inuenza viruses, was also
tested.134,135
6. Selected examples of lipophilic and
hydrophilic ascorbic acid derivatives

Based on their relevance in the pharmaceutical eld, two AA
derivatives of different natures will be discussed in this review:
ascorbyl 6-palmitate (AP) as a hydrophobic derivative and
ascorbyl 2-glucoside (AA-2G) as a hydrophilic derivative.
6.1. Ascorbyl 6-palmitate “AP”

Ascorbyl palmitate (AP) is a lipophilic, stable ester derivative of
AA. It is an odorless white-to-yellowish powder with a slight
citrus-like aroma. AP has a molecular weight of 414.53 Da.121,136

As shown in Fig. 1B, the hydroxyl group in position 6 is
combined with the alkyl chain of palmitic acid to produce
ascorbyl-6-palmitate.

AP is a well-recognized skin-whitening agent that enhances
skin elasticity by facilitating collagen production. As a lipophilic
compound, it also assists in skin penetration.137,138 Its antioxi-
dant property stems from the formation of hydrogen peroxide,
and it presents an effect on the apoptotic pathways by inducing
pro-oxidant damage, which cannot be that cancerous cells
cannot adapt to or resist.139 From skin-delivery perspectives, AP
is added to topical preparations to safeguard against oxidative
changes in dermal components and as an anti-inammatory
agent.140,141 The augmented antioxidant activity may be due to
the hydrophobic palmitate chain of the AP, which has the ability
to more easily penetrate cells and better preserve lipids and
other cellular components from peroxidation induced by free
radicals.142,143

Given the excellent preservation of AA's antioxidant proper-
ties, AP has shown effectiveness in reducing cellular reactive
oxygen species levels aer exposure to ultraviolet light, as stated
earlier by Meves et al.136 This makes AP a valuable active oxygen
scavenger that can protect the skin against oxidative damage.144

Owing to its lipophilic nature, AP has exhibited remarkable in
vitro skin retention and penetration, particularly in the
epidermis, as veried by in vivo skin-delivery investigations.145

Interestingly, AP has been thoroughly reported to preserve
the anti-cancer properties of AA, functioning as an inhibitor of
DNA replication and cell growth in different cancer cells,
including skin cancer.146,147 D'Souza et al. investigated AP anti-
cancer activity, incorporating AP in liposome nanoparticles and
evaluating its toxicity against various cell lines (Human ovarian
carcinoma A2780, renal adenocarcinoma ACHN, breast tumor
cells MCF7 and BT20 and mouse renal carcinoma line RAG). It
was revealed that the cell death process was due to the gener-
ation of oxygen reactive species.148
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Abdel-hady et al. explored a new application of AP in tissue
engineering due to its osteogenic (bone-forming) effect. The
combination of AP and strontium polyphosphate nanoparticles
within the ber mats exhibited synergistic effects, further
enhancing the osteogenic potential of the biomaterial. The
presence of AP was found to enhance the osteogenic differen-
tiation of human mesenchymal stem cells that were seeded on
the ber mats. This is a novel observation highlighting the
ability of AP to stimulate bone-forming cell behavior.149

AP has been revealed as a potent antimicrobial agent with
superior antibacterial activity against Helicobacter pylori
compared to AA. In contrast to AA, which paradoxically
increased H. pylori survival under aerobic conditions, AP
exhibited strong inhibitory effects on the bacteria under both
aerobic and microaerophilic conditions.150

Furthermore, AP forms lamellar vesicles in water (called
ASP), in addition to cholesterol and diacetyl phosphate, to
strengthen the bilayer and stabilize the formulation.151 ASP
vesicles are considered a new generation of antioxidant nano-
vesicles having a hydrophilic core and lipophilic shell that can
incorporate both hydrophilic and lipophilic drugs. Additionally,
studies have shown that ASP vesicles have greater bilayer
stability than liposomes, owing to their content of AP that
achieves better skin penetrability than AA.138,152 Table 1 displays
earlier works highlighting different applications of AP in the
pharmaceutical and medical elds, including as a therapeutic
agent, an auxiliary amphiphilic molecule in delivery platforms,
and the main component of newly developed aspasomal
vesicles.

Another derivative of AP that can form micelles in aqueous
media is trisodium L-ascorbyl 2-phosphate 6-palmitate. The
conjugation of trisodium salt having a phosphate group with
palmitate can enhance the hydrophilicity and the chemical
stability of the compound. Inoue et al. were the rst to explore
this derivative of AA. Their study highlighted the benets of
incorporating the trisodium L-ascorbyl 2-phosphate 6-palmitate
AA derivative into a nanocarrier-based drug-delivery system for
skincare applications.164

Considerably, a crucial point is that different alkyl chains
can be used to form ester bonds with AA, and modifying the
alkyl chain component can be used as a way to improve the
surface activity of the resulting AA ester compound. For
example, ascorbyl dipalmitate (ADP) is a modied AA
compound that contains two palmitate chains: one at the 6
position and another at the 2 position, differentiating it from
the simpler ascorbyl 6-palmitate derivative. In 2010, Moribe
et al. combined the AA derivative, ascorbyl dipalmitate (ADP),
with the surfactant distearoyl phosphatidyl ethanolamine–
polyethylene glycol 2000 (DSPE–PEG) in molar ratios of 1 : 1 and
2 : 1 to formulate stable nanoparticles capable of encapsulating
hydrophobic drugs (amphotericin B). The inclusion of ascorbyl
dipalmitate was believed to contribute to the stabilization of the
nanoparticle structure and provide antioxidant properties to the
overall drug-delivery system.165

In 2021, the same research group investigated the high
loading capacity of ascorbyl 2,6-dipalmitate in newly developed
nanoparticles. They successfully obtained ADP nanoparticles
© 2025 The Author(s). Published by the Royal Society of Chemistry
when the molar ratio of ADP to DSPE–PEG (a lipid-based
stabilizer) was between 5 : 1 and 20 : 1, opposing earlier works
stating that molar ratios greater than 3 : 1 fail to form nano-
particles. Interestingly, the proposed nanoparticles were
morphologically rod-shaped, possessing a size around 100 nm.
According to the accomplished work, the critical ADP to DSPE–
PEG molar ratio was determined to be less than 33 : 1. Based on
previous studies, these rod-shaped ADP nanoparticles could
serve as an efficient administration vehicle enclosing high-dose
AA for optimal tumor-targeting in cancer therapy, showing their
superior in vitro and in vivo behavior compared to spherical
particles.166

Concerning the combination of palmitate-based AA esters,
Plaza-Oliver et al. investigated the use of both ascorbyl 2-
palmitate and ascorbyl 2,6-dipalmitate in the development of
nanoemulsions containing a-tocopherol for oral delivery. The
study examined the effect of the intestinal protein corona on the
mucodiffusion of these types of drug-delivery systems under
simulated intestinal conditions.167 When the nanoemulsions
were incubated in simulated intestinal uid, an “intestinal
protein corona” (I-PC) was generated on the colloidal surface.
The researchers found that the formation of this I-PC inu-
enced the possible interaction between the proposed nano-
emulsions and the intestinal mucus barrier, displacing the
nanoemulsions from an “immobile-hindered” population to
a mobile “diffusive” population. The study highlighted the
critical impact of this I-PC on the substantial mucodiffusion
properties of the formed nanoemulsions within the intestinal
mucus layer, which is an important consideration for the design
of promising oral nano-platforms.105

In a study published in 2021, Sonkaew et al. utilized the
environmentally friendly supercritical CO2 technique to
produce ascorbyl 2,6-dipalmitate (ADP) nanoparticles. The
researchers found that the resulting nanoparticles containing
ADP exhibited potent antioxidant activities, and these benecial
properties were maintained even aer the nanoparticles were
incorporated into cellulose-based packaging lms.168

6.1.1. Aspasomes: an example of AP-based nanocarriers.
Nano-dermatological solutions utilizing lipid-based nano-
carriers, particularly safe and biocompatible nano-sized vesic-
ular ones, could offer promising merits in dermal-oriented
applications.169–172 These advantages include the facile consis-
tency of a protective topical lm on the surface of dermal layers,
enhancement of skin hydration and occlusion to improve
barrier function, boosting of the penetrability and deposition of
payloads within the various dermal strata, and enhancement of
solubilization and bioavailability of hydrophobic drugs to
enable more effective delivery to the target site.169,173–176

Compared to non-lipid nanocarriers, these lipid-based systems
exhibit superior performance in terms of topical formulation
development, skin delivery, and optimization of the pharma-
cokinetic proles of lipophilic compounds for dermatological
applications.177

Of these, ASP vesicles represent a novel class of multilayered
nanovesicles, with AP serving as the primary and extensively
studied component of the vesicle bilayer. AP, a hydrophobic
derivative of AA, has obtained FDA approval and is commonly
RSC Adv., 2025, 15, 37482–37510 | 37489
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utilized as an inactive ingredient in numerous skincare
formulations.178 In the fabrication of ASP, AP is consolidated
with cholesterol and charged lipids for optimal drug association
and entrapment, as demonstrated in several studies.140,151,179

ASP vesicles were initially proposed in 2004 by Gopinath et al.,
who explored the potential of the amphiphilic AP to form bi-
layered vesicles using cholesterol as a stabilizing agent and di-
cetyl phosphate to induce charge, aiming to encapsulate the
hydrophilic drug azidothymidine.140 Fig. 4 demonstrates the
schematic diagram of the assembly of the main components of
ASP vesicles.

ASP vesicles have demonstrated several advantageous
features for topical drug delivery. These include enhanced
permeation through the stratum corneum, safety, and
biocompatibility, as well as the use of low drug amounts while
achieving therapeutically relevant concentrations in the tar-
geted skin areas, thereby reducing the potential for systemic
side effects.180,181 AP serves a dual function in ASP, performing
as both a lipid bilayer-producing agent and a stabilizer, all while
exhibiting its inherent antioxidant activity. The role of oxidative
stress and imbalance in the antioxidant–oxidant equilibrium is
well-recognized in the pathogenesis of assorted skin
ailments.182 The antioxidant capacity of ASP can play a crucial
part in mitigating the excessive inammation associated with
worsened skin conditions by neutralizing the involved ROS.183

Interestingly, ASP vesicles have been veried to possess
superb antioxidant and dermal permeation enhancement
attributes, which have enabled their use in the treatment of
conditions affecting the skin, such as androgenic alopecia,
Fig. 4 Schematic diagram of the assembly of the main components of
ascorbyl palmitate (AP) is consolidated with phospholipid to form bilayer
created with BioRender.

© 2025 The Author(s). Published by the Royal Society of Chemistry
acne, and psoriasis.137,179,184Owing to the capacity of ASP vesicles
to be dermally retained, the payload persistence in the target
region can be anticipated and potentiated, as stated
earlier.137,138 Assortments of scientic studies were conducted to
incorporate various hydrophilic and lipophilic drugs in these
vesicles, as demonstrated in Table 2.

Expanding on previous research, aspasomal dispersions
were effectively created using the rotary-evaporation–sonication
approach. This method has been noted for its ability to produce
vesicles with outstanding drug-incorporation efficiency.179 This
technique involves creating a thin lm that promotes thorough
and effective hydration of the vesicles, allowing for the encap-
sulation of substantial quantities of drugs, as illustrated in
Fig. 5.

Specically, for lipid-based vesicles generated using thin-
lm hydration technique, formulation and processing param-
eters have been well documented to greatly affect the physical
characteristics of the produced nanosystems. Formulation
design and optimization are crucial steps for boosting the
therapeutic competence of vesicles.

Of note, referring to literature, ASP-based topical products
(creams or gels) enclosing diverse drugs were evaluated clini-
cally as a competent remedy for androgenic alopecia, melasma,
fungal infections (candidiasis and tinea), acne and skin
aging.180,188–192
6.2. Ascorbyl 2-glucoside “AA-2G”

Ascorbyl-2-glucoside (AA-2G) has emerged as one of the most
investigated vitamin C derivatives and has garnered signicant
aspasomes vesicles. For the formation of aspasomes, the amphiphilic
ed vesicles. Cholesterol is added as a stabilizing agent. This figure was
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Fig. 5 Method of aspasomal dispersion preparation “thin film hydration method”. In the thin film hydration method, the main components of
aspasomes (ascorbyl palmitate, phospholipid and cholesterol) are dissolved in a mixture of chloroform : ethanol (2 : 1). Organic solvent evap-
oration is performed in a rotary evaporator at 60 °C and 120 rpm. The formed dry thin film is hydrated with phosphate buffer saline (PBS; pH 7.4).
This figure was created with BioRender.
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concern due to its excellent thermal stability and oxidation
resistance.193,194 AA-2G is a hydrophilic derivative of AA. It
appears as a white or yellowish-white powder or crystalline
powder. AA-2G is colorless and has a molecular weight of
338.265 Da, with a log P value of less than −2, indicating its
hydrophilic nature.195 AA-2G is produced by a reaction between
glucose and AA. As illustrated in Fig. 1F, the hydroxyl group at
the second position of the AA molecule interacts with glucose to
form AA-2G. This connection enhances the molecule's stability,
safeguarding it from possible degradation due to exposure to
high temperatures and metal ions and varying pH levels.
Furthermore, this specic binding site contributes to the
degradation process and directly affects the antioxidant activity
of AA-2G.196

When applied topically, ascorbyl-2-glucoside (AA-2G) is re-
ported to undergo hydrolysis in the presence of a cellular a-
glucosidase enzyme, which then converts it to L-AA within the
skin.197–200 In addition to its topical uses, AA-2G is utilized as
a food additive and as a functional excipient in cosmetic prep-
arations. AA-2G is utilized as a whitening agent due to its ability
to reduce melanin production, and in the formulation of lipid-
soluble vitamins.114,195,199,201

AA-2G can directly provide signicant, concentration-
dependent preservation against oxidative stress-prompted cell
death in human dermal broblasts, without requiring conver-
sion to AA. Experiments conrmed that the prophylactic
impacts of AA-2G are inherent to the compound, rather than
resulting from its hydrolysis to release AA. Hanada et al. suggest
that AA-2G may have practical utility as a benecial antioxidant
agent even before it is converted into the active AA form.202

Lately, in the drug-delivery arena, AA-2G has been identied
as a solubilizer for poorly soluble drugs. In light of this, Inoue
37496 | RSC Adv., 2025, 15, 37482–37510
et al. reported that co-grinding of AA-2G with the poorly water-
soluble drug, clarithromycin, yielded considerable drug solu-
bilization, and strikingly, nanoparticle formation was observed
when using the drug in a molar ratio of 2 : 1.203 This substance
has been documented not only as a solubilizer but also as
a promising auxiliary material in nanoparticle design.204 On the
other hand, due to its antioxidant power, it has been utilized as
a drug, as reported by Lin et al. (2016). In their investigation, AA-
2G was enclosed in a microemulsion. The ndings indicated
that the AA-2Gmicroemulsion possessed higher penetrability in
comparison to the commercially available emulsions.205

Recently, AA-2G has been investigated as a prodrug derivative of
AA in commercial products, demonstrating a stronger anti-
oxidative and hence a promising protective leverage. Notably,
using AA-2G at a much lower concentration, reaching 1.8%,
produced comparable results to those achieved with a higher AA
concentration (15%).206

The incorporation of AA-2G into innovative nanoparticles
has emerged as an attractive strategy to potentiate the thera-
peutic competence of this compound. In a recent study,
researchers developed solid-in-oil nanodispersions encapsu-
lating either AA-2G or AA to improve their stability and optimize
their delivery for corneal wound healing applications. The
nanodispersion formulations, with an average size of 200–
300 nm, exhibited high encapsulation efficiencies, good
colloidal stability, and appropriate rheological properties for
topical ocular administration. In vitro evaluation using human
corneal epithelial cells demonstrated that both the AA-2G and
AA nanodispersions signicantly enhanced cellular prolifera-
tion, migration, and wound closure, compared to the free
compounds. Importantly, the AA-2G nanodispersion showed
superior performance over the AA nanodispersion in promoting
© 2025 The Author(s). Published by the Royal Society of Chemistry
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corneal wound healing, which was attributed to the better
stability and bioavailability of the AA-2G form in the ocular
environment. Promising in vivo results in a rabbit corneal
wound model were obtained, where the nanodispersion treat-
ments accelerated wound closure and improved histological
markers of wound healing.193

Recent research has developed innovative vesicles called
glucospanlastics, which incorporate ascorbyl-2-glucoside (AA-
2G) as an integral component to enhance their antioxidant
and therapeutic properties in the delivery of itraconazole.207

Table 3 demonstrates earlier works highlighting different
applications of AA-2G in the drug delivery arena.
7. Outcomes and future directions

Currently, a renewed solicitude is growing to promote the
structural modication of AA to produce functionally derived
AA-preserving structures that meet pharmaceutical and medical
needs. Indeed, the chemical production of AA derivatives using
advanced different processing techniques can assure their high
availability and give the opportunity to fabricate a series of
economical and cost-effective derivatives. Interestingly, newly
developed sustainable and eco-friendly AA derivatives with
substituted 1,2,3-triazole moieties were fabricated utilizing
both microreactor technology and ultrasonic irradiation
(continuous ow process).226 Recently, a novel eco-friendly
derivative, ascorbyl-6-O-oleate, was synthesized with a height-
ened yield via a lipase-catalysed esterication, as well as trans-
esterication based on the reaction between the AP substrate
and oleic acid, a successful step towards its commercializa-
tion.227 In such a way, production costs can be lowered, allowing
them to replace traditional excipients and therapeutic agents
while widening their applicability.

Concerning pharmaceutical needs, diverse AA derivatives
have been shown to be effective and promising additives in
various pharmaceutical formulations, acting as solubilizers,
stabilizes and emulsiers.228–232 From drug-delivery perspec-
tives, if synthesized and validated, the structural derivatives of
AA show promise for application as carriers, transforming the
drug-delivery arena and yielding transformative implications
for futuristic pharmaceutical research. In particular, the
amphiphilic derivatives can be exploited as tools in the fabri-
cation of liposomes and their newer-generation variants, as well
as micelles via self-assembly.227 For example, octanoyl-6-O-
ascorbic acid, decanoyl-6-O-ascorbic acid and trisodium L-
ascorbyl 2-phosphate 6-palmitate were employed in the
production of micellar dispersions that were found to be
effective as solubilization vehicles for various hydrophobic
drugs.230,233,234 Additionally, vesicular systems based on the
integration of amphiphilic alkyl ester AA derivatives, such as AP,
ascorbyl myristate and ascorbyl laurate, into the phospholipid
bilayer were investigated in a previous study.235

In consideration of their bioactivity, the fabrication and
evolution of such functional molecular entities could expand
the pool of therapeutic alternatives with diversied bioactive
attributes available to patients suffering from inammation-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and oxidative-stress-related chronic diseases, as well as
cancer.236,237

Considerably, shiing specic DDS is expected to potentiate
and amplify therapeutic interventions that elicit antioxidant,
anti-inammatory and antiproliferative activities. Optimally,
the versatility and potential of integrated delivery systems to
enhance the therapeutic performance of combination therapies
is substantial, spanning applications specically in cancer
treatment and oxidative-damage-related disorders, by enabling
the synergistic action of such derivatives and other bioactive
compounds.

Indeed, in earlier works, some AA derivative-based delivery
systems have been attested to be efficacious medications. In
this context, exploiting AP in the structure of the promising
vesicles, i.e., ASP, to enclose the repurposed anticancer drug,
itraconazole, yielded tunable nano-platforms with potentiated
anticancer activity, veried both in vitro and in vivo.187 Strik-
ingly, the aforementioned unloaded vesicles, when embedded
in a cream base and tested clinically for the management of
candidiasis associated with diaper dermatitis, exhibited
reasonable curative consequences, owing to their role as
carriers to boost skin deposition alongside their antioxidant
potential and capability to neutralize reactive oxygen species at
affected inammatory sites.188 It is worth mentioning that
tolerability and safety following topical application were veri-
ed, with no reported adverse effects.

Moreover, the application scope of some AA derivatives has
been explored in the eld of cosmetics, being linked to the
preservation of the antioxidant and melanogenesis-inhibiting
features of AA. As a consequence, they can offer distinctive
effects towards skin whitening, pigmentation-disorder remedi-
ation and antiaging.189,238

Indeed, some AA ethers and esters, including tetrahexyldecyl
ascorbate, AP, ascorbyl linoleate and ascorbyl stearate, have
demonstrated striking clinical outcomes in the eld of
cosmetics, functioning as antioxidants, skin protectants,
fragrance excipients, and skin-conditioning agents.239 Such
derivatives receive regulatory approval and show widespread
tolerability when applied topically.

Interestingly, several derivatives have already been marketed
in cosmetic products, including serums, lotions and creams.

When exploring AA derivatives in the market, the effective-
ness of several standout products has been demonstrated. For
instance, Mad Hippie Vitamin C Serum240 and TruSkin Vitamin
C Facial Serum241 utilize sodium ascorbyl phosphate, making
them excellent choices for targeting brightening and acne
control. Sunday Riley C.E.O. 15% Vitamin C Brightening
Serum242 and Peter Thomas Roth Potent-C Power Serum243

feature THD ascorbate, known for its superior absorption and
brightening properties. Meanwhile, products like Ole Henrik-
sen Banana Bright 15% Vitamin C Serum244 and Allies of Skin
20% Vitamin C Brighten + Firm Serum245 incorporate 3-O ethyl
ascorbic acid, which effectively addresses hyperpigmentation.
Additionally, The Ordinary 12% AA-2G Solution246 and Inkey
List 15% Vitamin C and EGF Serum247 leverage AA-2G for its
brightening and collagen-supporting benets. These products
© 2025 The Author(s). Published by the Royal Society of Chemistry
are suitable for diverse skin types and concerns, showcasing the
versatility of AA derivatives in skincare.

Looking ahead, contemporary eco-sustainable synthetic
methods for AA derivation, optimally for mass production, and
great discoveries and advancements in delivery systems based
on such valuable derivatives could be explored to achieve
breakthroughs in various pharmaceutical andmedical elds. As
a consequence, tunable and scalable medicines based on AA
derivatives with modulated drug release and amplied thera-
peutic response should be anticipated in the pharmaceutical
market.
8. Limitations

Despite its striking role in the drug-delivery arena, the claim
linking AA derivatives to therapeutics and functional additives
and carriers has distinct limitations and challenges that must
be fully addressed.

For large-scale implementation and scalability, eco-
sustainable production techniques, as well as the extension of
themanufacturing to the industrial scale, are still demanded. In
this scenario, synthetic techniques should ensure the produc-
tion of customized derivatives, establishing appropriate yields
and stability. Optimizing the costs of the exploited resources
and involved equipment can assist the production of cost-
effective and available AA derivatives for commercial
applications.

Although they are valuable therapeutic agents, their phar-
macological concentration doses and tolerable levels when used
as therapeutics, as well as the associated possible risks of over-
supplementation, limit their application. The long-term safety
prole of the majority of AA derivatives remains unclear.
Accordingly, precise monitoring of dosing and the course of
treatment is imperative. The setting and approval of the intake
dose is considered necessary. Pharmacological evaluation and
a mechanistic rationale for identifying their therapeutic utili-
zation are necessary as well. Although in vitro ndings and
animal studies have asserted the bioactivity of individual AA
derivatives and their associated delivery systems, there is pres-
ently no conclusive proof establishing their impact on human
tissues. It is crucial to perform clinical investigations to validate
animal models and to probe their translation to human
subjects.

Another key area that needs further research is the verica-
tion of their conversion into AA following their administration,
as the conversion can be affected by differences in the physiology
of the intended routes. Following oral ingestion, AA derivatives
have been stated to be readily available AA sources.248 This is not
the case for topical application. In light of this, the fate of the
applied AA derivatives, in terms of their skin absorption or
conversion into AA aer dermal penetration, should be under-
stood. Measuring the concentrations of both AA and its deriva-
tive in the skin via analysis of the skin aer their application and
comparing the AA concentration to its baseline skin level could
help in this respect. Importantly, the suitability of skin-oriented
delivery systems composed of AA derivatives should be
RSC Adv., 2025, 15, 37482–37510 | 37499
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determined via proling ex vivo skin deposition and permeation
using Franz diffusion cells.249

Regarding their role as drug carriers and functional excipi-
ents, research into their usage, concentration levels, physico-
chemical properties, solid-state characterizations, and imaging,
should be emphasized. More research is also needed concerning
their adverse reactions, interaction with other ingredients,
toxicity and tolerance. In general, empirical validation of delivery
systems covering in vitro, ex vivo and in vivo performances should
be conducted. Delivery-system-related issues must be scienti-
cally interpreted pending powerful empirical advocacy. For
example, the proposed link between nanoparticle attributes (i.e.,
nanosize, surface charge, drug encapsulation) and in vivo cellular
uptake in different cell cultures, cytocompatibility, distribution,
pharmacokinetics and pharmacodynamics warrants further
considerable exploration. Differences in the fate and behavior of
different nanoplatforms inside the body are still questionable
and need to be investigated.

It is worth mentioning that the suggested methodologies for
administration involving new delivery systems via nasal, otic
and pulmonary routes, as well as pharmacodynamics tests for
hypertension and CNS-related diseases (such as stroke), present
practical constraints due to dependence on specialized equip-
ment and operators, invasiveness, and sometimes complexity
and limited accessibility. Of note, little in vitro-in vivo correla-
tion data were found for AA derivative-based delivery systems.
From translational perspectives, their toxicological reports on
animal tissues, as well as human ones, should be explored.
Intense clinical experimentation should be assessed and
precisely optimized in order to gure out their empirical
signicance and broad acceptance in the drug-delivery eld.

9. Conclusions and perspectives

AA is a highly valued multifunctional antioxidant biomolecule,
but its instability and delivery-related issues have resulted in the
evolution of various derivatives. These derivatives have shown
effectiveness in mitigating oxidative stress, potentiating anti-
proliferative efficacy, promoting collagen synthesis and
reducing hyperpigmentation in the skin. Of these, AP is
a hydrophobic derivative that exhibits good skin penetration
and antioxidant activity, and a hydrophilic derivative AA-2G has
been studied for its power to inhibit melanin production and
improve skin brightening. However, to further enhance the
delivery and performance of these AA derivatives, researchers
have explored their incorporation into delivery systems either as
an integral part of the system or as a drug. Modern evolutions in
pharmaceutical delivery involving nanoplatforms, emulsions
and gels can benet the pharmaceutical community in this
respect. The design of such innovative therapeutics can opti-
mally offer better and potentiated curative efficacy with
improved life quality.

However, adequate design and rigorous monitoring are
required for modulation of their physicochemical, bioactive
and toxicological features. The recognition of different biolog-
ical barriers, transport pathways and complexity of various
encountered permeation and targeting challenges will assist in
37500 | RSC Adv., 2025, 15, 37482–37510
the formulation of tailored platforms with respect to their
localization in the affected site of action, distribution, targeting
and prolonged intended action. In this context, a focus on the
technological features is needed, encompassing a proper choice
of other components as well as the formulation of delivery
systems and industrial techniques for the design and subse-
quent technology transfer. Importantly, continued research in
this area is warranted to further elucidate the structure–activity
relationships and degradability while developing even more
efficacious and stable AA derivative-based delivery systems for
pharmaceutical and medical elds. In light of this, their
stability for prolonged periods, assuring the maintenance of
their physicochemical, bioactive and AA-preserving benets
over time, degradability and in-depth awareness of their link
with the composition of the delivery vehicle should be taken
into consideration. Besides, experimental studies using in vivo
animal models and imaging tools to probe the in vivo behavior
and fate are considered mandatory. Increased research into the
proles of the molecular expression of different genes of
signaling pathways can provide an opportunity to demonstrate
their linked mechanistic leverage and, hence, their t-for-
purpose biological performance. Moreover, the utilization of
computer simulations and pharmacokinetic proling studies
and their advancements can assist in this respect. Yet, the
assessments of their related toxicity and cogent in vivo animal
and clinical studies are still limited and require further studies.

Overall, AA derivatives, particularly when incorporated in
nanoparticle delivery systems and scrutinized against all the
aforementioned aspects, could represent a promising approach
to harness the power of AA for improved biological impacts in
various therapeutic modalities. The attested achievement in the
realm of cosmetics could set the substantial impetus to design
various delivery platforms, based on such functional additives,
with prevalent clinical utility in the management of systemic
disorders. As a consequence, such functional entities inmarketed
delivery platforms would soon provide an efficient cure for a wide
range of oxidative stress and inammation-related ailments.
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226 A. Meščić, A. Šalić, T. Gregorić, B. Zelić and S. Raić-Malić,
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