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The integration of artificial intelligence (Al) in targeted anticancer drug delivery represents a significant
advancement in oncology, offering innovative solutions to enhance the precision and effectiveness of
cancer treatments. This review explores the various Al methodologies that are transforming the
landscape of targeted drug delivery systems. By leveraging machine learning algorithms, researchers can
analyze extensive datasets, including genomic, proteomic, and clinical data, to identify patient-specific
factors that influence therapeutic responses. Supervised learning techniques, such as support vector
machines and random forests, enable the classification of cancer types and the prediction of treatment
outcomes based on historical data. Deep learning approaches, particularly convolutional neural
networks, facilitate improved tumor detection and characterization through advanced imaging analysis.
Moreover, reinforcement learning optimizes treatment protocols by dynamically adjusting drug dosages
and administration schedules based on real-time patient responses. The convergence of Al and targeted
anticancer drug delivery holds the promise of advancing cancer therapy by providing tailored treatment
strategies that enhance efficacy while minimizing side effects. By improving the understanding of tumor
biology and patient variability, Al-driven methods can facilitate the transition from traditional treatment
paradigms to more personalized and effective cancer care. This review discusses the challenges and
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1. Introduction

Cancer progression is a complex and multifaceted process that
involves a series of biological changes that enable normal cells
to transform into malignant tumors. Understanding these
mechanisms is crucial for developing effective cancer therapies
and interventions. According to the World Health Organization
(WHO), cancer remains one of the leading causes of death
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globally, accounting for approximately 10 million deaths in
2020, with the most common types including lung, breast,
colorectal, prostate, skin (non-melanoma), and stomach
cancers. WHO forecasts indicate a continued rise in cancer
burden, particularly in low- and middle-income countries, due
to aging populations, lifestyle factors, and limited access to
early diagnostics and treatments. This underscores the critical
need for more efficient, personalized, and scalable treatment
strategies, an area where artificial intelligence (AI) has shown
immense promise in transforming traditional cancer care
paradigms, especially in the domain of targeted drug delivery.*
The progression of cancer can generally be categorized into
several key stages and mechanisms, including genetic muta-
tions, dysregulation of cell signaling pathways, evasion of
apoptosis, angiogenesis, metastasis, and the tumor microenvi-
ronment (Fig. 1).** At the core of cancer progression are genetic
mutations that alter the normal functions of cells. These
mutations can occur in proto-oncogenes, tumor suppressor
genes, and DNA repair genes (Fig. 1).° Proto-oncogenes are
responsible for promoting cell growth and division; when
mutated, they can become oncogenes, leading to uncontrolled
proliferation.® Conversely, tumor suppressor genes, which
normally inhibit cell division or promote apoptosis, can be
inactivated through mutations, further contributing to tumor
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Fig. 1 Different mechanisms that could affect cancer progression.

development. Additionally, defects in DNA repair mechanisms
can lead to the accumulation of further mutations, creating
a vicious cycle that accelerates cancer progression. Dysregula-
tion of cell signaling pathways is another critical mechanism in
cancer progression. Cancer cells often exploit key signaling
pathways, such as the phosphoinositide 3 kinase/protein kinase
B/mammalian (or mechanistic) target of rapamycin (PI3K/Akt/
mTOR) and mitogen-activated protein kinase/extracellular
signal-regulated kinase (MAPK/ERK) pathways, to promote
survival, growth, and migration (Fig. 1). These pathways can
become constitutively active due to mutations or aberrant
expression of upstream signaling molecules. As a result, cancer
cells can proliferate inappropriately, resist programmed cell
death, and acquire invasive properties.”® For instance, the
activation of the wingless-related integration site (Wnt)/B-cat-
enin pathway is often associated with colorectal cancer
progression, while the activation of the Rat sarcoma (Ras)/
Rapidly accelerated fibrosarcoma (Raf)/MEK/ERK pathway is
common in various cancers. Evasion of apoptosis, or pro-
grammed cell death, is a hallmark of cancer. Cancer cells
develop mechanisms to bypass apoptosis, allowing them to
survive despite the presence of DNA damage or other cellular
stressors.®'® Overexpression of anti-apoptotic proteins, such as
B-cell lymphoma 2 (Bcl-2), or downregulation of pro-apoptotic
factors, such as p53, enables cancer cells to evade cell death
signals. This ability to survive and proliferate in unfavorable
conditions not only facilitates tumor growth but also contrib-
utes to treatment resistance, making it challenging to eradicate
cancer cells with conventional therapies." Angiogenesis, the
formation of new blood vessels, is crucial for tumor growth and
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progression. As tumors grow, their demand for oxygen and
nutrients increases, prompting the release of pro-angiogenic
factors such as vascular endothelial growth factor (VEGF).
These factors stimulate the proliferation and migration of
endothelial cells, leading to the formation of new blood vessels
that supply the tumor with the necessary resources to support
its continued growth. The ability to induce angiogenesis is
a vital step for tumors transitioning from a small, localized
mass to a larger, more aggressive form capable of metas-
tasis.'"® Metastasis, the spread of cancer cells from the primary
tumor to distant sites in the body, is the final and most lethal
stage of cancer progression (Fig. 1). This complex process
involves several steps, including local invasion, intravasation
into the bloodstream or lymphatic system, survival in circula-
tion, extravasation into new tissues, and colonization. Cancer
cells undergo epithelial-to-mesenchymal transition (EMT),
a process that enhances their migratory and invasive capabil-
ities. Once metastasized, cancer cells can establish secondary
tumors that often exhibit different characteristics than the
primary tumor, complicating treatment efforts.****

Cancer treatment encompasses a variety of methods, each
tailored to the specific type and stage of cancer, as well as the
patient's overall health.’® The primary treatment modalities
include surgery, where tumors are physically removed from the
body; radiation therapy, which uses high-energy radiation to
damage or kill cancer cells; and chemotherapy, involving the
administration of cytotoxic drugs that target rapidly dividing
cells, albeit with effects on healthy cells as well. Immunotherapy
leverages the body's immune system to recognize and attack
cancer cells, while targeted therapy focuses on specific
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molecular targets associated with cancer, minimizing damage
to normal tissues. Additionally, hormone therapy is used for
cancers that are hormone-sensitive, such as certain breast and
prostate cancers, to block hormone production or action.
Emerging approaches, including personalized medicine and
gene therapy, aim to tailor treatments based on an individual's
genetic makeup, further enhancing the effectiveness of cancer
care.'*™®

Targeted anticancer drug delivery is an innovative approach
designed to improve the efficacy and safety of cancer treatments
by directing therapeutic agents specifically to cancer cells while
minimizing exposure to healthy tissues.” This method utilizes
various technologies, including nanoparticles, liposomes, and
monoclonal antibodies, to enhance the specificity of drug
delivery. By exploiting the unique characteristics of tumor cells,
such as overexpressed receptors or the tumor microenvironment,
targeted delivery systems can increase drug concentration at the
tumor site, thereby maximizing therapeutic effects and reducing
systemic side effects. For instance, nanoparticles can be engi-
neered to encapsulate chemotherapeutic agents and release them
in response to specific stimuli, such as pH changes or enzymatic
activity prevalent in the tumor environment. This precision not
only enhances the effectiveness of conventional chemotherapies
but also paves the way for the development of novel therapeutic
agents that can act selectively on cancer cells."*

Al is rapidly transforming the field of targeted anticancer drug
delivery, offering innovative solutions to some of the most
pressing challenges in cancer treatment.”**® By leveraging
advanced algorithms and machine learning (ML) techniques,
researchers can analyze vast datasets, including genomic, pro-
teomic, and clinical data, to identify patterns and correlations
that may not be apparent through traditional analytical
methods.* For instance, ML algorithms can be utilized to predict
how specific types of cancer will respond to various targeted
therapies based on the genetic profiles of tumors.” This predic-
tive capability enables the development of personalized treatment
plans tailored to individual patients, optimizing therapeutic effi-
cacy while minimizing side effects. Additionally, Al-driven anal-
yses can help identify novel drug candidates and optimize their
formulations for better targeting and effectiveness, significantly
accelerating the drug discovery process.*® Moreover, Al technolo-
gies enhance the design and implementation of targeted drug
delivery systems by improving precision in several ways.> For
instance, algorithms can be employed to model the interactions
between drug carriers and cancer cells, allowing for the optimi-
zation of nanoparticle designs that maximize uptake and mini-
mize toxicity. ML can also aid in real-time monitoring of
treatment responses, enabling clinicians to adapt therapies
dynamically based on patient-specific data. By integrating
imaging data and biological markers, Al can facilitate the iden-
tification of tumor heterogeneity, guiding the selection of the
most effective targeted therapies. In the field of targeted anti-
cancer drug delivery, several key algorithms and ML techniques
play a vital role in enhancing treatment precision and efficacy.
Supervised learning algorithms, such as Support Vector Machines
(SVM) and Random Forests, are frequently employed to predict
patient outcomes and classify cancer types based on historical
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data and gene expression profiles. Deep learning approaches,
particularly Convolutional Neural Networks (CNNs), excel in
analyzing complex datasets, including medical imaging, by
automatically extracting features for improved tumor detection.”
Reinforcement learning optimizes treatment protocols by
learning from previous patient responses, allowing for personal-
ized dosing and timing of drug administration. Additionally,
clustering algorithms like k-means and hierarchical clustering
group patients based on similarities in their genomic data, facil-
itating tailored treatment approaches. Bayesian networks provide
a probabilistic framework to analyze relationships between bio-
logical factors and treatment outcomes, incorporating prior
knowledge with new data.*>>**>°

Al is advancing targeted anticancer drug delivery by opti-
mizing nanoparticle design, predicting effective therapeutic
targets, and enabling stimuli-responsive controlled drug
release, all of which enhance treatment precision and reduce
toxicity. By forecasting drug resistance and tailoring delivery
systems to individual tumor profiles, Al supports personalized
therapy approaches that improve treatment efficacy and mini-
mize side effects. These advancements collectively contribute to
improving overall survival in cancer patients, addressing a crit-
ical clinical challenge by maximizing therapeutic impact while
reducing harm, as emphasized in recent oncology research.
Overall, the incorporation of Al and ML into targeted anticancer
drug delivery not only streamlines the research and develop-
ment process but also holds the potential to enhance clinical
outcomes, making cancer treatment more effective and
personalized for patients. This review aims to illuminate the
multifaceted purposes of employing Al in targeted anticancer
drug delivery. It underscores the recent advancements, such as
ML algorithms that predict drug responses and optimize
delivery mechanisms. Furthermore, it highlights the challenges
faced in the realm of data variability, regulatory hurdles, and
the need for robust clinical validation. Additionally, the review
delves into future perspectives, exploring the potential for AI to
enhance personalized medicine approaches, thereby tailoring
treatments to individual patient profiles. This exploration seeks
to provide a comprehensive understanding of how AI can
transform cancer therapeutics, paving the way for innovative
solutions that tackle the complexities of cancer treatment.

2. The role of Al in cancer therapies

With increasing incidence rates and difficulties in early iden-
tification and efficient treatment, cancer continues to be
a major cause of death. Therapeutic approaches are made more
difficult by tumor heterogeneity, underscoring the necessity of
patient-specific precision medicine.* With an emphasis on data
analysis, biomarker discovery, and ML-driven approaches, this
section examines Al's involvement in cancer therapy (Fig. 2).

2.1. Al algorithms and data analysis

Algorithms used in Al evaluate information, identify patterns,
and generate well-informed predictions or decisions, especially
when it comes to diagnosing and treating illnesses. By
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Fig. 2 Application of Al in cancer therapy could be categorized into
two main groups; analyzing data with Al algorithms and utilizing Al for
biomarkers identification.

identifying patterns in data and enhancing performance
without explicit programming, ML, a subset of Al, enables
systems to learn from experience. These models take data out of
datasets and link patterns to specific categories. A subfield of
ML called deep learning (DL) uses neural network-based
architectures to process large volumes of complex data in
a way that mimics human cognitive processes. In contrast to
conventional techniques, AI can gather, process, and analyze
data on its own to enhance patient outcomes. AT helps with drug
development, personalized medicine, patient monitoring,
treatment planning, and diagnostics through deep learning and
ML.*! Historically, clinicians in oncology relied on experience to
predict cancer outcomes. However, the digital data era has
highlighted the importance of AI-driven innovations such as ML
and DL for better prognosis and treatment planning.**?*
Oncology ML approaches are classified into three types: (I)
supervised, (II) unsupervised, (III) and semi-supervised learning
methods, each with its own set of advantages for evaluating
cancer-related datasets. Supervised learning uses labeled inputs
and maps known factors, such as omics data, to a specified
output, such as the presence or absence of disease. This allows
the algorithm to identify patterns that can be used to forecast
cancer diagnosis and prognosis. Unsupervised learning, on the
other hand, does not rely on labeled data; instead, it identifies
spontaneously existing patterns within datasets, making it
especially beneficial for uncovering previously unknown
molecular characteristics associated with cancer. Furthermore,
semi-supervised learning, which uses both labeled and unla-
beled data, is gaining popularity in multi-omics research,
allowing for higher predictive accuracy while lowering reliance
on large-scale labeled datasets.** The architecture of neural
networks is frequently used to describe them. An input and
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output layer forms the foundation of any neural network
architecture, while the number of hidden layers and how they
are connected determines the architecture's specificity.
Computational units, neurons, and receiving inputs from
upstream levels that are transformed into outputs sent to
downstream layers make up each layer. Numerous hidden
layers characterize deep neural networks. The deep architecture
of convolutional neural networks is intended to identify
patterns in spatially rich data, including whole-slide photo-
graphs, computed tomography (CT) scans, magnetic resonance
imaging (MRI), ultrasound and clinical
imaging.*®

ML has transformed virtual screening by improving the more
accurate identification of possible drug candidates. Predictive
accuracy was limited by traditional techniques like pharmaco-
phore modeling and molecular docking, which depended on
simplistic ligand-target interactions and rigid structures. On
the other hand, in order to enhance prediction performance,
ML algorithms integrate several data sources such as gene
expression profiles, protein structures, and drug-induced
phenotypic changes with complex chemical characteristics.
Virtual screening is made more effective and dependable by
models like support vector machines, random forests, and
deep-learning networks that can precisely predict binding
affinities and find novel compounds by learning patterns from
enormous databases of known ligand-target interactions.***”

By evaluating enormous biological datasets, such as
genomic, proteomic, and clinical data, ML plays a critical role in
therapeutic target selection by identifying disease-associated
targets for additional research. By uncovering hidden patterns
and relationships, ML algorithms overcome the complexity and
scale of such data that traditional statistical methods frequently
find difficult to handle. Methods such as t-distributed
stochastic neighbor embedding (t-SNE) and principal compo-
nent analysis (PCA) are used to identify connections between
illness symptoms, protein-protein interactions, and gene
expression profiles. Furthermore, databases like the Connec-
tivity Map (CMap) and the Drug Gene Interaction Database
(DGIdb) employ ML to curate drug-gene interactions and
examine gene expression profiles from drug-treated cells,
enabling target prioritization and revealing new therapeutic
relationships.?

While AI applications in oncology have shown tremendous
promise, it is essential to recognize that not all domains present
equal methodological challenges. For instance, image-based
cancer diagnosis (e.g, radiology or histopathology) often bene-
fits from the availability of large, well-annotated datasets and
relatively lower feature dimensionality. These characteristics
allow deep learning models, particularly CNNs, to perform with
high accuracy and generalizability across diverse settings. In
contrast, omics-based prediction of drug responses (e.g., tran-
scriptomics, genomics, proteomics) involves high-dimensional
datasets with far fewer samples. This “large p, small n”
scenario introduces risks of overfitting and model instability. As
a result, traditional deep learning architectures often under-
perform when applied directly to omics data, and more tailored
approaches are needed. These may include feature selection

images, X-rays,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison of Al challenges in imaging-based vs. omics-based cancer applications

Aspect Imaging-based cancer diagnosis

Omics-based drug response prediction Ref.

Data dimensionality
Sample size availability
Model performance
Overfitting risk
Preferred techniques
Interpretability

Low to moderate (2D/3D pixel arrays)
Often large (public image banks)
CNNs perform well

Lower due to regularity and scale
Deep CNNs (ResNet, EfficientNet)
Lower, but visual explanation possible

algorithms, regularization techniques, hybrid models, or multi-
modal integration strategies that fuse biological domain
knowledge with computational rigor. This contrast is summa-
rized in Table 1, which compares the key technical attributes of
image-based vs. omics-based Al applications in oncology.

2.2. Biomarker identification

With continuous improvements in biomarker identification
and detection enhancing precision medicine, cancer
biomarkers are essential to cancer care, supporting early diag-
nosis, prognosis prediction, and therapy monitoring.*® This
section explores how Al-driven approaches are advancing
biomarker identification, covering Al-based gene panels for
drug sensitivity, prognostic biomarker discovery, therapy
response prediction, and the role of non-coding RNA
biomarkers.

One important restriction in precision medicine is the lack
of solid predictive biomarkers, which makes therapy response
highly varied. To address this, Shin et al. created a Boolean-
based ML framework for identifying multi-gene biomarker
panels that can predict drug sensitivity. They used this tech-
nique to heat shock protein 90 (HSP90)-targeted therapy for
prostate cancer by creating expression profiles that correlate
with treatment response using proteomic data from patient-
derived explants. This method maximizes predictive accuracy
by improving biomarker selection through the use of Boolean
algebra. The framework's adaptability to different medicines
and tumor types beyond prostate cancer shows how Al can be
used to improve therapy efficacy and patient selection.*” Beyond
biomarker panels, Al is being utilized to improve drug response
predictions. One of the most difficult issues in oncology is that
preclinical models do not always accurately represent how
actual tumors behave, making treatment response difficult to
predict. To address this, Hostallero et al created Tissue-
Informed Deep Learning (TINDL), a deep learning framework
trained on cancer cell lines that incorporates tissue-informed
normalization and addresses biological differences between
lab models and patient tumors. By correctly identifying drug-
sensitive vs. drug-resistant tumors for 10 out of 14 treatments,
TINDL beat traditional ML models. Furthermore, it discovered
gene biomarkers that predicted treatment response; which were
confirmed to play a role in tamoxifen sensitivity through
experimental validation using siRNA knockdown.*® AI is also
revolutionizing prognostic biomarker discovery, overcoming
the limits of current markers, which frequently fail to deliver
meaningful survival forecasts. Zhang et al. created a ML-based

© 2025 The Author(s). Published by the Royal Society of Chemistry

Extremely high (>20 000 genes) 39-41
Often small (biopsy-based omics) 41

Deep learning may underperform 42 and 43
High due to dimensionality/sample imbalance 39 and 40
Feature selection, hybrid/ensemble ML models 44
Higher with feature-selected models 45

autophagy-related long non-coding RNA (IncRNA) signature
for osteosarcoma, which has a dismal prognosis. They discov-
ered 13 important autophagy-related IncRNAs that had
a substantial correlation with overall survival using patient data
from the therapeutically applicable research to generate effec-
tive treatments (TARGET) and gene expression omnibus (GEO)
databases. The higher predictive value of this signature in
comparison to conventional biomarkers was validated by
Kaplan-Meier and receiver operating characteristic (ROC) curve
studies. Interestingly, these IncRNAs were also connected to the
infiltration of immune cells, indicating a potential role in the
development of tumors.* Similarly, in hepatocellular carci-
noma (HCC), the lack of accurate biomarkers hinders prognosis
and treatment planning. To address this, Tu et al. used ML
(Least Absolute Shrinkage and Selection Operator (LASSO)
regression, Support Vector Machine - Recursive Feature Elimi-
nation (SVM-RFE)) to derive six mitophagy-related biomarkers
(Autophagy Related Gene 12 (ATG12), Casein Kinase II Subunit
Beta (CSNK2B), Mitochondrial Transcription Termination
Factor 3 (MTERF3), Translocase of Outer Mitochondrial
Membrane 20 (TOMM20), TOMM22, and TOMM40) from gene
expression data. Using non-negative matrix factorization (NMF),
HCC patients were divided into two molecular groups, indi-
cating relationships with tumor immune microenvironment
(TIME), clinicopathological characteristics, and survival rates. A
prognostic model (riskScore) that included 10 mitophagy-
related genes also showed predictive potential for somatic
mutations, chemotherapy efficacy, Trans Arterial Chemo-
Embolization (TACE), and immunotherapy response.*

Aside from autophagy and mitophagy-related indicators, Al
is discovering novel angiogenesis-linked biomarkers in prostate
adenocarcinoma (PRAD). Although angiogenesis plays an
important role in tumor growth, its prognostic and therapeutic
significance in PRAD is unknown. Wang et al. used ML
approaches (Weighted Gene Co-expression Network Analysis
(WGCNA), Least Absolute Shrinkage and Selection Operator
(LASSO), and Cox regression) to discover Microtubule-
Associated Protein 7 Domain-Containing 3 (MAP7D3) as an
important angiogenesis biomarker. The strongest predictive
marker among the ten important genes was MAP7D3, which
was correlated with immunotherapy response and immune
infiltration. The significant binding affinity of MAP7D3 to
angiogenic medicines was established by molecular docking
analysis, and its clinical relevance was confirmed by immuno-
histochemistry in 60 PRAD tissue samples.** Al is also helping to
find therapy-specific biomarkers, allowing for more effective
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usage of tailored medicines such as mTOR inhibitors. Ever-
olimus is an effective treatment for metastatic ER+ breast
cancer, but there are no good indicators to predict which
patients would benefit. To address this, Nath et al. created a ML-
based biomarker that predicts everolimus response by
analyzing gene expression profiles from ER+ breast cancer cell
lines and patient data. Their model successfully differentiated
between responders and non-responders, suggesting its utility
in optimizing patient selection for mTOR-targeted therapy
(Fig. 3).*

In addition to predicting drug response, Al is transforming
drug combination discovery by overcoming the constraints of
expensive and time-consuming experimental screening. Liu and
Xie developed TranSynergy, a deep learning model that
improves model interpretability and predicts synergistic phar-
maceutical interactions. In contrast to earlier methods, TranS-
ynergy explicitly models gene dependencies, gene-gene
interactions, and drug-target linkages in order to improve
prediction accuracy by incorporating biological information.
The model reveals novel pathways backed by experimental
evidence by using Shapley Additive Gene Set Enrichment Anal-
ysis (SA-GSEA) to identify essential genes contributing to drug
synergy. TranSynergy surpasses current models, as shown by
benchmark tests, and its predictions helped find new syner-
gistic drug combinations for ovarian cancer, which currently
has few options for treatment.>

A In vitro everolimus + exemestane response

MCF7, T47D, CAMA1,
ZR-75-1, HCC1428, MDA-MB-134, BT483,
LY2, MDA-MB-175

e
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N
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RNA-seq
\

Bayesian binary regression-derived
response signature

Fig. 3
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Al is also assisting with biomarker development in extremely
diverse tumors such as triple-negative breast cancer (TNBC).
TNBC's intricacy makes it difficult to identify clear predictive
biomarkers, restricting precision medicine methods. To
address this, Ghazal et al. used ML-guided gene selection to
examine gene expression data from the Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) reposi-
tories in order to enhance biomarker identification. They
discovered 27 important differentially expressed genes by
combining Linear Models for Microarray Data (LIMMA) and
ML-based feature selection; the models that performed the best
were Multi-Layer Perceptron, Random Forest, XGBoost, and
CatBoost. Among them, a densely interconnected hub gene
cluster was created by Estrogen Receptor 1 (ESR1), Forkhead
Box A1 (FOXA1), GATA3, X-box Binding Protein 1 (XBP1), Gene
Regulated by Estrogen in Breast Cancer 1 (GREB1), Androgen
Receptor (AR), and Anterior Gradient 2 (AGR2), indicating
possible functions as pharmacological targets and diagnostic
biomarkers.** Beyond protein-coding gene panels, Al is
extending biomarker identification to non-coding RNAs, espe-
cially in immune-related malignancies such as colorectal cancer
(CRC). While IncRNAs are rapidly being discovered in CRC,
their clinical significance is uncertain. Liu et al., created a ML-
based immune-derived IncRNA signature (IRLS) to improve
survival prediction and treatment stratification in CRC patients.
IRLS outperformed standard clinical and molecular character-
istics, serving as an independent risk factor for overall survival.

B Neoadjuvant everolimus response

Early-stage ER+ breast cancer
(n = 23 pre-treamtent,
n = 21 post-treatment)

. ™ s mmm

Quantile-normalized
microarray expression

v
Leave one out cross validation (LOOCV)

v
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(FCBF) J'
v
Integrated Predicted drug
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cancer cell lines treated with everolimus and exemestane. (B) Integration of patient microarray data and in vitro signatures within a cross-
validation framework to identify predictive biomarkers of response using a random forest model. Reproduced from ref. 52 under the terms of the
Creative Commons Attribution License (CC BY). Copyright 2022, Nath, Cosgrove, Chang and Bild.
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Additionally, high-risk patients responded better to
fluorouracil-based chemotherapy, but low-risk patients
benefited more from bevacizumab and pembrolizumab, indi-
cating its significance in customized immunotherapy.”® In
addition to immune-related IncRNAs, AI discovered pharma-
cogenomic biomarkers other than protein-coding genes (PCGs),
underlining the potential of IncRNAs in drug response predic-
tion. Nath et al., developed a ML-based approach for compre-
hensively evaluating IncRNAs as predictors of drug sensitivity.
According to their data, the accuracy of IncRNA expression in
predicting susceptibility to hundreds of anticancer medicines
was comparable to that of PCGs. They discovered some IncRNA-
specific biomarkers, such as Epidermal Growth Factor Receptor
Antisense RNA 1 (EGFR-AS1) and MicroRNA 205 Host Gene
(MIR205HG), which were experimentally confirmed to be
predictors of anti-EGFR medication response after adjusting for
proximal PCG effects.*® Finally, Al is also addressing the urgent
need for reliable biomarkers in gastric cancer (GC), a leading
cause of cancer-related mortality. Despite its high prevalence,
GC lacks effective markers for early detection and prognosis. To
bridge this gap, Azari et al., analyzed TCGA database using ML
methods (SVM, Random Forest, and k-Nearest Neighbors (k-
NN)), finding a panel of 29 miRNAs that may be biomarkers.
Among them, there was a significant correlation between early
detection and increased mortality and hsa-miR-21, hsa-miR-
133a, hsa-miR-146b, and hsa-miR-29c. With an accuracy of
93% and an Area Under the Curve (AUC) of 88.5%, the SVM
model showed excellent prediction performance. The biological
significance of these miRNAs was confirmed by functional
pathway analysis, which connected them to networks linked to
cancer.”

3. Al for monitoring and adapting
treatment

As cancer treatment becomes more personalized, Al is helping
to bridge the gap between complex biological data and clinical
decision-making. Al-powered approaches are changing how
treatments are tailored to individual patients, from identifying
new therapeutic targets to predicting drug response and
tracking tumor evolution.*® This section examines the AI
applications for real-time data collection, targeted drug
delivery, personalized treatment strategies, predictive
modeling, and imaging-based tumor characterization.

3.1. Real-time data collection

The integration of AI in cancer treatment has revolutionized
real-time data collection, enabling more precise monitoring
and adaptation of therapeutic strategies. Al systems can process
vast amounts of data from various sources, including electronic
health records, imaging studies, and genomic data, facilitating
a comprehensive understanding of patient responses to treat-
ment. This capability is particularly crucial in oncology, where
the heterogeneity of tumors necessitates personalized treat-
ment approaches. For instance, Al algorithms can analyze real-
time data to identify patterns that predict patient outcomes,
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thereby allowing oncologists to adjust treatment regimens
dynamically based on individual responses.****** Wearable
biometric monitoring devices (BMDs), which enable contin-
uous, non-invasive patient monitoring, are a significant devel-
opment in Al-driven real-time data collection. Real-time
biometric data analysis by these devices allows for early health
issue detection and individualized treatment modifications.
However, patient acceptance is crucial to their success. In
a survey of more than 1100 chronic illness patients, Tran et al.,
discovered that although 80% of respondents were positive
about Al-assisted monitoring, 35% were worried about data
privacy or the displacement of human decision-making.®
Beyond general surveillance, Al improves preoperative decision-
making in oncology, especially for ovarian cancer treatment.
Traditional diagnostic approaches based on blood biomarkers
frequently fail to provide an accurate prognosis prior to surgery.
To address this, Kawakami et al., created an ML approach that
combines clinical data with numerous blood indicators,
resulting in better forecasts of surgical outcomes, clinical stage,
and tumor kind. Among the seven AI models examined,
Random Forest (RF) had the highest accuracy (92.4%) and AUC
(0.968) for differentiating epithelial ovarian cancer (EOC) from
benign tumors. Furthermore, RF models identified high-risk
early-stage EOC subgroups with worse survival rates and pre-
dicted histotypes and the likelihood of surgical resection,
proving AI's ability to improve surgical planning.®*
Additionally, AI's role in real-time intraoperative imagery
improves surgical precision. In a study, the use of hyperspectral
imaging (HSI) in conjunction with a SVM classifier was inves-
tigated to identify tumorous from healthy tissue during
advanced-stage ovarian cancer surgery. Their ex vivo investiga-
tion on tissue samples from ten patients revealed an AUC of
0.83, a sensitivity of 81%, and a specificity of 70%, demon-
strating the potential of HSI for quick, non-contact tumor
detection during surgery.®* Similar to this, Chalopin et al.,
looked into Al-driven HSI for minimally invasive cancer proce-
dures, where tissue classification in real time is still difficult.
Their Al-assisted HSI system was able to differentiate 20
different organs with over 95% accuracy using experimental
animal models. With a sensitivity of 90% and an F; score of
79%, it successfully distinguished the bile duct from
surrounding tissue in vivo and achieved an AUC of over 0.91 in
ex vivo tumor tissue identification.®® Furthermore, AI is
propelling advancements in real-time metabolic imaging,
especially with Hyperpolarized Magnetic Resonance (HP-MR),
which increases the sensitivity of MR signals by more than 10
000 times. The joint roles of AI and HP-MR in early tumor
diagnosis, aggressiveness evaluation, and therapeutic response
tracking were highlighted by Enriquez et al., in their study of the
applications of these technologies in pancreatic ductal adeno-
carcinoma (PDAC). Six preclinical studies and one clinical trial
were included in their systematic review, which showed how Al
improves image interpretation and metabolic biomarker
discovery. Due to its accessibility, computed tomography (CT)
has been the primary focus of AI research; however, the
increasing usage of MR imaging is anticipated to broaden Al-
HP-MR integration, allowing for more accurate, real-time
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metabolic insights for the diagnosis and treatment of pancre-
atic cancer.*

3.2. Predictive modeling

Oncology predictive modeling uses ML and DL to predict
patient survival, therapy response, and disease progression.
Traditional ML techniques like logistic regression, decision
trees, and support vector machines are frequently employed,
but sophisticated deep learning models improve accuracy by
identifying patterns in data. For the analysis of high-
dimensional clinical data, such as omics, imaging, and elec-
tronic health records, these methods are especially useful.*

Predictive modeling based on radiomics is improving the
assessment of treatment response by combining ML with
routine imaging data. Dercle et al., used serial CT scans to
create radiomics signatures that predict how sensitive non-
small cell lung cancer (NSCLC) is to systemic treatments
including gefitinib, docetaxel, and nivolumab. Their ML model,
which was trained using 1160 radiomics characteristics taken
from lung lesions, showed promise for clinical decision-making
by achieving AUC values of 0.77 for nivolumab, 0.67 for doce-
taxel, and 0.82 for gefitinib in validation cohorts. The model
supported more individualized treatment approaches by
examining tumor volume dynamics, invasion patterns, and
spatial heterogeneity. This analysis gave insights into treatment
response and overall survival prognosis.®

Extending radiomics to immunotherapy response, Sun et al.,
created a ML biomarker based on radiomics to forecast tumor-
infiltrating CD8 cells and how they could react to anti-
Programmed Death-1 (PD-1)/PD-L1 treatment. They trained
a model on 135 patients and verified it in three other datasets,
including TCGA, using contrast-enhanced CT images and RNA-
seq genomic data from four separate cohorts. The radiomic
signature predicted immunotherapy response at 3 months (p =
0.049) and 6 months (p = 0.025), and it differentiated immune-
inflamed tumors from immune-desert tumors (AUC = 0.76, p <
0.0001). Overall survival was significantly higher for patients
with higher radiomic scores (HR = 0.52, p = 0.0022), indicating
Al's promise for non-invasive immunotherapy outcome
prediction.®”” Because standard CT sometimes misses complete
responders, evaluating the response of bladder cancer to neo-
adjuvant chemotherapy is still challenging. Cha et al. improved
this by using pre- and post-treatment CT scans to create three
radiomics-based models: a hybrid model employing paired
lesion radiomics features-regions of interest (RF-ROI), a radio-
mics feature model which was applied to the segmented lesions
(RF-SL), and a deep-learning convolutional neural network (DL-
CNN). These models, which were evaluated on 41 patients and
trained on 82, were designed to forecast pathologic complete
response (TO stage). After being trained on 6700 ROI pairs, the
DL-CNN and RF-SL demonstrated encouraging results, occa-
sionally outperforming radiologists in identifying minute post-
treatment alterations. The study shows how radiomics, partic-
ularly with deep learning, may help earlier, noninvasive treat-
ment assessment and lead more individualized care in bladder
cancer, even though none significantly surpassed specialists.®®
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Al-driven models that forecast treatment response and direct
drug combination tactics are transforming targeted cancer
therapy. DrugCell, a deep learning model developed by Kuenzi
et al. using 684 medicines and 1235 tumor cell lines, combines
drug structures and tumor genotypes to forecast therapeutic
results. By simulating biological subsystems within cells,
DrugCell provides mechanistic interpretability in contrast to
conventional models. High predictive accuracy (Spearman p =
0.80) was attained, and actionable pathways associated with
medication response were also found. CRISPR knockouts, drug
synergy screens, and patient-derived xenografts are examples of
experimental validations that supported the logical design of
combination therapies and validated the model's predictions.*
Drug sensitivity prediction is limited by model interpretability
and inconsistent accuracy across datasets. Pang et al. intro-
duced DrugGene, a type of deep learning model that combines
data from gene expression, mutation, copy number variation,
and drug chemical structure to predict anticancer response
(Fig. 4A). Built on 8969 drug-cell line pairs from Cancer Thera-
peutics Response Portal (CTRP) and Genomics of Drug Sensi-
tivity in Cancer (GDSC), the model combines a visual neural
network structured around 2086 biological subsystems with
a standard neural network for drug features. DrugGene ach-
ieved the lowest mean squared error (0.11) compared to Drug-
Cell (0.14), expBox (0.17), and elastic net (0.27). It also revealed
interpretable mechanisms of drug response, identifying key
predictive subsystems such as phagocytosis.” Given the lack of
clinical scalability of current biomarkers, accurately predicting
response to immune checkpoint inhibitors (ICI) in advanced
melanoma remains a challenge. In order to predict ICI
response, Johannet et al. created a deep learning-based classi-
fier that combines clinical data and histology slide analysis. The
algorithm, which was trained using data from New York
University and verified at Vanderbilt University, successfully
classified patients into groups with high and low risk progres-
sion, achieving an AUC of 0.80. Significantly lower progression-
free survival was observed in high-risk patients (P = 0.02, P =
0.03), highlighting AI's potential for clinical integration in
immunotherapy decision-making. Precision oncology may be
able to apply it with additional validation.”

In low-resource environments, where visual inspection is
frequently employed but frequently unreliable, cervical cancer
screening is still a significant gap. To get around this, Hu et al.
trained a deep learning model to analyze digital cervical images
from 9406 women in Costa Rica who were tracked for
a maximum of 18 years. With an AUC of 0.91, the model
produced image-based risk scores that correctly detected
cervical cancer and precancer. This performance outperformed
both traditional cervicography interpretation (AUC 0.69) and
cytology (AUC 0.71). The model identified 55.7% of all pre-
cancers discovered in the entire adult cohort during a simulated
screening round for women ages 25 to 49, but only 11.0% of
them were referred for additional care. These findings highlight
the potential of Al-based picture evaluation as a reliable, scal-
able screening method in situations without conventional
infrastructure.” Moreover, teledermatology is essential for the
early diagnosis of skin cancer, but it frequently leads to needless
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Fig. 4 Overview of the DrugGene model architecture and representation analysis. (A) Schematic image related to the flow chart steps of
DrugGene. It works via integrating the outputs of visible neural networks (VNNs) and traditional artificial neural networks (ANNs) for drug
response prediction. Reprinted from ref. 70 under the terms of the Creative Commons CC BY license. Copyright 2024, The Author(s). (B)
Workflow of DeepXplainer model. (C) Utilizing hybrid model (combination of CNN and XGBoost) for predicting lung cancer. Reproduced with

permission from ref. 74. Copyright 2023, Elsevier B.V.

biopsies and referrals, which raises the cost of healthcare. An Al
as a Medical Device (AlaMD) based on CNNs was assessed by
Marsden et al., to classify skin lesions within a UK-based tele-
dermatology cancer pathway in order to address this issue.
AlaMD maintained good sensitivity (91-92.5%), equivalent to
dermatologists, while accurately identifying more lesions that
did not require a biopsy or urgent review than teledermatology's
standard-of-care (p = 0.001) in a prospective trial of 789 lesions.
AlaMD offered an effective and scalable solution for maximizing
teledermatology services in skin cancer diagnosis by cutting
down on pointless referrals without sacrificing accuracy.” Al-
assisted lung cancer detection has made great strides, but
a big obstacle still exists: deep learning models’ lack of inter-
pretability, which breeds mistrust among physicians. Wani
et al., created DeepXplainer, a hybrid deep learning model, to

© 2025 The Author(s). Published by the Royal Society of Chemistry

address this issue (Fig. 4B and C). It incorporates SHAP (Shapley
Additive Explanations) for interpretability and CNNs with
XGBoost for lung cancer classification. DeepXplainer out-
performed conventional techniques with 97.43% accuracy,
98.71% sensitivity, and an F;-score of 98.08% using the Survey
Lung Cancer dataset. DeepXplainer offered a more transparent
and dependable Al-powered lung cancer detection tool by
bridging the gap between physician trust and AI decision-
making by presenting both local and global explanations for
its forecasts.”

Planning for radiation therapy by hand takes a lot of time
and is frequently constrained by variations in dose complexity
and quality. Babier et al. used data from 217 oropharyngeal
cancer patients to create an automated planning pipeline that
combines inverse optimization and ML-based Dose-Volume
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Histogram (DVH) prediction to address this issue. The bagging
query (BQ) and generalized PCA (gPCA) KBP models were eval-
uated. Even when plan complexity was limited, gPCA plans
continued to outperform clinical plans by 21.2 percentage
points, meeting 90.2% of target criteria. Despite surpassing
clinical performance by 6.3 points and meeting 74.4% of organs
at risk (OARs) criteria, BQ plans suffered under complexity
controls. Radiation therapy planning that is fully automated
and clinically feasible can be achieved with this method.”
Furthermore, SigMA, a ML-based technique created by Gulhan
et al., eliminated the need for whole-genome or whole-exome
sequencing by identifying homologous recombination defi-
ciency (HRD) mutational signals from specific gene panels.
Their algorithm predicts ovarian cancer patients' susceptibility
to PARP inhibitors and platinum-based treatment by correctly
identifying HR-deficient tumors. Al-driven predictive modeling
in precision oncology was demonstrated by SigMA's capacity to
identify HRD signatures even in samples with low mutation
counts, increasing the number of patients eligible for targeted
therapies.”

3.3. AI for imaging and tumor characterization

Al-powered imaging technologies are revolutionizing cancer
diagnosis by improving tumor characterization via automated
picture analysis. AI models help to differentiate tumor stages
during endoscopic operations, hence improving clinical
decision-making. Ebigbo et al., created a deep learning model to
categorize Barrett's cancer into Tla (localized) and Tib
(submucosal invasive) using white-light endoscopic images.
The Al system attained a 71% accuracy rate, equivalent to expert
endoscopists, confirming its clinical utility. However, while
promising, current AI models require additional improvement
for real-time video analysis.”

In addition to endoscopic imaging, Al is essential for
differentiating between benign and malignant tumors using
various imaging modalities. Wang et al. used ultrasound images
from 251 patients to assess the diagnostic performance of four
deep learning models: ViT-B\16, EfficientNetB3, DenseNet121,
and ResNet50. With an AUC of 0.82 and an accuracy of 80%,
EfficientNetB3 outperformed the others. ResNet50, with an AUC
of 0.80, and ViT-B\16 and DenseNet121, both with an AUC of
0.81, came in close succession. All models outperformed less
experienced radiologists, whose AUCs ranged from 0.68 to 0.75,
and performed comparably to experienced clinicians. These
findings imply that AI can assist in making diagnoses, espe-
cially in situations where specialized knowledge might be
scarce.”® Additionally, it can be difficult to distinguish between
benign and malignant parotid tumors on plain CT, especially
when contrast enhancement is not present. To address this, Hu
et al. used 917 cropped tumor images from 283 patients to train
deep learning models (ResNet50, VGG16_bn, and Dense-
Net169). With an AUC of 0.96 and image-level accuracy, sensi-
tivity, and specificity of 90.8%, 91.3%, and 90.4%, respectively,
ResNet50 demonstrated the best performance. Accuracy
increased to 92.3% when a voting model was used for patient-
level classification. The model performed better than two
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radiologists, indicating that it could be used as a helpful tool for
early diagnosis with routine CT scans.”

Treatment planning depends on accurate lymph node
staging, but conventional imaging techniques frequently can't
tell the difference between benign and metastatic nodes. The
use of AI in CT and MRI for the diagnosis of lymph node
metastases from colorectal cancer was the subject of a compre-
hensive review and meta-analysis by Bedrikovetski et al. Their
results demonstrated that AI may improve preoperative staging
accuracy, with deep learning models outperforming radiolo-
gists (Area Under the Receiver Operating Characteristic Curve
(AUROC) 0.917 vs. 0.688).%° Similarly, conflicting imaging
interpretations make it difficult to diagnose lymph node
metastases in oral squamous cell cancer (OSCC). With an AUC
of 0.92, sensitivity of 0.79, and specificity of 0.90, Deng et al.'s
analysis of AI applications in CT and MRI for LN metastatic
prediction showed that AI models performed better than skilled
radiologists.** Furthermore, in order to diagnose lymphoma,
Bai et al. carried out a thorough investigation and meta-analysis
of Al's diagnostic capabilities in 30 research. With 87% sensi-
tivity, 94% specificity, and an AUC of 97%, AI models showed
great promise for enhancing lymphoma detection. Over-
estimation issues and the requirement for uniformity, however,
continue to be important research topics.*

Although accurate tumor segmentation is necessary for
glioma diagnosis and treatment planning, manual delineation
is still time-consuming and labor-intensive. To overcome this
difficulty, Li et al. produced a transformer-based multi-task
deep learning model that can identify invaded brain regions
and segment tumors at the same time, a task that has seldom
been handled by earlier models. The model, which was trained
on 354 patients with grade II-IV gliomas, demonstrated
consistently high AUCs across tumor grades and demonstrated
outstanding performance on an independent test set (AUC:
94.95%; Dice score: 87.60%). The model provides a more thor-
ough understanding of tumor spread by combining the two
tasks, which may help surgeons make better judgments. The
study was constrained by its retrospective methodology and
absence of external validation, and it is yet unclear if trans-
former architectures can be used in clinical workflows in the
real world (Fig. 5).*°

Effective treatment of gliomas requires molecular charac-
terization. A multi-task deep learning model was created by Van
der Voort et al. that accurately predicts important molecular
features from preoperative MRI, such as tumor grade, isocitrate
dehydrogenase (IDH) mutation status, and 1p/19q co-deletion,
while also concurrently segmenting gliomas. AUCs of 0.90 for
IDH mutation, 0.85 for 1p/19q co-deletion, and 0.81 for tumor
grading were attained by the model, which was trained on
a sizable multi-institutional dataset of 1508 patients from 16
centers and assessed on an independent cohort of 240 patients
from 13 centers. An average Dice score of 0.84 was attained for
tumor delineation. This method has shown good generaliz-
ability across institutions and provides a non-invasive, inte-
grated solution for glioma assessment, indicating potential for
wider clinical application.** When it comes to pediatric brain
tumors, especially those located in the posterior fossa, precise

© 2025 The Author(s). Published by the Royal Society of Chemistry
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classification is essential but frequently arbitrary. To overcome
this limitation, a deep learning model trained on MRI data from
five pediatric facilities was created by Quon et al., which used
a modified ResNeXt-50-32x4d architecture, performed better
than expert radiologists in differentiating between ependymo-
mas, pilocytic astrocytomas, medulloblastomas, and diffuse
midline gliomas, providing a more accurate diagnostic tool for
treatment planning.*

The choice of treatment for nasopharyngeal carcinoma
(NPC) is still difficult because concurrent chemoradiotherapy
(CCRT) and induction chemotherapy (ICT) are both effective
alternatives. Zhong et al. created a deep learning-based radio-
mic nomogram that uses pre-treatment MRI data to predict
disease-free survival in order to improve individualized treat-
ment plans. When Al-driven suggestions were implemented,
the model's ability to classify patients into ICT-preferred and
CCRT-preferred groups greatly improved survival results.®®

3.4. Al in targeted anticancer drug delivery systems

Drug development has been transformed by the introduction of
cutting-edge technologies, such as computer-aided and Al-
based techniques. The timeframe for early-stage procedures
like target screening has been drastically reduced to a few years

© 2025 The Author(s). Published by the Royal Society of Chemistry

because of these advancements. With these advancements,
approximately one in fifty compounds from preclinical studies
could progress to clinical trials in as little as two years, while up
to one in twenty compounds entering preclinical trials could
progress within three to five years. Artificial intelligence and
computational methods aid in structure design by modifying
bioactive molecules, predicting drug-protein interactions,
assessing ADME (absorption, distribution, metabolism, and
excretion) properties, and analyzing bioavailability. These
methods save time and money by assisting in the early elimi-
nation of non-viable candidates, even though not all
compounds are successful in subsequent stages.*”*®
Computational models are required for better discovery
because experimental methods for identifying novel anticancer
peptides (ACPs) are expensive and ineffective. ACP-DL, a deep
learning model built on long short-term memory (LSTM) neural
networks, was created by Yi et al., to address this. ACP-DL effi-
ciently separates ACPs from non-ACPs by combining binary
profile features with k-mer sparse matrices. Through cross-
validation, their model outperformed current methods in
terms of accuracy and specificity. To aid in future research, the
authors also presented two benchmark datasets, ACP740 and
ACP240. This study demonstrates how deep learning helps
speed up the discovery of ACP, which will ultimately aid with the
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creation of tailored anticancer drugs.*® Peptide-based thera-
peutics often suffer from toxicity concerns, such as hemolytic
activity, limiting their systemic application. Addressing this,
Plisson et al, created ML algorithms to forecast hemolytic
characteristics and direct the creation of safer antimicrobial
peptides (AMPs). Their gradient boosting classifier model was
able to categorize hemolytic peptides with 95-97% accuracy. By
using outlier detection techniques to further hone the predic-
tions, 34 high-confidence non-hemolytic natural AMPs were
found, and 507 non-hemolytic peptides were designed from
scratch. These results create a computational paradigm that
optimizes therapeutic efficacy while reducing toxicity risks,
which could be applied to the discovery of anticancer peptides
(Fig. 6).”°

Beyond peptides, Al also have the capability of transforming
nanoparticle-based drug delivery, enabling precise control over
particle size, drug release kinetics, and biodistribution. An AI-
based computational model was created by Baghaei et al., to
maximize the release behavior of poly (lactic-co-glycolic acid)
(PLGA) biodegradable nanoparticles for targeted medication
administration. They used artificial neural networks (ANNs) to
simulate the link between the output parameters (PLGA particle
size and initial drug burst) and the important input factors
(polymer molecular weight, stabilizer concentration, polymer
concentration, and sonication rate). The most important factor
affecting the size of nanoparticles and the drug release profile
was found to be the molecular weight of PLGA by the Al-driven
regression analysis. Additionally, multi-objective optimization
using a genetic algorithm allowed for the precise modifying of
PLGA nanoparticles to reduce size and initial burst.®* Addi-
tionally, Mostafavi et al., optimized the size of paclitaxel-loaded
poly (p,L-lactide-co-glycolide-N-p-maleimido benzoic hydrazide)
(PLGA-PMBH) nanoparticles made using a modified nano-
precipitation process using artificial neural networks (ANNS).
Using 40 experimental samples to train the AI model, the study
examined the effects of sonication power, drug content, poly-
mer content, and the organic/aqueous phase ratio (acetone/
water) on nanoparticle size. Particle size was directly corre-
lated with polymer and drug concentration, according to 3D
modeling, with the acetone/water ratio having the most effect.
Furthermore, at lower values, sonication power had an indirect
effect on nanoparticle size, but at higher values, it had a direct
effect.”” The drug release kinetics of pH- and temperature-
responsive  poly(N-isopropyl  acrylamide-co-acrylic  acid)/
poly(ethylene  glycol)  (poly(NIPAAm-co-AAc)/PEG) inter-
penetrating polymer network (IPN) hydrogel loaded with doxo-
rubicin (DOX) were modeled by Boztepe et al. using an Al-driven
methodology. They successfully predicted drug release profiles
under various physiological situations by using support vector
regression (SVR), least squares SVM (LS-SVM), and artificial
neural networks (ANNs). Their ANN-based model performed
better than alternative approaches, indicating AI's potential to
improve controlled release mechanisms and optimize medica-
tion delivery using nanoparticles.”

While AI has optimized nanoparticle formulation, ensuring
effective drug transport and biodistribution remains a chal-
lenge. In order to anticipate NP biodistribution and tumor-
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targeted delivery efficiency, Chou et al. created an Al-assisted
physiologically based pharmacokinetic (PBPK) model. This
model demonstrated good correlations with experimental data
(R* = 0.70 for 133 out of 288 datasets). Although long-term
forecasts (R> = 0.56 at 168 hours) were less accurate, their
model was notable for its excellent accuracy in projecting
maximal delivery efficiency (R* = 0.83) and early tumor accu-
mulation (R*> = 0.82 at 24 h). This method improves computa-
tional screening for cancer nanomedicines by improving NP
cellular absorption kinetics, providing a viable substitute for
extensive animal testing (Fig. 7).°* Additionally, a ML-based
bioinformatics tool called CPPred-FL was created by Qiang
et al, to identify cell-penetrating peptides (CPPs) on a wide
scale. CPPs are transporter vehicles that transfer anticancer
medicines into living cells. To extract pertinent compositional,
positional, and physicochemical aspects, their approach
combined random forest classifiers with numerous feature
descriptors that resulted in better prediction performance than
current CPP predictors. By using this method, targeted peptide-
based drug delivery systems for cancer treatment can be
developed more quickly because to CPPred-FL's quick identifi-
cation of CPPs.”

3.5. Personalized treatment adjustments

Early detection and individualized treatment planning are
critical for increasing cancer survival rates while reducing the
hazards of ineffective aggressive therapy. ML algorithms can
evaluate medical photos, clinical data, and molecular profiles to
detect tiny patterns that the human eye may miss, resulting in
faster diagnosis and more effective drug choices.***® For
instance, reliability in predicting neoantigens, or tumor-specific
peptides that elicit immune responses, is a major obstacle in
cancer immunotherapy. Traditional techniques are either
restricted to particular human leukocyte antigen (HLA) alleles
or necessitate time-consuming peptide screening. To address
this issue, Bulik-Sullivan and colleagues created EDGE (a type of
mass spectroscopy-based model), a deep learning algorithm
that was trained using data from HLA peptide mass spectrom-
etry and genomic datasets. When compared to conventional
binding affinity models, their method increased the positive
predictive value of HLA antigen presentation predictions by up
to nine times. This improvement was seen in tumor mass
spectrometry test datasets, where EDGE significantly out-
performed binding affinity models using gene expression
thresholds, achieving an average Positive Predictive Value (PPV)
of 0.54 at 40% recall. The benefit remained constant across
different memory levels, proving the resilience of EDGE in
neoantigen prediction. The foundation for Al-powered immu-
notherapies is laid by EDGE's precise identification of
neoantigen-reactive T cells, which permits highly individual-
ized, patient-specific immune responses (Fig. 8).”

Predicting chemoresistance is a crucial use of Al that helps
oncologists choose the best drugs for each patient. To predict
paclitaxel and gemcitabine resistance in breast cancer, different
types of ML models were created by Dorman et al., that incor-
porated copy number variations and gene expression data.
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Their SVM-based approach produced cell lines with 85% gem-
citabine resistance and 82% paclitaxel resistance accuracy. 84%
of the time, the paclitaxel model accurately detected sensitivity
in patient samples, demonstrating the potential of Al-powered
predictive models to maximize chemotherapy selection and
enhance patient outcomes.*®

Additionally, Al is revolutionizing surgical decision-making
by assisting physicians in avoiding needless procedures. A
random forest ML model was created by Bahl et al., to forecast
which high-risk breast lesions (HRLs) have the highest chance
of developing into cancer. Using patient age, pathology text
traits, and histology, the model successfully prevented 30.6% of

27808 | RSC Adv,, 2025, 15, 27795-27815

needless procedures while accurately identifying 97.4% of
malignant cases. This Al-powered tool for decision-making
could save expenses, surgical complications, and patient
suffering.®® Similar to this, a key surgical choice in gastric
cancer is the extent of lymphadenectomy (D1 vs. D2). Liu and
colleagues created a ML model that optimized lymphadenec-
tomy planning by combining logistic regression (LR), SVM, and
auto-encoder (AE) approaches. Overtreatment rates were low-
ered by their model from 15.1% (JPN 4th criteria) and 21.7%
(treat-all) to as low as 0.7-0.9%, while validation tests showed
an AUC of 0.946. This demonstrates how AI can enhance
surgical techniques and patient results.'*
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4. Challenges

As promising as the future of Al in targeted anticancer drug
delivery appears, several critical challenges must be addressed
to fully realize its potential. These challenges span technical,
ethical, regulatory, and practical dimensions that require care-
ful consideration and strategic planning.

4.1. Data quality and standardization

The effectiveness of Al algorithms largely depends on the
quality and quantity of data available for training. In the field of
oncology, data can be fragmented across various institutions,
lacking standardization in formats, definitions, and collection
methods.'>'** This inconsistency can lead to biases in Al

© 2025 The Author(s). Published by the Royal Society of Chemistry

ature America, Inc.

models, resulting in inaccurate predictions and recommenda-
tions. Furthermore, many datasets are limited in scope, often
reflecting specific patient demographics or treatment protocols
that may not be generalizable. To overcome this challenge,
there is a critical need for collaborative efforts to create
centralized, standardized databases that encompass diverse
patient populations and comprehensive clinical, genomic, and
treatment data. Additionally, ensuring data integrity and accu-
racy is essential for training robust AI models capable of
yielding reliable insights.

4.2. Interpretability and transparency

The “black box” nature of many Al algorithms, especially deep
learning models, poses a significant challenge in clinical
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settings.'”® Healthcare professionals must understand the
rationale behind Al-driven recommendations to trust and adopt
these technologies effectively. Lack of interpretability can lead
to skepticism among clinicians, hindering the integration of Al
into routine practice. To address this challenge, researchers
must prioritize the development of explainable ATl models that
provide clear insights into their decision-making processes.
Techniques such as feature importance analysis, visualization
of model predictions, and the use of simpler models when
appropriate can enhance transparency. Engaging clinicians in
the development of Al tools can also ensure that the outputs are
relevant and understandable.

4.3. Regulatory hurdles

The deployment of AI technologies in healthcare is subject to
complex regulatory frameworks that vary by region. Regulatory
agencies must establish guidelines that ensure the safety, effi-
cacy, and ethical use of AI in clinical practice.* However,
existing regulations may not adequately address the unique
challenges posed by Al, such as algorithm validation, data
privacy, and accountability for Al-driven decisions. Navigating
this regulatory landscape can be daunting for developers and
healthcare providers. To mitigate these challenges, there is
a need for ongoing dialogue between AI developers, regulatory
bodies, and healthcare stakeholders. Establishing clear guide-
lines and pathways for the approval of AI technologies will
facilitate their integration into clinical practice while ensuring
patient safety.

4.4. Bias and equity issues

Al algorithms are susceptible to biases that can arise from the
data used to train them. If the training data lacks diversity or
does not accurately represent the patient population, the
resulting AI models may perpetuate existing disparities in
healthcare outcomes.'”>'*® For instance, algorithms trained
predominantly on data from specific demographic groups may
not perform well for underrepresented populations, leading to
inequitable treatment recommendations. Addressing bias
requires a concerted effort to ensure that training datasets are
inclusive and representative of diverse populations. Addition-
ally, ongoing monitoring and evaluation of AI models must be
conducted to identify and mitigate bias in real-world applica-
tions. Engaging diverse stakeholders in the development
process can also help ensure that the technology is designed
with equity in mind.

4.5. Integration into clinical workflows

Successfully integrating Al technologies into existing clinical
workflows poses practical challenges. Healthcare providers
must navigate the complexities of integrating Al systems with
electronic health records (EHRs) and other clinical tools.
Moreover, clinicians may face resistance to adopting new
technologies, especially if they perceive them as disruptive to
established practices.'””'*® To facilitate successful integration,
Al solutions must be designed with usability and workflow
compatibility in mind. Providing adequate training and support
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for healthcare professionals is also essential to ensure they feel
comfortable using AI tools in their practice. Collaborative
efforts between AI developers and healthcare institutions can
ensure that solutions are aligned with clinical needs and
workflows.

4.6. Clinical validation and reproducibility

Al models must undergo rigorous clinical validation to
demonstrate their effectiveness and safety in real-world
settings. However, achieving reproducibility across diverse
patient populations and clinical environments can be chal-
lenging.'*” Variability in treatment responses, tumor heteroge-
neity, and differences in healthcare systems complicate the
validation process, making it difficult to generalize findings
from one study to another. To address this challenge,
researchers must prioritize robust validation studies that
encompass diverse populations and clinical scenarios. Utilizing
multi-institutional collaborations and large-scale datasets can
enhance the generalizability of AI models, ensuring that they
are applicable in various contexts.'*’

4.7. Cost and resource allocation

The development and implementation of Al technologies can be
resource-intensive, requiring significant financial investment
and skilled personnel. Many healthcare institutions, particu-
larly those in low-resource settings, may struggle to allocate the
necessary resources for Al adoption.™* This disparity can exac-
erbate existing inequalities in healthcare access and outcomes.
To address cost barriers, stakeholders must explore innovative
funding models, partnerships, and collaborations that can
support the development and implementation of Al technolo-
gies. Moreover, demonstrating the potential return on invest-
ment for Al solutions through improved patient outcomes and
operational efficiencies can encourage healthcare organizations
to invest in these technologies.'

4.8. Interoperability issues

The integration of Al systems within the healthcare ecosystem
often faces interoperability challenges. Different healthcare
institutions may utilize various EHR systems and data formats,
making it difficult for AI algorithms to access and analyze
comprehensive patient data."**'** The lack of standardized data
formats and communication protocols can hinder the seamless
integration of AI tools into clinical workflows. To address
interoperability challenges, stakeholders must collaborate to
establish universal standards for data sharing and integration.
Developing Al solutions that can adapt to diverse data sources
while maintaining data integrity and security will be essential to
overcoming this barrier.

4.9. Scalability of AI solutions

While AI models may perform well in controlled research
settings, scaling these solutions for widespread clinical use
poses significant challenges. Factors such as computational
demands, infrastructure requirements, and resource
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availability can limit the scalability of AI technologies."* Addi-
tionally, models that are effective in one clinical environment
may not translate well to another due to variations in patient
populations, treatment protocols, and healthcare systems. To
enhance scalability, AI developers must focus on creating
lightweight models that require fewer computational resources
while maintaining accuracy. Leveraging cloud computing and
distributed systems can also facilitate the deployment of Al
solutions across different healthcare settings.'*

4.10. Patient privacy and data security

The use of Al in healthcare raises significant concerns regarding
patient privacy and data security. Al algorithms often require
access to sensitive patient information, and any breaches or
misuse of this data can have serious consequences."'® Ensuring
compliance with data protection regulations, such as the Health
Insurance Portability and Accountability Act (HIPAA) in the
United States, is crucial for maintaining patient trust. Addi-
tionally, the implementation of robust cybersecurity measures
is essential to safeguard patient data from potential threats.
Developing Al solutions that prioritize privacy by design—such
as using federated learning techniques that allow model
training without sharing raw data—can help mitigate these

concerns.**e*?

4.11. Clinical acceptance and change management

The successful implementation of Al technologies in oncology
requires not only technological readiness but also cultural
acceptance within healthcare organizations. Clinicians may be
resistant to adopting new technologies, especially if they perceive
them as a threat to their expertise or if they lack confidence in the
reliability of Al-driven recommendations. Change management
strategies that involve engaging stakeholders, providing
adequate training, and demonstrating the value of Al in
enhancing clinical decision-making are essential for fostering
acceptance. Building a culture of collaboration between AI tech-
nologists and healthcare providers will also facilitate the inte-
gration of Al solutions into everyday practice."**"**

4.12. Long-term sustainability and maintenance

AI models require ongoing maintenance and monitoring to
ensure their continued effectiveness and relevance. As treat-
ment guidelines, clinical practices, and patient populations
evolve, Al algorithms must be updated to reflect these
changes.”” However, the long-term sustainability of AI solu-
tions can be challenging due to resource constraints and the
need for continuous investment in technology and personnel.
Healthcare organizations must develop strategies for the
ongoing support and maintenance of Al systems, including
regular performance evaluations and updates based on new
data and clinical insights."*

4.13. Ethical decision-making and accountability

The use of Al in clinical decision-making raises ethical ques-
tions about accountability and responsibility. In cases where AI-
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driven recommendations lead to adverse outcomes, it may be
unclear who is accountable—the Al developers, the healthcare
providers, or the institutions using the technology. Establishing
clear guidelines for ethical decision-making and accountability
in AI applications is essential to address these concerns.
Engaging ethicists, legal experts, and healthcare professionals
in discussions about the ethical implications of AI can help
create that guide responsible AI use in
oncology.'*****

frameworks

4.14. Public perception and trust

The acceptance of Al technologies in healthcare also hinges on
public perception and trust. Patients may have concerns about
the accuracy and reliability of Al-driven recommendations,
fearing that their care may be compromised by technology.
Building public trust in Al applications requires transparent
communication about how AI works, its potential benefits, and
the safeguards in place to protect patient welfare. Initiatives
aimed at educating patients and the general public about the
role of Al in cancer care can help demystify the technology and
foster a more positive perception.'****

4.15. Integration with existing treatment protocols

Integrating Al solutions with established treatment protocols
can be complex, as healthcare providers often have ingrained
practices based on years of experience. Introducing Al-driven
recommendations may require significant adjustments to
existing workflows and clinical guidelines. Ensuring that Al
tools complement rather than disrupt established practices is
vital for acceptance. Engaging clinicians in the development
phase can ensure that Al solutions are designed to fit within
current treatment protocols while enhancing them.*?****

5. Future perspectives

The future of AI in targeted anticancer drug delivery holds
immense promise, with several innovative directions poised to
reshape cancer treatment paradigms. As technology advances,
the integration of AI into oncology will likely lead to more
personalized, effective, and efficient therapies.

5.1. Personalized nanomedicine

One of the most significant future perspectives is the continued
evolution of personalized medicine. Al has the potential to
analyze an individual's genetic makeup, tumor biology, and
treatment history to develop tailored therapeutic strategies. By
leveraging multi-omics data, including genomics, tran-
scriptomics, proteomics, and metabolomics, AI can identify
specific biomarkers that predict treatment responses. This
personalized approach not only enhances the efficacy of tar-
geted therapies but also minimizes adverse effects, ultimately
improving patient outcomes. Innovations in nanotechnology,
coupled with AI, will drive advancements in personalized
nanomedicine. Al algorithms will enable the design of smart
nanoparticles that can deliver drugs directly to tumor sites
while responding to specific tumor microenvironment stimuli,
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such as pH or temperature changes. This targeted approach will
improve drug bioavailability and therapeutic efficacy while
minimizing systemic toxicity. Furthermore, Al-driven simula-
tions will optimize nanoparticle formulations, ensuring that
they are tailored to specific tumor characteristics, thus
enhancing treatment precision.

5.2. Enhanced drug discovery

Innovations in Al-driven drug discovery are expected to expedite
the identification of novel therapeutic agents and optimize
existing drugs for enhanced efficacy. ML algorithms can analyze
vast chemical libraries, predict compound interactions, and
identify potential drug candidates more rapidly than traditional
methods. Furthermore, Al can facilitate the design of combi-
nation therapies by predicting synergies between drugs, which
could lead to more effective treatment regimens for complex
cancers.

5.3. Real-time data analytics

The integration of AI with wearable technologies and mobile
health applications will enable real-time monitoring of patient
responses to treatment. Continuous data collection from
devices measuring vital signs, symptoms, and treatment side
effects will provide clinicians with valuable insights into patient
health. AT algorithms can analyze this data to adjust treatment
plans dynamically, ensuring that therapies remain effective and
responsive to patients' needs throughout the treatment process.

5.4. Advanced predictive analytics for treatment planning

Predictive analytics powered by AI will revolutionize treatment
planning in oncology. Future AI models will leverage vast
datasets to predict not only how a patient will respond to
a specific therapy but also the likelihood of adverse effects over
time. By simulating various treatment scenarios and outcomes,
Al can assist clinicians in selecting the most effective treatment
regimens while minimizing risks. This predictive capability will
extend to identifying optimal drug combinations, enabling
oncologists to tailor therapies that significantly enhance treat-
ment efficacy against complex tumor types.

5.5. Integration of AI with robotics

The combination of AI with robotic systems holds potential for
enhancing precision in drug delivery. Robotic-assisted drug
delivery systems can utilize AI algorithms to navigate complex
tumor environments and accurately deliver therapies directly to
cancer cells. This targeted approach minimizes damage to
surrounding healthy tissues and increases the likelihood of
treatment success.

5.6. Collaborative Al systems

Future advancements may also involve collaborative AI systems
that integrate insights from multiple sources, including clinical
data, research literature, and patient-reported outcomes. By
synthesizing information from diverse datasets, these systems
can provide comprehensive treatment recommendations,
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facilitating multidisciplinary collaboration among healthcare
professionals and improving the overall quality of care.

5.7. Ethical AI and bias mitigation

As the use of Al in oncology expands, future perspectives will
need to address the ethical implications of Al applications.
Researchers and clinicians will focus on developing frameworks
to ensure fairness and equity in Al algorithms, mitigating biases
that may arise from uneven data representation. Efforts will
include creating diverse datasets that accurately reflect patient
demographics, ensuring that Al-driven recommendations are
applicable to all populations. Ethical considerations will also
encompass data privacy and security, reinforcing the need for
transparent practices in Al utilization.

6. Conclusion

The integration of Al in targeted anticancer drug delivery has
witnessed remarkable advancements in recent years, signifi-
cantly enhancing the efficacy and precision of cancer treat-
ments. Innovations such as ML algorithms, deep learning
techniques, and advanced imaging analysis have empowered
researchers to analyze complex biological datasets and identify
patient-specific characteristics that influence treatment
responses. These advancements have led to the development of
personalized treatment strategies, allowing for more effective
targeting of therapies to cancer cells while minimizing harm to
healthy tissues. However, several challenges remain in the
widespread implementation of Al-driven targeted drug delivery
systems. Data quality and availability are critical hurdles, as the
success of AI models heavily relies on large, well-curated data-
sets that accurately represent diverse patient populations and
tumor biology. Additionally, issues related to the interpret-
ability of AI algorithms pose significant concerns, as clinicians
must understand and trust the decision-making processes
behind Al-driven recommendations. Furthermore, the integra-
tion of AI technologies into existing clinical workflows requires
careful consideration of regulatory frameworks and ethical
implications to ensure patient safety and data privacy. Addi-
tional explorations should focus on enhancing data sharing and
collaboration among institutions to create comprehensive
databases that reflect diverse cancer types and treatment
responses. Moreover, the development of explainable AT models
will be crucial in fostering clinician trust and facilitating the
adoption of Al-driven solutions in clinical practice. ML algo-
rithms analyze complex genomic and clinical datasets to iden-
tify patterns that help predict patient responses to treatments.
Deep learning techniques, particularly CNNs, improve the
accuracy of tumor detection and characterization through
advanced imaging analysis. Real-time monitoring and adaptive
learning allow for dynamic adjustments in drug dosages and
treatment schedules based on patient responses. Additionally,
Al optimizes nanoparticle design for drug delivery, expedites
drug discovery through predictive analytics, and integrates
multi-omics data to provide a comprehensive understanding of
tumor biology.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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