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of Tb3+ doped Sr–BDC
metal–organic framework materials and their
high-sensitivity fluorescent detection of Fe3+

Huan Yang,†a Xin Chen,†a Yaling Yu,a Changjin Liang,a Yunying Wu,a Boxin Qiu,a

Chenyang Zhang *a and Shaomin Lin*ab

This study presents the synthesis of a strontium-based metal–organic framework (Sr–BDC) through

a solvothermal method, employing strontium chloride and terephthalic acid as primary precursors. The

as-prepared Sr–BDC was subsequently functionalized with terbium ions (Tb3+) to yield a Tb3+@Sr–BDC

composite. Extensive structural characterization, including X-ray diffraction (XRD), thermogravimetric

analysis (TG), and the scanning electron microscope (SEM), confirmed that the Tb3+ incorporation

preserved the integrity of the Sr-MOF framework without inducing structural degradation.

Photoluminescence analysis demonstrated that Tb3+@Sr–BDC exhibits distinct Tb3+ emission peaks at

545 nm upon excitation at 294 nm, showcasing exceptional selectivity and sensitivity toward Fe3+ ions.

Stern–Volmer quenching analysis revealed a remarkably low detection limit of 7.3 × 10−6 mol L−1 for

Fe3+, with a linear response range spanning from 5 × 10−6 to 1 × 10−4 mol L−1. The potential

mechanisms responsible for Fe3+-induced fluorescence quenching in Tb3+@Sr–BDC was also analysised

in the study. These results underscore the potential of Tb3+@Sr–BDC as a highly efficient fluorescent

probe for applications in environmental monitoring and biomedical sensing.
1 Introduction

With the rapid advancements in analytical chemistry and mate-
rials science, there is an increasing demand for uorescent
sensing materials with high sensitivity and selectivity.1,2 This is
particularly critical in environmental monitoring and biomedical
applications,3,4 where the detection of metal ions such as iron
(Fe3+) is of paramount importance.5,6 Iron ions not only play
a vital role in biological systems but are also frequently detected
in industrial wastewater and environmental pollutants. Rare-
earth metal–organic frameworks (Ln-MOFs) have emerged as
a research hotspot in the eld of uorescent sensing7,8 due to
their unique porous structures and tunable chemical function-
alities, offering broad application prospects for the detection of
cations, anions, small organic molecules, and biomolecules.9–15

Metal–organic frameworks (MOFs) possess tunable porosity
and abundant active sites, and have demonstrated great poten-
tial in electronics,16 photocatalysis,17,18 and other elds. Post-
synthetic modication (PSM) strategies19–25 further extend their
application in highly sensitive detection. Embedding photo-
active Ln3+ ions into MOF lattices offers signicant advantages:
, Hanshan Normal University, Chaozhou,

tc.edu.cn; lsm678@hstc.edu.cn
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the intrinsic porosity of the MOF is preserved, while character-
istic lanthanide emission—long uorescence lifetimes, narrow
emission bands, and large Stokes shis—is introduced.
Compared with conventional luminescent probes, this approach
markedly improves the signal-to-noise ratio and thus detection
sensitivity, especially in biological systems with endogenous
organic uorescence. However, the high and variable
Fig. 1 X-ray powder diffraction (XRD) patterns of Sr–BDC and
Tb3+@Sr–BDC.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Thermogravimetric analysis (TGA) curve of Tb3+@Sr–BDC.
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coordination numbers of rare-earth ions26 render the direct
synthesis of targeted Ln-MOFs challenging. Terbium(III), with its
unique electronic conguration and excellent luminescence
properties, has been widely used to construct high-performance
uorescent probes. In this work, we employed a post-synthetic
modication strategy to embed Tb3+ into the Sr–BDC frame-
work, yielding a novel uorescent probe for the efficient detec-
tion of Fe3+.

Among rare-earth ions, terbium (Tb3+) is widely utilized for
constructing high-performance uorescent probes due to its
unique electronic conguration and luminescent properties. In
Fig. 3 The SEM images and EDS of the Sr–BDC and Tb3+@Sr–BDC (SEM
Tb3+@Sr–BDC).

© 2025 The Author(s). Published by the Royal Society of Chemistry
this study, we employed a post-synthetic modication strategy
to incorporate Tb3+ into the Sr–BDC framework, successfully
developing a novel uorescent probe for the highly efficient
detection of Fe3+.
2 Materials and methods
2.1. Reagents and instruments

Strontium chloride hexahydrate (SrCl2$6H2O), terephthalic acid
(H2BDC), N,N-dimethylacetamide (DMA), terbium(III) nitrate
hexahydrate (Tb(NO3)3$6H2O), copper(II) nitrate trihydrate
(Cu(NO3)2$3H2O), chromium(III) nitrate nonahydrate
(Cr(NO3)3$9H2O), nickel(II) nitrate hexahydrate (Ni(NO3)2-
$6H2O), iron(III) nitrate nonahydrate (Fe(NO3)3$9H2O), potas-
sium nitrate (KNO3), sodium chloride (NaCl), cobalt(II) nitrate
(Co(NO3)2), cadmium(II) nitrate (Cd(NO3)2), silver nitrate
(AgNO3), zinc(II) nitrate hexahydrate (Zn(NO3)2$6H2O), lead(II)
nitrate (Pb(NO3)2), and absolute ethanol were purchased as
analytical-grade reagents and further puried prior to use. All
the reagents above were purchased from Macklin.

Thermogravimetric analysis (TGA) was performed using
a Netzsch STA 449F3 instrument under a nitrogen atmosphere,
with a temperature range of 30–700 °C and a heating rate of
10 °C min−1. X-ray diffraction (XRD) patterns were collected at
room temperature using a Rigaku Miniex 600 diffractometer
with Cu Ka radiation (l = 1.5418 Å). Fluorescence spectra were
recorded at room temperature using a Horiba-HR320 uores-
cence spectrophotometer.
images: (a) Sr–BDC; (c) Tb3+@Sr–BDC. EDS (mapping): (b) Sr–BDC; (d)
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The microstructural characterization of the specimens was
performed using a Hitachi SU-5000 eld-emission scanning
electron microscope (FE-SEM, Hitachi High-Tech, Japan) oper-
ated at an acceleration voltage of 5–10 kV under high-vacuum
conditions. Elemental distribution analysis was conducted via
energy-dispersive spectroscopy (EDS) utilizing a Bruker Quantax
system (Bruker, Germany).
2.2. Synthesis of Sr-BDC and Tb3+@Sr-BDC

The systhesis methods and technique were similar with that
provided in the previous studies.27 A mixture of strontium
chloride hexahydrate (SrCl2$6H2O, 0.1 mmol, 26.6 mg) and
terephthalic acid (H2BDC, 0.1 mmol, 16.6 mg) was dissolved in
3 mL of N,N-dimethylacetamide (DMA). The solution was
transferred into a stainless steel autoclave lined with a poly-
tetrauoroethylene (PTFE) inner tube and heated at 80 °C for
72 h. Aer the reaction, the autoclave was allowed to cool
naturally to room temperature. The resulting colorless block
crystals were collected by ltration, washed thoroughly, and
dried in air. The nal product was weighed for further use.

To prepare Tb3+@Sr-BDC, the as-synthesized Sr–BDC powder
(100 mg) was immersed in 50 mL of an ethanolic solution of
terbium(III) nitrate hexahydrate (Tb(NO3)3$6H2O), with
a Tb(NO3)3 concentration of 10−2 mol L−1, for 24 h. The powder
was then separated by centrifugation, washed three times with
ethanol, and dried in air for 24 h.
Fig. 5 (a) Emission spectra of Tb3+@Sr–BDC in the presence of
various metal ions (lex = 294 nm) and (b) intensity of the 5D4 / 7F5
transition at 545 nm for Tb3+@Sr–BDC in the presence of blank (I0) and
the different metal ions solution (I).
3 Results and discussion
3.1. The property and structure of the samples

The X-ray powder diffraction (XRD) patterns of Sr–BDC and
Tb3+@Sr–BDC were recorded at room temperature (Fig. 1). The
experimental diffraction peaks of Sr–BDC align well with the
simulated pattern (CCDC: 1551141), conrming the synthesis of
the Sr–BDC framework. Notably, the diffraction peak positions
remain unchanged aer Tb3+ doping, suggesting that Tb3+ ions
partially substitute Sr2+ sites within the original framework
Fig. 4 Excitation (black line) and emission (red line) spectra of
Tb3+@Sr–BDC.

Fig. 6 Intensity of the 5D4 / 7FJ transitions for Tb3+@Sr–BDC upon
addition of different metal ions (1 × 10−3 M, blue bars) and subsequent
introduction of Fe3+ (1 × 10−3 M, green bars) (lex = 294 nm).

29722 | RSC Adv., 2025, 15, 29720–29726
while preserving its structural integrity. This observation indi-
cates that Tb3+@Sr–BDC retains the same crystallographic
structure as the parent Sr–BDC.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Thermogravimetric analysis (TGA) of Tb3+@Sr–BDC was
conducted in the temperature range of 30–700 °C (Fig. 2). The
initial weight loss (150–320 °C) corresponds to the removal of
free and coordinated DMA solvent molecules. The Sr–BDC
complex (chemical formula: C12H15NO6Sr) exhibited an experi-
mental weight loss of 24.54% within the temperature range of
150–320 °C, demonstrating close agreement with the theoretical
mass percentage (24.41%) calculated for the coordinated di-
methylacetamide molecule (C4H9NO) in its crystal structure. At
approximately 505 °C, a structural collapse of the Sr–BDC
framework occurs.

Microstructural characterization revealed that Tb3+@Sr–BDC
crystals (Fig. 3c and d) exhibited well-faceted short-rod or plate-
like morphologies, in contrast to the irregular granular particles
observed in undoped Sr–BDC (Fig. 3a and b). Energy-dispersive
X-ray spectroscopy (EDS) conrmed the presence of trace Tb
(0.90 wt%, Fig. 3d) in Tb3+@Sr–BDC, while no detectable
terbium signal was observed in Sr–BDC. These results demon-
strate successful Tb3+ incorporation into the crystal lattice,
which signicantly modied the crystallization kinetics and
consequently altered the morphological evolution of the
crystals.
Fig. 7 (a) Emission spectra of Tb3+@Sr–BDC in ethanol solutions with
varying Fe3+ concentrations (lex = 294 nm) and (b) linear relationship
between the luminescence intensity of Tb3+ and Fe3+ concentration in
the range of 1 × 10−4 to 5 × 10−6 mol L−1.

© 2025 The Author(s). Published by the Royal Society of Chemistry
3.2. Luminescence properties of Tb3+@Sr–BDC

As illustrated in Fig. 4, the Tb3+@Sr–BDC material exhibits
characteristic emission peaks of Tb3+ ions at 489 nm, 545 nm,
and 583 nm under 294 nm excitation. These peaks are attrib-
uted to the electronic transitions of 5D4/

7FJ (J= 6, 5, 4) within
Tb3+ ions. Notably, the intense green emission at 545 nm
suggests that this material can serve as an efficient luminescent
sensor.

To evaluate the uorescence sensing capability of Tb3+@Sr–
BDC, its luminescent properties were investigated in the pres-
ence of various metal cations. The Tb3+@Sr–BDC powder was
nely ground and dispersed in ethanol to form a 5 mg mL−1

suspension. Subsequently, 200 mL of the suspension was
uniformly mixed with 3.8 mL of ethanol solutions containing
0.001 mol L−1 of M(NO3)x (M = Pb2+, Zn2+, Cd2+, Na+, K+, Ni2+,
Ag+, Co2+, and Fe3+). The luminescence spectra were recorded
and are presented in Fig. 5. The results reveal that the lumi-
nescence intensity of Tb3+ ions is signicantly inuenced by the
presence of different metal ions. The ratio (I/I0) of the uores-
cence intensity at 545 nm for the sample aer metal ion intro-
duction (I) to the Tb3+@Sr–BDC sample (I0) was shown in
Fig. 5b. The results suggests that Fe3+ induces pronounced
luminescence quenching of Tb3+@Sr–BDC, indicating its
selective response to Fe3+.

To further investigate the selectivity of Tb3+@Sr–BDC for
Fe3+, the material was dispersed in ethanol solutions containing
Fe3+ alongside other metal ions (Pb2+, Zn2+, Cd2+, Na+, K+, Ni2+,
Table 1 Comparison of Fe3+ ion detection based on different MOF
materials

MOF LOD/(mol L−1) Ref.

[Tb(BTB)(DMF)] 10 × 10−6 1
[Zn2(tpt)(tda)2]$H2O 4.72 × 10−6 29
Eu3+@UiO-66 12.5 × 10−6 30
Zn-MOF-74 1.04 × 10−6 31
Tb(3+)@Zn-MOF 7.5 × 10−6 32
Tb3+@Sr-BDC 7.3 × 10−6 This work

Fig. 8 XRD patterns of Tb3+@Sr–BDC before and after treatment with
iron ions.

RSC Adv., 2025, 15, 29720–29726 | 29723
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Fig. 9 SEM images of Tb3+@Sr–BDC after treatment with Fe3+ at the microscopic scale.
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Ag+, and Co2+). Under 294 nm excitation, the luminescence
intensity of Tb3+@Sr–BDC in the presence of individual metal
ions (blue bars in Fig. 6) differs signicantly from that in mixed-
ion solutions containing Fe3+ (green bars in Fig. 6). When
Tb3+@Sr–BDC is immersed in ethanol solutions containing
a mixture of 1 × 10−3 mol L−1 of other metal ions and 1 ×

10−3 mol L−1 of Fe3+, complete luminescence quenching is
observed, demonstrating the material's selective detection
capability for Fe3+ in complex environments.

To quantify the Fe3+ detection performance, a concentration
gradient of Fe3+ solutions was prepared (1 × 10−4 mol L−1, 2 ×

10−5 mol L−1, 2.5 × 10−5 mol L−1, 5 × 10−5 mol L−1, 8 ×

10−5 mol L−1, and 5 × 10−6 mol L−1). A 0.2 mL aliquot of the
5 mg per mL Tb3+@Sr–BDC–DMA suspension was mixed with
3.8 mL of each Fe3+ solution, and the luminescence intensity
was measured using a uorescence spectrophotometer (Fig. 7).
The results demonstrate a well-dened linear relationship
between Fe3+ concentration and the luminescence intensity
of Tb@Sr-BDC, with the emission intensity decreasing
progressively as Fe3+ concentration increases from 5 × 10−6 to
1 × 10−4 mol L−1. Stern–Volmer analysis of the Tb@Sr-BDC +
Fe3+ system reveals a strong quenching effect, exhibiting
a linear correlation coefficient (R) of 0.9947. The limit of
detection (LOD = 3d/S, d represents the blank solution was
measured ten times, and S stands for the slope of the calibra-
tion curve) was about 7.3 × 10−6 mol L−1.28 Compared with the
reported literature (Table 1), the Tb3+@Sr-BDC sensor exhibits
a markedly lower detection limit. These ndings conrm that
Tb@Sr-BDC not only enables qualitative identication but also
facilitates quantitative detection of Fe3+ ions.
3.3. Quenching mechanism

The luminescence quenching mechanisms of cations can be
attributed to four primary factors:33,34 (1) interactions between
Table 2 Elemental composition analysis (wt%) of Tb3+@Sr–BDC
before and after Fe3+ coordination (EDS)

Elements Sr2+ Tb3+ Fe3+

Tb3+@Sr–BDC 33.19 0.90 0
Tb3+@Sr–BDC + Fe3+ 32.47 0 3.47

29724 | RSC Adv., 2025, 15, 29720–29726
target metal ions and MOFs; (2) exchange between lanthanide
ions in MOFs and central metal ions; (3) collapse of the crys-
talline structure; (4) energy competition between linkers and
cations. To elucidate the potential sensing mechanism of Fe3+-
induced quenching in Tb3+@Sr–BDC, comprehensive charac-
terization was performed using XRD, SEM, and EDS before and
aer Fe3+ treatment. XRD patterns (Fig. 8) revealed distinct
differences between Fe3+-treated and untreated Tb3+@Sr–BDC,
indicating framework modication. SEM showed signicant
morphological alterations in the powdered samples (Fig. 3 and
9). EDS data (Table 2) conrmed the replacement of Tb3+ by Fe3+

in the framework. The quenching effect is likely caused by
displacement of luminescent Tb3+ ions by Fe3+ and the
concurrent framework collapse. This aligns with known cation-
MOF interaction paradigms, where heavy metal ions disrupt
lanthanide-centered emission through structural and electronic
perturbations.
4 Conclusions

A strontium-based metal–organic framework (Sr-MOF) was
synthesized via a solvothermal reaction using terephthalic acid
(H2BDC) and strontium chloride (SrCl2) as precursors. The as-
prepared Sr-BDC was further functionalized with terbium ions
(Tb3+) to yield Tb3+@Sr–BDC, which exhibited excellent lumi-
nescent properties. Fluorescence sensing studies revealed that
Tb3+@Sr–BDC demonstrates high sensitivity and selectivity
toward Fe3+ ions, with a distinct linear correlation (R2 > 0.99)
between uorescence intensity and Fe3+ concentration. The
detection limit was determined to be approximately 7.3 ×

10−6 mol L−1. These ndings highlight the potential of rare-
earth-functionalized Sr–BDC materials as efficient uorescent
probes for the detection and quantication of Fe3+ in environ-
mental and biomedical applications.
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