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Fluorescent drug molecules play a pivotal role in biomedical research and precision medicine. Their intrinsic
fluorescence enables real-time tracking of drug distribution, target engagement, and metabolic pathways,
while avoiding interference from external labeling. However, traditional fluorescent drug discovery relies
heavily on trial-and-error approaches, which are inefficient and resource-intensive. To address this, we
developed DyeleS (Dye-Likeness Scoring), a web platform designed to rapidly evaluate molecular
fluorescence potential and predict key photophysical properties such as Stokes shift and quantum yield.
DyeleS utilizes a curated dataset of fluorescent and non-fluorescent compounds, applies a Naive Bayes-
inspired algorithm for fluorescence classification (AUC = 0.995), and employs a LightGBM model for
quantitative prediction of fluorescence properties, achieving an R? of 0.88 in absorption wavelength
(Aaps) prediction. Leveraging DyelLeS, this study constructed FluoBioDB, the first publicly available library
of fluorescent bioactive compounds, encompassing 32 865 structurally diverse molecules, including
kinase inhibitors and GPCR modulators. Case analyses indicate that FluoBioDB compounds typically
possess polycyclic conjugated frameworks, donor—acceptor (D—-A) structures, and rigid planar cores,

endowing them with strong potential for applications in bioimaging, targeted therapy, and theranostics.
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rapid discovery and optimization of fluorescent drug candidates. All source codes and datasets are
available at https://github.com/MolAstra/DyelLeS, and the web server can be accessed at https://
dyeles.molastra.com.
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1 Introduction

Fluorescent drug molecules play a significant role in medical
and biological research.” Their inherent fluorescence enables
real-time tracking and imaging in vivo, facilitating the obser-
vation of drug distribution,® localization, and metabolism®
without the need for additional labeling, thereby simplifying
experimental procedures. Moreover, fluorescent drugs allow for
direct validation of targeting efficiency, confirming whether
they have accurately reached specific biological targets such as
tumor tissues or receptor sites.*” In drug discovery, fluorescent
compounds can be directly applied in high-throughput
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screening (HTS), enhancing the efficiency of candidate selec-
tion.' Furthermore, drugs with intrinsic fluorescence avoid the
“labeling effect” often caused by external fluorescent probes,
thus preserving their native bioactivity.” Some fluorescent drugs
also support theranostic applications, simultaneously enabling
imaging and treatment, as exemplified by their use in photo-
dynamic therapy (PDT).® Therefore, the development of fluo-
rescent drug molecules holds great promise for advancing
pharmaceutical research and precision medicine.”

The development of fluorescent drug molecules typically
requires a complex, multi-step process, including lead identi-
fication, fluorescence and bioactivity characterization, struc-
tural optimization, mechanistic studies, pharmacokinetic
evaluation, and safety assessment.®*° Each stage demands
extensive experimental effort and relies heavily on manual trial-
and-error approaches, resulting in high resource consumption
and limited efficiency. Streamlining this workflow is crucial for
accelerating fluorescent drug discovery.'*

With the advancement of artificial intelligence technologies
and the expansion of pharmaceutical big data, the speed of drug
development has significantly increased."”* For example, the
development of machine learning (ML) models or algorithm for
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predicting drug-like properties has enabled the rapid
construction of drug-like compound libraries,"**” thereby
streamlining the drug discovery process. Similarly, models for
assessing natural product-likeness have facilitated the identifi-
cation of compounds with natural origins and the creation of
natural product libraries,"®*® improving development efficiency.
Although databases such as ChEMBL,” MedChemExpress,**
and ZINC* offer extensive collections of bioactive molecules to
support drug discovery, to the best of our knowledge, there have
been no reports focusing on methods for the rapid assessment
of molecular fluorescence properties or on the establishment of
fluorescent bioactive molecule libraries.

To enable the rapid identification of fluorescent properties
in drug molecules and to construct a dedicated library of fluo-
rescent drug candidates, we developed DyeLeS, a web-based
application for Dye-Likeness Scoring. DyeLeS allows for the
efficient evaluation of molecular fluorescence potential and
predicts key properties such as Stokes shift and fluorescence
quantum yield. Furthermore, by applying DyeLeS to the virtual
screening of known bioactive molecules, we constructed the
first publicly available fluorescent drug molecule library,
comprising 32 865 compounds annotated with detailed fluo-
rescence characteristics, including maximum absorption
wavelengths, quenching wavelengths, and fluorescence life-
times. This study leverages ML to accelerate the development of
fluorescent drugs, utilizing the inherent labeling effect of fluo-
rescent molecules to advance drug pharmacokinetics research,
target validation strategies, and the integration of therapeutic
and diagnostic (theranostic) applications.

2 Result and discussion

2.1 Construction of training databases for fluorescence
prediction

To enable the ML model to accurately recognize the character-
istics of fluorescent drug molecules, we first constructed two
major databases: a Fluorescent Molecule database (positive set)
and a Non-Fluorescent Molecule database (negative set).

The fluorescent molecule database was built from two
primary sources: (a) approximately 3200
compounds manually curated based on extensive experimental
experience in the field of fluorescent molecules;*** (b) an
additional ~25 000 fluorescent compounds collected from the
Dye database® developed by the Song research group. After
deduplication, RDKit standardization, and quality control, the
final library contained 26255 unique fluorescent molecules
represented by SMILES. Among them, 6703 were annotated with
properties such as Stokes shift, quantum yield (®g), absorption
(Aabs), and emission wavelengths (Aep,)-

The non-fluorescent molecule database was primarily
sourced from the Collection of Open Natural Products®
(COCONUT) database. Based on our group's expertise in fluo-
rescence research,”?* we performed fluorescence screening
and manually excluded molecules with potential fluorescent
properties. This resulted in a non-fluorescent dataset contain-
ing 38 991 compounds with no observable fluorescence activity.

fluorescent
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Comparative analyses of molecular weight (MW, Fig. 1a),
atom-based octanol-water partition coefficient (ALOGP,
Fig. 1b), number of rotatable bonds (ROTB, Fig. 1c), structural
alerts (ALERTS, Fig. 1d), hydrogen bond acceptors (HBA), and
hydrogen bond donors (HBD) (Fig. S1a and b, ESI}) between the
fluorescent and non-fluorescent compound libraries revealed
that the two datasets share comparable key physicochemical
properties, such as molecular weight, thereby minimizing the
risk of data-type bias. Moreover, both libraries exhibit approx-
imately normal distributions with uniform data coverage,
reducing the likelihood of bias arising from the over-
representation of structurally similar fluorescent molecules.

To further explore the data characteristics of the two data-
bases, we employed the TMAP*® dimensionality reduction tool
for analysis. Two key observations can be drawn from Fig. 2a:
First, on a global scale, there is a clear distinction between
fluorescent molecules (blue) and non-fluorescent molecules
(orange), as evidenced by the separate clustering of the two
colors. A possible explanation is that, while the molecules in
both datasets share similar physical properties, the fluorescent
molecule dataset contains a higher proportion of aromatic rings
(Fig. S2, ESIY), which differentiates it from the non-fluorescent
dataset. This distinct clustering in chemical space suggests that
machine learning algorithms may be able to effectively distin-
guish between the two classes of molecules. Second, at a more
detailed level, we observe several orange points (non-fluorescent
molecules) scattered among the blue cluster (fluorescent
molecules), particularly in the left-central region of the map, as
well as in the upper right and left areas. This indicates that
some fluorescent and non-fluorescent molecules are very close
to each other in chemical space. A representative example is the
pair of adjacent blue and orange dots located in the lower right
of the plot. Upon examination, these correspond to carbazole,
a fluorescent molecule (Fig. 2b), and N-methylcarbazole, a non-
fluorescent molecule (Fig. 2c).

In carbazole, the nitrogen atom is sp>hybridized, and its
lone pair can participate in m-conjugation within the aromatic
system, facilitating fluorescence. However, when the hydrogen
on the nitrogen is replaced by a methyl group, the nitrogen's
lone pair can no longer delocalize, thereby disrupting the
electronic conjugation across the molecule. The only structural
difference between the two molecules is the presence of a single
methylene group, but this substitution increases the molecular
flexibility and enhances non-radiative decay pathways in the
excited state, leading to a significant reduction in fluores-
cence.” In the TMAP dimensionality reduction plot, it is also
easy to identify cases where molecules with highly similar
structures exhibit markedly different fluorescence behaviors
(Fig. S3, ESIY).

Based on structural analyses of molecules from the fluores-
cent and non-fluorescent molecule databases, we found that
fluorescent compounds typically possess key structural features
such as aromatic ring systems, donor-acceptor architectures,
and specific functional group substitutions. Therefore, in
designing DyeLeS for fluorescence property prediction, we first
developed DyeLeS-DyeS to extract characteristic fluorescent
substructures from the molecular datasets, enabling a coarse

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Comparison of molecular properties between fluorescent and non-fluorescent molecule databases. As shown by the distribution of (a)
molecular weight (MW), (b) atom-based octanol-water partition coefficient (ALOGP), (c) number of rotatable bonds (ROTB), and (d) structural
alerts (ALERTS), the two databases exhibit similar physicochemical properties apart from their fluorescence characteristics.

screening of fluorescence potential. Subsequently, we imple-
mented DyeLeS-DyeP, a regression-based machine learning
model, which considers additional structural factors—such as
molecular rigidity and the extent of m-conjugation—to perform
refined and quantitative predictions of fluorescence properties.

2.2 DyeLeS-DyeS: fluorescent dye-likeness score using Bayes-
like algorithm

To efficiently identify characteristic molecular fragments of
fluorescent compounds, First, we selected Morgan finger-
prints®* to represent molecules in the positive (fluorescent
molecule database) and negative (non-fluorescent molecule
database) sample datasets. Given that fluorescence properties
are often highly sensitive to minor structural changes® (such as
the presence or absence of small substituents), Morgan finger-
prints—also known as Extended-Connectivity Fingerprints®*
(ECFPs)—were chosen due to their ability to capture subtle
structural differences that significantly impact molecular
activity. This method enables the precise characterization of
local chemical environments, including functional groups,
branches, and ring systems. The Morgan fingerprints were
generated using the RDKit toolkit.*

Next, inspired by the Ert]'® and Sorokina® research group, we
adopted a log-likelihood ratio scoring algorithm (statistical
fragments) combined with the Morgan Fingerprint approach,
providing a highly efficient, interpretable, and scalable solution
ideal for large-scale fluorescent molecule screening and early-
stage library construction. We refer to this approach as
DyeLeS-DyeS. This strategy has two key advantages: (1) it does
not require modeling complex dependencies among features,
instead focusing solely on the relationship between fragment

© 2025 The Author(s). Published by the Royal Society of Chemistry

presence and fluorescence properties; (2) it is resistant to
overfitting in high-dimensional spaces because each molecular
fragment is modeled independently.

After processing the positive and negative sample datasets,
a log-likelihood ratio (F-score) is calculated by DyeLeS-DyeS for
each fingerprint bit to identify features more common in dye
molecules. This score is based on fragment frequencies in both
datasets, with Laplace smoothing applied. A molecule's fluo-
rescence score is then computed by summing the contributions
of its fragments and normalizing by molecular size. DyeLeS-
DyeS assigns a fluorescence-likeness score from —5 to +5,
where higher scores indicate a greater likelihood of
fluorescence.

To evaluate the performance of the DyeLeS-DyeS model, we
conducted both classification and scoring tasks across multiple
molecular datasets (Fig. 3). In the binary classification task
distinguishing fluorescent molecules from non-fluorescent
ones, the model achieved an area under the ROC curve (AUC)
of 0.995 (Fig. 3a), indicating excellent predictive accuracy. To
further assess the model's generalizability, we tested its classi-
fication ability on three additional datasets where fluorescence
properties were uncertain: ZINC, NPAtlas, and ChEMBL. These
were compared against a dye molecule database composed of
known fluorescent compounds. The resulting AUC values were
0.911, 0.995, and 0.917, respectively (Fig. 3b), demonstrating the
robustness and transferability of the model across chemically
diverse datasets. Notably, SHapley Additive exPlanations (SHAP)
analysis (Table S1, ESI; additional cases available at https://
github.com/MolAstra/DyeLeS) revealed that aromatic systems,
donor-acceptor motifs, and functional group substituents
(e.g, hydroxyl, amino, and carbonyl groups) consistently

RSC Adv,, 2025, 15, 21977-21986 | 21979
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Fig. 2 TMAP dimensionality reduction analysis of the fluorescent and non-fluorescent molecule databases. In panel (a), the fluorescent
molecules (blue) and non-fluorescent molecules (orange) are generally well clustered, indicating clear separation between the two classes.
However, a number of data points are intermixed within the clusters. Analysis of two closely positioned points in the lower right corner reveals
that the structures shown in (b) and (c) differ only slightly in the substituent on the nitrogen atom, yet exhibit a significant difference in fluo-

rescence behavior.

ranked as top-contributing features. This finding aligns with
established fluorescence mechanisms, validating both the
model's predictive accuracy and chemical interpretability.

In addition to classification, we also applied the DyeLeS-
DyeS model to fluorescence scoring tasks across datasets of
varying sizes (Fig. 3c). The scoring distributions reflected the
expected fluorescence tendencies of each dataset. Specifically,
the Dyes database, consisting of fluorescent molecules, showed
score distributions primarily in the range of 0 to 5. The
COCONUT database, generally regarded as containing non-
fluorescent natural products, had scores concentrated
between —5 and 0. Meanwhile, the ZINC database, which
contains molecules with ambiguous or unknown fluorescence
behavior, exhibited a broader score distribution from approxi-
mately —4 to 4 (Fig. 3d). These results confirm the effectiveness
of the pseudo-Bayesian scoring strategy implemented in the

21980 | RSC Adv, 2025, 15, 21977-21986

model, which enables both quantitative ranking and qualitative
screening of molecular fluorescence potential.

2.3 Prediction of photophysical properties using DyeLeS-
DyeP

To enable quantitative prediction of fluorescence-related prop-
erties, we developed DyeLeS-DyeP, a regression model based on
LightGBM.**** As shown in Fig. 4a, the model takes molecular
structures as input and outputs four key photophysical
parameters: absorption wavelength (1,p,5), Stokes shift, emission
wavelength (A.m), and fluorescence quantum yield (®q). The
model demonstrated strong predictive performance on
a curated dataset of fluorescent molecules. The R> values
reached 0.88 for A4, 0.83 for A, 0.66 for Stokes shift, and 0.48
for @q (Fig. 4b-e, The predicted mean squared error (MSE) and
root mean squared error (RMSE) values are detailed in Table S2,
ESIt). The high accuracy for A,,s and A, suggests that the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Classification and scoring results of DyelLeS-DyeS. (a) Binary classification between fluorescent and non-fluorescent molecule databases
shows an AUC of 0.995. (b) Classification between dye molecules and fluorescence-uncertain datasets (ZINC, NPAtlas, ChEMBL) yields AUCs of
0.911, 0.995, and 0.917, respectively. (c) Scoring results across three datasets with varying sizes. (d) Fluorescent molecules (Dyes) score between
0 and 5, non-fluorescent ones (COCONUT) between —5 and 0, and uncertain molecules (ZINC) show a broader distribution from —4 to 4,

validating the pseudo-Bayesian scoring approach.

model can effectively learn structure-property relationships
related to electronic transitions, which are strongly governed by
conjugation length, aromatic systems, and electron-donating/
withdrawing substituents. DyeLeS-DyeP accurately predicts
optical wavelengths by evaluating key structural determinants
of m-w* and charge transfer (CT) transitions. Our unified
LightGBM framework effectively discriminates between these
transition types by autonomously learning their distinct elec-
tronic characteristics, with particular sensitivity to Coulomb
interactions in CT states. The current model demonstrates
robust predictive accuracy, with future development pathways
including transition-specific submodel architectures for further
performance optimization. The moderate performance on
Stokes shift prediction reflects its dependence not only on
electronic structure but also on excited-state relaxation
behavior, which is partially encoded in structural features.

The relatively lower R® value for @ indicates that fluores-
cence quantum yield remains a more difficult target to model.
This is consistent with literature reports, as @y is affected by
a variety of subtle and non-structural factors, including molec-
ular rigidity, intramolecular motions, solvent polarity, and the
presence of non-radiative decay pathways. Although the model's
predictive accuracy for @4 is limited, it still offers valuable first-
pass screening capability, enabling prioritization of candidates
for experimental validation.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Together, these results highlight the complementary
strengths of DyeLeS-DyeP and DyeLeS-DyeS. While DyeLeS-DyeS
enables rapid classification of fluorescent versus
fluorescent candidates, DyeLeS-DyeP provides fine-grained
and property-specific predictions, enhancing the overall utility
of the DyeLeS platform for fluorescent molecule design and
screening.

non-

2.4 Construction of the fluorescent bioactive molecule
database using DyeLeS

To develop a comprehensive library of bioactive compounds
with potential fluorescence, we applied the DyeLeS platform to
perform large-scale classification and property prediction based
on data from ChEMBL. The resulting database, named Flu-
BioDB (Fluorescent Bioactive Molecule Database), contains
compounds predicted to possess both bioactivity and favorable
fluorescence characteristics, providing a valuable resource for
fluorescent probe development and imaging-related drug
discovery.

Asillustrated in Fig. 5, the construction of FluBioDB involved
three key steps: (1) fluorescence-Likeness Scoring: We first
evaluated compounds from ChEMBL and NPAtlas using the
DyeLeS-DyeS, which assigns a fluorescence-likeness score
ranging from —5 to +5 based on fragment-level enrichment. As
shown in Fig. 5a, only ChEMBL compounds with scores above
0.5 were selected. All NPAtlas compounds fell below this

RSC Adv, 2025, 15, 21977-21986 | 21981
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The corresponding R? values are 0.88, 0.66, 0.83, and 0.48, respectively.

threshold and were excluded from the final dataset. (2) Fluo-
rescence Property Annotation: The filtered ChEMBL
compounds were then analyzed using DyeLeS-DyeP, which
predicts four key photophysical parameters: absorption wave-
length (Aaps), emission wavelength (A.n), Stokes shift, and
fluorescence quantum yield (®g). Notably, DyeLeS-DyeP has
been implemented as a web application, allowing users to
conveniently obtain fluorescence-related predictions based on
molecular structure (Fig. 5b). (3) Database compilation: all

21982 | RSC Adv, 2025, 15, 21977-21986

bioactive compounds in ChEMBL were first encoded as Morgan
fingerprints (radius = 2, 2048 bits) using the RDKit chem-
informatics toolkit. The selected subset of compounds—those
scoring above 0.5 in DyeLeS-DyeS—were then assembled into
the final dataset. This resulted in a total of 32 865 fluorescent
bioactive molecules, each annotated with predicted fluores-
cence properties from DyeLeS-DyeP (Fig. 5c). The resulting
FluBioDB serves as an open-access, structurally diverse resource
for accelerating fluorescent drug discovery, enabling virtual

© 2025 The Author(s). Published by the Royal Society of Chemistry
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screening, experimental validation, and downstream thera-
nostic application development.

We selected nine representative compounds from the Flu-
BioDB with high DyeLeS fluorescence-likeness scores for
detailed analysis. These compounds exhibit promising poten-
tial for applications in bioimaging probes, drug delivery
tracking, and related fields.

For instance, the compound shown in Fig. 6a is a potential
kinase inhibitor or signaling pathway modulator. Its structure
includes a pyrimidine ring, enone moiety, and urea group,
forming an extended conjugated system. Molecules with similar
scaffolds are often designed as fluorescent probes.*® The
compound in Fig. 6b features a [1,2,4]triazolo[1,5-a]pyridine
fluorophore—a conjugated core commonly found in fluorescent
probes,*” structurally reminiscent of quinoline. It also includes
a thiazole ring, chlorophenyl aromatic system, and a flexible
linker combining a piperidine ring and fluorocyclopropyl-
amine. The presence of a difluoromethoxy group, a strong
electron-withdrawing unit, contributes to a donor-acceptor (D-

© 2025 The Author(s). Published by the Royal Society of Chemistry

A) configuration, promoting charge transfer (CT) fluorescence.
The predicted fluorescence quantum yield is 0.37. The molecule
shown in Fig. 6¢ features a structure commonly associated with
kinase inhibitors or GPCR (G Protein-Coupled Receptor)
modulators, characterized by a fused dibenzofuran, benzoyl,
and methoxyphenyl moiety forming an extended 7-conjugated
system that facilitates efficient electronic transitions. Its rigid
and planar architecture indicates strong potential for develop-
ment as a fluorescent drug candidate.’®* The compound in
Fig. 6d is a multi-heterocyclic covalent-binding candidate with
rich aromatic conjugation, significant intramolecular charge
transfer (ICT) capability, and high structural rigidity. According
to DyeLeS predictions, it exhibits a Stokes shift of 83.41 nm and
a fluorescence quantum yield of 0.35.

Structural analysis of additional compounds in Fig. 6e-i
further supports these findings. Most FMDB hits possess
characteristic polycyclic aromatic or heterocyclic cores,
extended m-conjugation, and donor-acceptor (D-A) architec-
tures that facilitate intramolecular charge transfer (ICT) and

RSC Adv, 2025, 15, 21977-21986 | 21983


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra03164h

Open Access Article. Published on 27 June 2025. Downloaded on 11/19/2025 1:54:36 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

! CHEMBL3689788 W F
: " ~r O
i Absorption Wavelength 397.14 nm 0N,

" N=

3 Emission Wavelength 549.32 nm
| Stokes Shift 129.76 nm
i Fluorescence Quantum Yield 0.34

CHEMBL 3898459 :
Absorption Wavelength 375.63 nm ii O,
Emission Wavelength 471.91 nm i:

Stokes Shift 115.14 nm "
Fluorescence Quantum Yield 0.37

' \

3 3 N

I X
/\/\OH H W

b S

View Article Online

Paper

[o)

8!

CHEMBL532640

Absorption Wavelength 396.06 nm
Emission Wavelength 517.38 nm
Stokes Shift 100.22 nm
Fluorescence Quantum Yield 0.34

=N
. TS i @ |
| CHEMBLA4205828 “)j\ i N\~ CHEMBL4752998 i CHEMBL1895323
i Absorption Wavelength 43260 nm O OK :i Absorption Wavelength 402.67 nm } 3 Absorption Wavelength 387.97 nm

i Emission Wavelength 510.14 nm
1 Stokes Shift 83.41 nm
i Fluorescence Quantum Yield 0.35

Emission Wavelength 505.76 nm | :
Stokes Shift 98.49 nm i
Fluorescence Quantum Yield 0.42 i

Emission Wavelength 511.42 nm
Stokes Shift 117.49 nm '
Fluorescence Quantum Yield 0.36 1

| CHEMBL5313469
i Absorption Wavelength 373.29 nm
Emission Wavelength 484.11 nm
! Stokes Shift 116.33 nm

E Fluorescence Quantum Yield 0.45

CHEMBL1487382 H
Absorption Wavelength 370.65 nm : E
Emission Wavelength 429.27 nm ‘
Stokes Shift 88.28 nm i
Fluorescence Quantum Yield 0.51

CHEMBL4445986
Absorption Wavelength 453.10 nm
Emission Wavelength 518.71 nm
Stokes Shift 85.25 nm
Fluorescence Quantum Yield 0.3

Fig. 6 Case studies of fluorescent compounds from FluBioDB. Most FluBioDB compounds feature polycyclic aromatic or heterocyclic cores,

extended m-conjugation, and donor—acceptor (D-A).

enhance Stokes shift. These features validate the effectiveness
of DyeLeS in enriching for fluorescence-active molecules and
demonstrate that FMDB can significantly accelerate the
discovery of fluorescent drug candidates and bioimaging
probes.

3 Conclusion

The study developed DyeLeS, a web-based fluorescence scoring
model, and constructed FluBioDB, the first publicly available
database of fluorescent bioactive compounds. DyeLeS achieved
high classification accuracy (AUC = 0.995) using a Naive Bayes-
inspired algorithm and reliable regression performance (R* =
0.88, 0.83) for predicting absorption wavelength (A.5s) and
emission wavelength (Aem) via LightGBM. Applying DyeLeS to
the ChEMBL database enabled the identification of 32865
fluorescence-enriched molecules, including kinase inhibitors
and GPCR modulators. Structural analysis revealed that Flu-
BioDB compounds commonly feature polycyclic conjugated
scaffolds and donor-acceptor architectures, supporting strong
ICT fluorescence and biological relevance. Despite its prom-
ising performance, the current version of DyeLeS does not
account for environmental conditions (e.g., pH or temperature),
which may influence fluorescence properties in experimental
settings. Future work will focus on integrating these factors to
enhance the model's robustness and applicability.

This work fills a critical gap in fluorescent drug discovery by
providing a scalable computational framework and a curated
molecular resource. DyeLeS and FluBioDB offer practical tools
to accelerate the design of fluorescent probes and theranostic

21984 | RSC Adv, 2025, 15, 21977-21986

agents, facilitating the translation of fluorescent drugs toward
real-world biomedical applications.

4 Methods
4.1 DyeLeS-DyeS

Naive Log-likelihood Ratio Scoring is a simplified form of Naive
Bayes classification, where the log-likelihood ratio is used to
distinguish between fluorescent and non-fluorescent mole-
cules. Instead of directly calculating conditional probabilities as
in traditional Naive Bayes, this approach focuses on the relative
probabilities of molecular fragments (fingerprint bits) occur-
ring in fluorescent versus non-fluorescent molecules. The log-
likelihood ratio for each fragment is computed as:

Fluo, o Non-Fluoya
Non-Fluo; Fluootal

Frag, = 10g<

In this context, Fluo; denotes the number of occurrences of
fragment i in fluorescent molecules, while Non-Fluo; refers to
its occurrences in non-fluorescent molecules. Fluo,, repre-
sents the total number of fragments across all fluorescent
molecules, and Non-Fluog, corresponds to the total fragment
count in the non-fluorescent molecule set.

4.2 DyeLeS-DyeP

To predict the photophysical properties of fluorescent mole-
cules—including absorption and emission wavelengths, fluo-
rescence quantum yield, and Stokes shift—we employed
a multi-output regression model based on LightGBM. Molec-
ular structures were encoded as 2048 bit Morgan fingerprints

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(radius = 2), capturing relevant substructural features. The
model was implemented using a MultiOutputRegressor
wrapper around LightGBM to enable simultaneous prediction
of multiple continuous targets. Key hyperparameters were set as
follows: 64 leaves, maximum depth of 10, learning rate of 0.05,
and 2000 estimators with early stopping. Feature and data
subsampling (0.8 each) and L1/L2 regularization (both 0.5) were
used to enhance generalization. Performance was evaluated
using MAE, RMSE, and R® on a held-out validation set.

4.3 Web-based implementation

To enhance accessibility and practical utility, we developed
DyeLeS, a web-based application for fluorescent dye-likeness
scoring and molecular property prediction. The platform
accepts SMILES strings as input and provides predictions of key
photophysical properties, along with molecular structure visu-
alization and formula display. Users can interactively explore
results and download outputs for further analysis. DyeLeS is
designed to support a wide range of use cases, including
computational chemistry research, high-throughput compound
screening, and early-stage drug discovery. By integrating
predictive modeling with a user-friendly interface, DyeLeS
facilitates rapid evaluation of dye-like properties in both known
and novel molecular structures.

We have deployed a fully-featured standalone version of the
tool on GitHub (https:/github.com/MolAstra/DyeLeS),
complete with comprehensive installation guidelines and
usage documentation. The web interface offers a streamlined
subset of functionalities designed for browser-based accessi-
bility, while the GitHub repository provides the complete
analytical toolkit, including extensively annotated Jupyter
notebooks with step-by-step code explanations. Both platforms
will receive continuous maintenance and updates.

Data availability

The datasets used in this study are available at https://
github.com/MolAstra/DyeLeS. The web server can be accessed
at https://dyeles.molastra.com.

Code availability

The source code of DyeLeS and associated data preparation
python scripts are available at https://github.com/MolAstra/
DyeLeS.
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