#® ROYAL SOCIETY
PP OF CHEMISTRY

RSC Advances

View Article Online

View Journal | View Issue

Mechanical performance analysis of a 3D printing-
based transtibial prosthetic socket against the gait
cycle using the finite element method

i '.) Check for updates ‘

Cite this: RSC Adv., 2025, 15, 24150

Deni Fajar Fitriyana,*@ Sivasubramanian Palanisamy,@*b Yazid Surya Wicaksana,®
Samsudin Anis,® Januar Parlaungan Siregar,“® Tezara Cionita,® Kumar Sureshkumar,’
Aravindhan Alagarsamy,” Nadir Ayrilmis, ©9 Mohamed Abbas,” Shaeen Kalathil

and Md Zillur Rahman @ *

In order to restore near-normal gait patterns and increase patients’ mobility post-amputation, prosthetic
sockets are crucial. Currently, few 3D-printed prosthetic sockets are available, and little research has
been conducted on their mechanical performance. Thus, the purpose of this study is to assess and
characterize the performance of polyethylene terephthalate (PET), polycarbonate (PC), and polyamide 6/
Nylon 6 (PA6) materials in prosthetic sockets fabricated via 3D printing. The heel-strike phase was
determined to be the most critical condition in this study, and finite element technique simulations were
used to consider the loads caused during the gait cycle. Findings demonstrated the superior strength

and durability of the PC material, with the highest safety factor of 1.697 and a maximum Von-Mises
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Accepted 26th June 2025 stress of 36.49 MPa. The PET material provides the finest balance between strength and cost-

effectiveness, while the PA6 material delivers the best strength and flexibility with a total deformation of

DOI: 10.1039/d5ra03155a 16.01 mm. This study offers suggestions for choosing materials to improve the ultimate functionality of
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prosthetic sockets made using 3D printing technology in clinical applications.

1. Introduction

Amputation is a medical treatment that profoundly affects
patients' quality of life. Globally, approximately 65 million
people are living with amputations, with 1.5 million new cases
occurring each year." With an 83% amputation rate, lower
extremity amputations continue to account for the majority of
amputation procedures performed, far greater than the 17%
rate for upper extremities.” Below-the-knee (transtibial) ampu-
tation procedures are the most frequently conducted among the
various types of amputations, attributed to the elevated inci-
dence of post-amputation problems.? A rehabilitation program
that includes support for prosthetic devices is crucial for
enhancing patients' mobility and quality of life. In addition to
enhancing mobility, prosthetic devices make daily tasks and
personal hygiene easier for patients.* Additionally, using pros-
thetics can lessen the severity of health issues, save medical
expenses, and lessen the need for auxiliary aids, all of which can
improve the patient's total recuperation.

The production of prosthetic devices in Indonesia continues
to conventionally depend on gypsum-based techniques, which
possess some notable disadvantages. A significant limitation is
the prosthetic socket's incapacity to adapt to variations in
residual amputation volume over time, resulting in patient
discomfort.® Furthermore, the conventional manufacturing
procedure leads to comparatively expensive costs and extended
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production periods.® Indonesia heavily relies on imports of
prosthetic sockets owing to the lack of native prosthetic devices
and subpar workmanship. China, Singapore, and Japan are the
primary suppliers of medical device components needed to
fulfill Indonesia's requirements.” To mitigate this dependency,
innovation and technological advancement are essential for
creating prosthetic devices that are more efficient, cost-
effective, and readily available to patients in Indonesia.

Freeman and Wontorick® asserted that additive
manufacturing presents numerous benefits, including eradi-
cating manual procedures in fabricating positive moulds and
providing freedom in developing intricate geometries with
diverse wall thicknesses. Supplementary advantages include
enhanced material characteristics and reduced production
expenses, making additive manufacturing more efficient for
fabricating prosthetic sockets for clinical applications. Additive
manufacturing’s capability to produce tailored, patient-specific
geometries and reduced costs relative to traditional techniques
establishes it as a viable option for prosthetic applications that
necessitate high precision and production efficiency.>*°

3D printing technology provides significant responses
through rapid prototyping. This technology is advancing swiftly
in the medical sector, becoming a vital instrument for creating
complex products with remarkable accuracy and efficiency."*
This method improves efficiency, accelerates production time-
lines, and is more cost-effective than traditional manufacturing
processes.””** Chen et al.® illustrated that a range of materials,
including polycarbonate, acrylic, duraform, nylon P301, dura-
form polyamide (Nylon 12), Nylon 11, plaster infused with
polyurethane, and polycarbonate coated with unsaturated
polyester resin, has been thoroughly investigated in various
additive manufacturing processes, such as selective laser sin-
tering, fused deposition modeling, and 3D printing, for the
fabrication of prosthetic sockets. Furthermore, Kim et al*
highlighted that carbon fiber, polypropylene (PP), and polylactic
acid (PLA) are commonly employed in prosthetic sockets using
3D printing methods. Although evaluated under limited
settings, the durability of 3D-printed sockets demonstrates
significant potential for clinical use, particularly for those
designed to withstand P5 loading. This is particularly relevant
when the cost is critical or healthcare access is restricted,
making 3D printing an appealing choice for prosthetic appli-
cations, especially in terms of cost efficiency and accessibility of
care.

Extensive research indicates that fused filament fabrication
(FFF) and fused deposition modelling (FDM) are prevalent in 3D
printing due to their user-friendliness, rapidity, and afford-
ability. Nevertheless, stereolithography (SLA) and selective saser
sintering (SLS) provide unique benefits, including an excep-
tionally flawless surface, superior structural strength, and high
accuracy. Despite these advantages, both SLS and SLA involve
considerably elevated operational expenses. Consequently, the
fabrication of economical prosthetic sockets by FDM/FFF
technology is highly feasible, contingent upon selecting suit-
able materials that fulfil the structural criteria of the socket.*®*”
Research on polypropylene (PP) sockets fabricated by fused
deposition modelling (FDM) technology has demonstrated
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favourable outcomes for prosthetic applications. The PP
sockets, characterized by a double-wall construction reinforced
via FDM, have exceptional static strength and endure cyclic
testing up to 250 000 cycles without substantial deterioration.
This indicates that sockets manufactured via FDM satisfy the
strength and durability criteria for prolonged utilization.*
Clinical comparisons suggest that the performance of FDM-
produced sockets is comparable to that of conventional
sockets fabricated using traditional processes, such as casting
or molding. The results demonstrate that, when employing 3D
printing technology, FDM sockets provide functionality
comparable to that of traditional methods.

The production time for FDM sockets is approximately 3.5
hours, considerably more efficient than older technologies that
typically require longer periods. Consequently, FDM-produced
PP sockets demonstrate considerable promise as a viable and
efficient substitute for prosthesis manufacturing, delivering
performance comparable to traditional sockets while ensuring
expedited production times."*>°

Materials like polylactic acid (PLA) remain popular in 3D
printing technology.*** PLA provides numerous unique bene-
fits compared to materials like acrylonitrile butadiene styrene
(ABS), polyethylene terephthalate glycol (PETG), and nylon. PLA
exhibits strong layer adhesion, markedly improving the
strength and longevity of the socket. Furthermore, PLA is
recognized for its printing simplicity, attributed to its superior
adhesion to the print surface and its ability to minimize warp-
ing, thereby reducing the likelihood of print faults. Addition-
ally, PLA is comparatively affordable, which reduces production
expenses and enhances the affordability of prosthetic sockets.*
Lestari et al.”* determined the optimal parameters for reducing
socket weight and printing time in the production of prosthetic
sockets with PLA filament using 3D printing technology. The
ideal parameters comprise a nozzle temperature of 190 °C,
a print speed of 80 mm s, a layer height of 0.2 mm, an infill
density of 100%, and a socket thickness of 3 mm. This
arrangement enables efficient printing, yielding lighter sockets
while preserving the necessary strength and durability vital for
prosthetic applications.

Owen and DesJardins** employed carbon fiber, PETG ther-
moplastic, and 3D-printed polylactic acid (PLA) to fabricate
prosthetic sockets of identical configurations. The International
Standards Organisation (ISO) 10328 guidelines subsequently
evaluated the socket system. The assessments encompassed
evaluations of ultimate strength (US), peak deflection, and
investigation of failure mechanisms. The findings demon-
strated that carbon fiber-based sockets displayed superior ulti-
mate strength values upon failure compared to thermoplastic
and PLA 3D-printed sockets. Nonetheless, PLA 3D-printed
sockets exhibited a superior strength-to-weight ratio. This
indicates that PLA-based 3D-printed sockets offer benefits in
material efficiency and strength-to-weight ratio, rendering them
a more effective choice for prosthetic applications. Van der Stelt
et al.”® conducted an economical production study using CAD
design and the FFF process with PLA material to create patellar
tendon-bearing sockets. The findings demonstrated that the
3D-printed sockets were favorably welcomed by patients,
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providing improved comfort and mobility relative to traditional
sockets.

Marinopoulos et al.*® constructed above-the-knee prosthetic
sockets from PLA and carbon fiber (CF)-reinforced nylon using
a commercial 3D printer. All 3D-printed sockets successfully
fulfilled the strength test criteria in compliance with ISO 10328
standards. Their research indicated that the mean maximum
load-bearing capacity for the PLA socket was 6382.6 N, accom-
panied by an average compression deformation of 13.6 mm.
Conversely, the CF nylon socket endured a stress of 10 000 N
without failure, exhibiting a displacement of 15.9 mm. The
results demonstrate that prosthetic sockets constructed from
PLA and CF-reinforced nylon possess significant strength, with
the CF-reinforced nylon exhibiting enhanced load-bearing
capability prior to failure. Ramlee et al.*” constructed pros-
thetic sockets using 3D printing equipment with PLA + filament.
The study employed post-processing procedures to use carbon
fibre, Kevlar, fiberglass, and cement as reinforcements for the
3D-printed sockets. Assessing the stress-strain curves for
several socket reinforcement materials revealed considerable
potential for enhancement in strength and durability. The
cement-reinforced socket exhibited much greater yield strength
and Young's modulus than the other specimens. The yield
strength of the cement-reinforced socket exceeded that of other
sockets by 89.57%. Furthermore, the Young's modulus of the
cement-reinforced socket was 76.15% superior to that of the
other sockets.

The utilization of 3D printing technology in the fabrication
of prosthetic sockets has considerable issues related to material
characteristics, structural integrity, and long-term dura-
bility.*>?**** Despite extensive research on PLA for prosthetic
socket applications,* it demonstrates inferior strength, thermal
resistance, chemical resistance, and impact resistance when
compared to more established engineering plastics, including
acrylonitrile butadiene styrene (ABS), polycarbonate, poly-
amide, and composite materials such as glass or carbon-
reinforced plastics.®® Although PLA has benefits like ease of
printing and cost efficiency, its mechanical qualities and
material durability deficiencies necessitate consideration,
especially in applications demanding superior resistance, such
as prosthetic sockets intended to endure substantial loads and
intensive use. Therefore, this research aims to develop designs
and perform finite element analysis (FEA) for 3D-printed pros-
thetic sockets using various materials, including polyethylene
terephthalate (PET), polycarbonate (PC), and polyamide 6/Nylon
6 (PA6). Polyethylene terephthalate (PET) material can be

Table 1 Material properties of PET, PC, and PA6 (ref. 34)
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a viable option, as it exhibits good dimensional stability and
distributes pressure efficiently.* In addition, polycarbonate
(PC) material offers high impact strength and excellent thermal
resistance,** making it suitable for prosthetic socket applica-
tions. Meanwhile, polyamide 6 (PA6) is the solution when
a material with high strength and flexibility is required.*® This
study conducted finite element analysis (FEA) under loading
configurations that replicate the walking cycle to evaluate the
strength of prosthetic sockets constructed from PET, PC, and
PA6 materials. This examination is crucial, as transtibial pros-
thetic sockets must be tailored to meet the unique anatomical
and functional needs of each user. The findings are expected to
provide substantial recommendations for achieving optimal
performance in prosthetic sockets produced by 3D printing for
clinical use.

2. Materials and methods

2.1. Materials

This study utilized polyethylene terephthalate (PET), poly-
carbonate (PC), and polyamide 6/Nylon 6 (PA6) materials,
selected for their optimal mechanical qualities, including
strength, elasticity, durability, and ease of manufacturing.
Given these properties, they are expected to provide perfor-
mance materials that are the best in transtibial prosthetic
sockets, particularly in guaranteeing user comfort and
longevity. The material characteristics used in this study were
obtained from the Material Property Data for Engineering
Materials produced by ANSYS and are available in the Engi-
neering Data.*® Table 1 presents comprehensive data on the
material properties of PET, PC, and PA6, emphasizing critical
parameters pertinent to fabricating transtibial prosthetic
sockets.

2.2. Transtibial prosthetic socket design

Custom-designed transtibial prosthetic sockets are created by
analyzing the 3D geometry of the patient's residual limb to
guarantee optimal functionality, comfort, and stability during
daily use.

This study involves a 13-year-old male patient who under-
went a below-knee amputation as a result of a traffic accident.
The residual limb was assessed as mature and healthy following
post-amputation recovery, with no issues that could impede
prosthetic socket fabrication. To ensure design accuracy,
a qualified prosthetist carefully conducted the residual limb
measurements, as depicted in Fig. 1. A clinically driven strategy

Mechanical properties

Density Modulus of elasticity Yield strength Tensile strength Poisson's
Materials (kg m™) (GPa) (MPa) (MPa) ratio
PET 1339 2.898 52.44 57.45 0.3887
PC 1160 2.180 61.93 62.82 0.4002
PA6 1140 1.111 43.13 71.89 0.3499
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Fig. 1 Residual limb measurements by a qualified prosthetist.

was deemed the most pragmatic and pertinent for achieving
a socket shape that precisely matches the patient's anatomical
condition. These data are the foundation for developing
a socket that meets the patient's anatomical and biomechanical
needs, ultimately enhancing their quality of life.

The transtibial prosthetic socket design was 3D modeled at
a scale of 1:1 using Solidworks 2019 software according to the
patient's residual limb dimension. The socket was designed with
a wall thickness of 6 mm, following the study by van der Stelt
et al.,*® who mentioned that this thickness is more suitable for
active users. This thickness was chosen not only to support the
patient's activity but also to maintain the strength and structural
feasibility of a prosthetic socket that meets the standard of use. In
addition, the design of the socket's bottom was changed from
a square to a circular shape, aiming to reduce stress concentra-
tions that can appear at the corners of the socket. The design
geometry of the transtibial prosthetic socket, designed according
to the patient's stump dimensions, is shown in Fig. 2.

2.3. Finite element model

We then used ANSYS Workbench 2024 R2 software to analyze
the modeled transtibial prosthetic socket design through
meshing and structural simulation. These tests were conducted
to study the load received by the prosthetic socket and analyze
the stress distribution during the gait cycle. The finite element
model represents the transtibial prosthetic socket design and
the loads applied during testing. The testing process evaluates
several parameters, such as the maximum Von-Mises stress,
total deformation, and safety factor. This analysis is done to

© 2025 The Author(s). Published by the Royal Society of Chemistry

ensure that the socket design can withstand the load, provide
optimal performance, and remain safe for use by the patient.
With this approach, the simulation results are expected to
provide in-depth insight into the strength and stability of the
socket design before it enters the production stage.

In the meshing stage, the mesh elements are organized
through an independent study approach by trying different
element sizes and numbers to determine the optimal configu-
ration. This process is carried out in stages to ensure that the
distribution of elements remains homogeneous, resulting in
accurate and reliable simulations. The quality of meshing
results is viewed with the element quality mesh method to
determine and evaluate element quality based on shape and
size relative to the ideal shape by considering side lengths,
angles, and aspect ratios.

The final mesh configuration is selected after achieving
a stable mesh quality characterized by no significant changes in
the simulation results, even though the element size is varied
(mesh convergence).*® Afterward, the meshing process is vali-
dated to ensure that the simulation results are representative of
the actual conditions and can be trusted. This stage allows the
prosthetic socket design to be virtually tested to identify and
optimize aspects of strength, comfort, and durability before
entering the production stage. This approach not only improves
efficiency in the design process but also ensures the final
product can meet the high-quality standards expected by users.

We used structural simulations to examine how well the
transtibial prosthetic socket worked during the gait cycle,
including the main steps like heel strike, mid-stance, and toe-

RSC Adv, 2025, 15, 24150-24166 | 24153
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Fig. 2 Transtibial prosthetic socket geometry design.

off. In determining the boundary conditions, the placement of
the fixed support is adjusted to the direction of loading during
the walking activity, where it is placed on the distal (bottom)
part of the socket, which is the connection area with the pylon
or other prosthetic components. This represents when the body
load is transmitted from top to bottom during the walking cycle.
Meanwhile, the load is applied from the proximal (top of the
socket) part, corresponding to the direction of the physiological
force of the body during footing. This configuration allows the

View Article Online
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133.07

activities. The load angle variation was directed parallel to the
plane of the foot motion, as shown in Fig. 3. This approach was
based on realistic scenarios, as outlined in Table 2, the aim
being to analyze the socket's response to changing stresses
during walking phase transitions.

Table 2 Variation in loading direction angles across gait cycle phases

analysis of stress distribution and deformation to be more Position Angle (*) FOY Fx () Fz (N)
realistic to the conditions of use. The loading in this test follows  peel-strike 15 3360 869.6 3245.5
the research of van der Stelt et al.,** which stipulates that the 10 3360 583.5 3308.9
load case is applied during the most critical phase of the gait 5 3360 292.8 3347.2
cycle, with applied loadings of 3360 N in the heel-strike phase ~Mid-stance 3360 0 3360
. Toe-off 5 3019 263.1 3007.5
— and 3019 N in the toe-off phase. 12 3019 627.7 2953
| Then, the direction of loading was adjusted to the direction 20 3019 1032.6 2836.9
of footwork to represent the force distribution during walking
Fx Fx Fx Fx

AR R R R N N R R N N N N N N N R N N N R N RN R R N R R R R RN R R R R R R R R

]5[] 10() sll 0(] 5“ 200

Heel - Strike Mid - Stance

12 0
Toc - Off

Fig. 3 Free-body diagram representation of the transtibial prosthetic socket according to force distribution in the gait cycle phase.
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With this approach, the aim is to represent the extreme
conditions that a prosthetic socket may experience while iden-
tifying potential structural failures. This analysis enables opti-
mization of the socket design to ensure maximum strength,
durability, and safety. Thus, we expect the final product to meet
the user's needs in accordance with high-quality standards.

3. Results and discussion

3.1. Mesh independent study

The finite element simulation of this transtibial prosthetic socket
model uses 3D tetrahedral elements, which are commonly used
for complex geometries. This type of element allows flexible mesh
formation and accurately follows the contours of the socket
surface. The mesh quality evaluation was performed using the
Element Quality method, which has a value range of 0 to 1 (poor
to excellent). The aim is to measure how ideal the element’s shape
is compared to its optimal shape. Based on the mesh evaluation
image, most elements are in the range of 0.5 to 0.99 (green to blue
color), indicating that the mesh quality is good to excellent. The
maximum value of 0.99956 indicates the presence of elements
very close to ideal shapes, while the minimum value of 0.032 is
still tolerable because the distribution of low-quality elements is
very small and scattered.

This shows that the discretization process is performed with
high precision, and the resulting mesh is sufficient to ensure
accuracy and numerical stability in the simulation (Fig. 4).

In addition, we also conducted mesh-independent studies to
determine the optimal meshing configuration and element size,
aiming to balance simulation accuracy and computational
efficiency.?”*® The mesh quality is categorized into fine mesh
and coarse mesh, which regulates the variation of element size
to affect the precision level of simulation results as well as the

Mesh
Element Quality

0.99956 Max
0.89209
0.78462
0.67716
0.56969
0.46222
0.35475
0.24728
0.13982
0.032347 Min

Fig. 4 Element quality visualization of the transtibial prosthetic socket
mesh using the element quality method.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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computational power requirements. Smaller element sizes tend
to produce high accuracy but require more computational
power. So, the right element size is chosen by finding the best
balance between accuracy and efficiency. This way, the simu-
lation can run at its best without using too many computer
resources. If the difference in results between mesh variations is
small, then the optimal mesh configuration can be used.

The mesh-independent study involved 16 experiments with
various element sizes, as shown in Table 3, to evaluate their
effect on simulation accuracy and computational efficiency. The
results were validated to ensure that the mesh settings used can
minimize potential simulation errors.

The calculation of the Von Mises stress errors in the present
study utilizes the methods suggested by Jindal et al.** and Saad
et al.* It was proposed that mesh convergence occurs when the
error differential between two simulations with varying mesh
sizes is below 1%, especially following further mesh refining.*>*

Mesh convergence is an iterative procedure that involves the
systematic application of loads and boundary conditions, incre-
mentally modifying the element size until the analytical results
demonstrate convergence, characterized by nearly equal
outcomes for two different mesh sizes. This technique is crucial
to guarantee that the numerical simulation outcomes are precise
and stable, irrespective of the mesh element size employed.***

According to Jindal et al.,** the maximum stress and total
deformation parameters on prosthetic sockets did not signifi-
cantly change when the mesh size was reduced from 0.75 mm to
0.5 mm; instead, deviations remained below 1%. This discovery
indicates that even with finer meshes, the outcomes remained
constant. Thus, the study determined that mesh convergence
was achieved at a mesh size of 0.75 mm, as the slight variations
in findings suggested that further mesh refinement would not
yield significant enhancements. Furthermore, Saad et al*
demonstrated that a socket mesh consisting of 229 340 pieces
and a mesh size of 3 mm had an inaccuracy of 0.75%. With a 1%
error threshold established, the mesh analysis verified that
convergence was attained. This indicates that, despite the
increased mesh element size, the analysis results were
adequately precise for the research aims, with the error
remaining comfortably within the established limit.

Fig. 5 depicts the correlation between the number of mesh
elements and the Von-Mises stress generated during the anal-
ysis. The results of this study show that a nearly linear Von
Mises stress trend is obtained at mesh sizes of 16 mm, 15 mm,
and 14 mm, with the corresponding numbers of elements being
2774, 3165, and 3638, respectively. The 14 mm mesh produces
an error of 0.52%, indicating that convergence has been ach-
ieved, as the error is less than the required 1%. This specific
mesh arrangement was chosen for the finite element analysis
(FEA) because of its ideal balance between computational effi-
ciency and excellent accuracy.

3.2. Finite element analysis of transtibial prosthetic socket
design

Prosthetic sockets are designed to help patients achieve a nearly
normal gait pattern, keeping in mind the balance between

RSC Adv, 2025, 15, 24150-24166 | 24155
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mal mesh configuration in the simulation

Element size

Von-Mises stress Error calculation,

(mm) Number of elements (MPa) % (Von Mises stresses)
20 1864 30.84 15.78%
19 2034 36.62 5.42%
18 2281 34.74 10.17%
17 2450 38.67 3.80%
16 2774 40.20 1.41%
15 3165 40.77 1.04%
14 3638 41.20 0.52%
13 4301 40.99 15.54%
12 4907 48.53 8.18%
11 5888 44.86 9.95%
10 7221 40.80 22.64%
9 9084 52.74 6.33%
8 11891 49.60 11.06%
7 16542 55.77 17.80%
6 26801 47.34 10.93%
5 52242 53.15

efficiency and comfort. The optimal design focuses not only on
biomechanical functionality but also on the economic aspects
that can be achieved through 3D printing fabrication methods
and proper material selection. By considering all these aspects,
prosthetic sockets can fulfill both biomechanical and economic
needs simultaneously, significantly improving the patient's
quality of life. This approach enables the production of high-
quality, durable, and affordable sockets for users. The results
of the finite element simulation in this study are shown in
Fig. 6.

Finite element simulation results identified the heel-strike
phase with an inclination angle « = 15° as the most critical
condition in prosthetic socket performance during the gait
cycle. In this phase, the initial load from the body starts to be
transmitted abruptly to the prosthetic socket, resulting in
significant stress spikes. This leads to maximum stress
concentration at the posterior and distal parts of the socket,
thus increasing the risk of structural failure.***

60 -

50 1

40 A

304 @

Von-Mises Stress (MPa)

Without considering proper material selection and geometry,
the risk of deformation or even structural failure can increase
significantly. Therefore, an even stress distribution during the
heel-strike phase is essential in the design of prosthetic sockets.
The optimal socket should withstand the load while maintaining
strength and stability and ensuring comfort for the user.** This
approach not only supports a natural and efficient walking pattern
but also ensures the socket can be used safely and durably, thus
improving the patient's quality of life in the long run.

Based on the finite element simulation results shown in
Fig. 6, the variation of maximum Von-Mises stress values
received between the PET and PC materials against PA6 shows
functionally relevant significance. In use, the PA6 material
shows higher Von-Mises stress values than PET and PC. The PA6
material recorded the highest stress of 41.20 MPa, followed by
the PET material with a stress of 37.65 MPa, and the PC material
with the lowest stress of 36.49 MPa. This difference occurs due
to the mechanical properties of the material; materials with
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Fig. 5 Graph of mesh independent study with the relationship of the number of elements and Von-Mises stress to determine the optimal mesh

configuration.
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Fig. 6 Finite element simulation results of maximum Von-Mises stress:

a lower yield strength value tend to be more susceptible to stress
concentration in critical areas.*>*® This causes the material to
enter the plastic deformation phase more quickly, especially
when facing repeated loads during the gait cycle in prosthetic
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socket use. These findings show how important stress distri-
bution analysis is in designing prosthetic sockets to make sure
they are strong, reliable, and safe for the user so they can do
their daily tasks well.

a) PET

b) PC

¢) PA6

Fig. 7 Von-Mises stress distribution in the transtibial prosthetic socket during the heel-strike phase: (a) PET, (b) PC, and (c) PA6.
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The Von Mises stress distribution resulting from the finite
element analysis shows that the maximum stress occurs at the
posterior-distal portion of the prosthetic socket, as shown in
Fig. 7. This location is marked red to orange, indicating the
peak stress value. The high stress in the area is due to the
vertical force transmitted directly from the body to the socket
during the heel-strike phase of the walking cycle. In addition,
the shape of the socket geometry that accommodates the
anatomy of the residuum also influences the stress concentra-
tion.””** These findings indicate that the posterior-distal
portion is a critical point that needs special attention in pros-
thetic socket design and material selection to avoid the risk of
structural failure due to high-stress accumulation.

The results of the finite element simulations of the
maximum Von-Mises stress during the current force cycle show
mechanically significant differences in stress values, particu-
larly under repeated loading during the gait cycle, as shown in
Fig. 8. When receiving stress, the PET and PC materials have
more rigid and stable mechanical properties. Hence, they can
distribute the load more evenly, and the Von Mises stress values
tend to be lower.

Meanwhile, the PA6 material, with its elastic properties,
tends to create stress concentrations in certain areas, especially
at the fulcrum or parts with force concentrations. Nonetheless,
all three materials remain within acceptable safety limits and
provide sufficient safety margins to avoid the risk of structural
failure.

Prosthetic sockets change shape when given a load, which
can be analyzed through the total deformation parameter. This
parameter illustrates how overall shift or deformation occurs in
the socket in response to load, especially in the most critical
conditions. Based on the analysis results shown in Fig. 9, the
PA6 material experiences a higher total deformation than the
PET and PC materials, so the PA6 material tends to have good
flexibility properties. PA6 shows a total deformation value of
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16.01 mm, much higher than those of the PC material of
7.95 mm and PET material of 6.02 mm. The analysis also
revealed the distribution pattern of displacement in the trans-
tibial prosthetic socket, where the largest displacement
occurred at the top of the socket close to the knee area, while the
smallest displacement was found at the attachment site of the
ear socket adapter.

Fig. 10 shows a comparison of the total deformation during
the gait cycle. This significant difference confirms that the PA6
material is more flexible than the PET and PC materials. This
flexibility is due to the lower elastic modulus value, which
allows the material to deform more easily under load.* In
contrast, materials with higher elastic modulus values tend to
deform less due to their stiffer nature. Thus, PA6 materials may
absorb greater deformation without increasing the risk of
structural failure, although this property may be less suitable
for designs that require higher dimensional stability. These
findings suggest that it is important for prosthetic socket
designers to select materials based on a balance between flexi-
bility, stiffness, and user requirements to create sockets that are
safe and comfortable in supporting daily activities.

Prosthetic sockets encounter significant repetitive compres-
sive and flexural loads during their use, especially during the
gait cycle. This repetitive loading can affect the strength and
stability of the socket, potentially decreasing its level of safety.
To ensure socket safety and reliability, it is important to
understand and effectively replicate these loading condi-
tions.*>** Material selection plays a crucial role, as the material
used will determine the ability of the socket to withstand
maximum stress and deformation.

The heel-strike phase was chosen as the test condition
because it is the most critical condition in the gait cycle. In this
phase, the initial load from the body starts to be transmitted
abruptly to the prosthetic socket, resulting in significant stress
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Fig. 8 Graph of maximum Von Mises stress of the prosthetic socket at various gait cycle phases.
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Fig. 9 Finite element simulation results of total deformation: (a) PET, (b) PC, and (c) PA6.
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Fig. 10 Graph of the total deformation of the prosthetic socket at various phases of the gait cycle.
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spikes, making it a critical stage to evaluate the stability and
comfort of the prosthetic socket.

Based on the safety factor analysis shown in Fig. 11, the PC
material performed best with the highest value of 1.697, fol-
lowed by the PET material at 1.393 and the PA6 material with
the lowest value of 1.047. Nonetheless, all three materials still
meet the minimum standard for static testing, as their safety
values are greater than 1 (SF > 1), indicating reliability and
safety during use.*»** However, the design will be considered
safe against material fatigue if the factor of safety value reaches
or exceeds 1.25, as suggested by various engineering standards
and previous studies.”**® These findings are consistent with
previous research, including the study by Jindal et al.,** which
evaluated multiple materials and established a minimum safety
factor threshold of 1.5 for assessing maximum static load-
bearing capacity.

In the research of Plesec et al.,>” a safety factor of more than 2
was obtained, and the 3D-printed socket made of PLA could
withstand the stresses and strains during a normal gait cycle.
However, it should be understood that differences in results
between studies are very likely to occur, mainly due to factors
such as patient-specific conditions and the type of loading
received by the material during use. Thus, the margin of safety
factor achieved still assures reliability and safety of use while
demonstrating compatibility with theoretical references and

Safety Factor
Type: Safety Factor

Safety Factor
Type: Safety Factor

15 Max 15 Max
10 10
3 > 5
[5) 1.3927 Min 1.6972 Min
-v>—1 0 0
S
.=
St
Q
g
Safety Factor Safety Factor
Type: Safety Factor Type: Safety Factor
15 Max 15 Max
10 10
z N *
(D] 1.3927 Min 1.6972 Min
@ — )
> 0 0
3
.-
—
Q
+—
8

a) PET

View Article Online

Paper

previous research results, as long as it is applied in the context
of patient loads and needs.

Fig. 12 compares the safety factors for the PET, PC, and PA6
materials during the gait cycle. During the gait cycle, the mid-
stance phase shows a relatively higher safety margin as the
stresses generated are still low. The heel-strike phase becomes
the most critical condition, where the material experiences
maximum stress and deformation, testing the socket's ability to
withstand peak loads. Furthermore, in the toe-off phase, the
safety margin again decreases due to stress concentration in the
anterior-distal area of the socket. Although the total force is
lower than in the heel-strike phase, the more focused force
direction and smaller contact area cause the specific pressure to
increase, decreasing the safety factor in this phase.

The analysis showed that the PC and PET materials obtained
higher safety factors due to their superior elastic modulus and
tensile strength characteristics, allowing them to withstand
greater loads with more limited deformation. In contrast,
although the PA6 material excels in flexibility and energy-
absorbing capability, its margin of safety tends to be lower
than those of PC and PET. These findings emphasize the
importance of proper material selection to balance safety, flex-
ibility, and the prosthetic socket's performance.

The research by Goh et al.*® suggests that, to ensure patient
safety, prosthetic sockets produced via 3D printing technology
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Fig. 11 Finite element simulation results with respect to the factor of safety: (a) PET, (b) PC, and (c) PA6.
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Fig. 12 Graph of the safety factor of the prosthetic socket at various phases of the gait cycle.

should undergo thorough structural testing following ISO 10328
criteria. The tests consist of two main categories: static testing,
which subjects the material to maximum loads usually experi-
enced during diverse activities, and cyclic testing, which simu-
lates the regular walking pattern over 3 million cycles, applying
loads uniformly with each step. These tests aim to verify that the
socket will not fail due to peak loads or material fatigue under
standard usage conditions.®

The present study involved testing simulations of prosthetic
sockets made from the PET, PC, and PA6 materials under loads
of 3360 N at the heel-strike and mid-stance positions and
3019 N at the toe-off position. The load values employed in this
study align with the ISO 10328 requirements, as indicated by
the research conducted by Goh et al.*® and van der Stelt et al.*
The static tests typically conform to three established loading
levels defined by ISO 10328: A60, A80, and A100. The A60
standard mandates that the socket shall withstand a load of
3360 N at heel-strike and 3019 N at toe-off without failure. The
results of this study demonstrate that the A60 load level does
not induce failure in the tested socket model. This indicates
that the socket design is resilient and can endure static testing
criteria. Nonetheless, further design enhancements and
supplementary testing are necessary to guarantee the socket's
long-term safety and endurance.

Goh et al.*® also observed that cyclic testing is performed
solely if the socket completes the static testing phase. According
to their findings, cyclic testing of 3D-printed polypropylene
prosthetic sockets showed no failures after 250000 cycles.
Mankai et al®® revealed that lower-limb prosthetic sockets
reinforced with carbon fiber failed with a static stress of 3400 N.
In contrast, sockets reinforced with alfa fibers (Stipa tena-
cissima) ruptured under a pressure of 2900 N. The cyclic testing

© 2025 The Author(s). Published by the Royal Society of Chemistry

indicated that the fatigue life of these sockets was approxi-
mately 2 325 000 cycles, which constituted only 77.5% of the 3
000 000 cycles required by the ISO 10328 standard.

The results of this study indicate that polycarbonate (PC)
sockets offer a superior safety factor compared to those con-
structed from polyethylene terephthalate (PET) and polyamide 6
(PA6) across all loading scenarios. This result is primarily
attributed to PC's enhanced yield strength of 61.93 MPa, which
exceeds those of PET at 52.44 MPa and PA6 at 43.13 MPa.** The
elevated yield strength of PC enables it to withstand greater
applied loads before experiencing plastic deformation or
mechanical failure.**** As a result, PC exhibits superior struc-
tural integrity under stress, leading to a markedly increased
safety factor. Conversely, sockets made from PA6 demonstrate
the lowest safety factor of the three materials. This signifies an
increased liability of PA6 to plastic deformation or structural
failure under elevated stress conditions. Although PA6 exhibits
commendable abrasion and wear resistance, its mechanical
performance under stress is constrained since it tends to
deform rapidly under substantial loads.

In addition, the mechanical properties of PC, PET, and PA6
are significantly affected by the monomers employed in their
fabrication. Polycarbonate is a thermoplastic polymer produced
from bisphenol A (BPA) and phosgene, creating carbonate
bonds identical to ester bonds.®»* The aromatic rings in BPA
substantially enhance the polymer's stiffness by limiting
molecular chain motion, thus improving its strength and
toughness. This molecular structure confers significant resis-
tance to deformation, rendering PC highly durable and
mechanically dependable. The unique combination of stiffness
and toughness enables polycarbonate to withstand substantial
mechanical stresses without irreversible deformation, making it
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a favored material for engineering applications that require
both ductility and endurance. Consequently, polycarbonate is
esteemed as a high-performance engineering resin owing to its
superior mechanical properties.* In contrast, PET is
a condensation polymer produced via the esterification of
ethylene glycol (EG) with either terephthalic acid (TPA) or
dimethyl terephthalate (DMT), leading to the creation of ester
groups (-C(=0)-0-).**" The inflexible aromatic ring of TPA
enhances the material's rigidity, whereas the brief aliphatic
chain of EG (-CH-CH,-) restricts its toughness.***°

PET demonstrates commendable rigidity; however, its infe-
rior toughness relative to PC renders it more susceptible to
failure in high-stress or dynamic environments. Consequently,
PET exhibits a diminished safety factor owing to its limited
capacity to withstand deformation or fracture under stress. PA6,
also known as nylon 6, is produced from e-caprolactam and
consists of extended aliphatic chains (-CH,)s— and amide
functional groups (-NH-C(=0)-).*

Additionally, PA6 exhibits exceptional molding capabilities,
notable water absorption properties, and elevated thermal
stability. The robust intermolecular hydrogen bonding in its
molecular structure significantly contributes to its raised
melting point, improving its performance at high tempera-
tures.” The pliable aliphatic backbone results in less hydrogen
bonding, which decreases intermolecular cohesion and
increases vulnerability to plastic deformation. While PA6 offers
moderate strength, its reduced toughness and increased flexi-
bility render it more susceptible to mechanical failure under
high-load conditions. Consequently, PA6 exhibits the lowest
safety factor among the evaluated materials, signifying its
restricted suitability in high-stress conditions.

This study found that the prosthetic socket designs using the
PET, PC, and PA6 materials had respective masses of 905 g,
784 g, and 770 g. The 3D printing expenses per kg for the PET,
PC, and PA6 filaments were $7.4,”* $95,”> and $95,7> respectively.
Based on these findings, the fabrication costs for prosthetic
sockets created from PET, PC, and PA6 materials were calcu-
lated to be $6.73, $74.48, and $73.15, respectively. PET is
distinguished by its comparatively reduced filament cost rela-
tive to PC and PA6, making it more economical for prosthetic
socket fabrication. PET offers a cost-effective alternative due to
its reduced fabrication expenses, maintaining quality, and
establishing itself as the ideal option for applications that
highlight production cost-effectiveness.

Semi-aromatic synthetic polymers, such as polyethylene
terephthalate (PET), possess exceptional physicochemical
characteristics, including an elevated heat distortion tempera-
ture, excellent dimensional stability, outstanding mechanical
strength, excellent chemical resistance, and effective electrical
insulation. The increased glass transition temperature (T,) and
melting temperature (Ty,) of PET indicate its capacity to main-
tain shape and structural integrity at high temperatures.”®”*
The remarkable properties of PET render it an ideal material for
applications requiring thermal stability and substantial
mechanical strength. PET is an exceptionally adaptable mate-
rial, defined by numerous excellent properties that make it
appropriate for various applications. Moreover, its recyclability

24162 | RSC Adv, 2025, 15, 24150-24166
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improves its environmental sustainability, establishing it as an
environmentally friendly material alternative.”»”*”” The expense
of 3D printing with PET filament is expected to decrease grad-
ually as researchers focus on generating PET filament from
recycled plastic bottles.”*" This trend is driven by PET plastic
waste, a cost-effective alternative to virgin plastic in filament
manufacturing.

The recycling process, which includes cleaning, shredding,
and extrusion, enhances the economic viability of transforming
plastic waste into usable filament. Using recycled PET bottles as
the raw material significantly reduces the production cost of
filament, hence decreasing the market price of PET filament.
Furthermore, the recycling of post-consumer waste plastic helps
alleviate environmental pollution by reducing the amount of
plastic that accumulates in landfills or natural habitats.”®** The
sustainability and effectiveness of turning plastic bottles into
PET filaments will increase dramatically as recycling technology
advances. These advancements are expected to lower produc-
tion costs and improve the environmental efficacy of 3D
printing methods.”®***>* Ultimately, the decreasing expense
and ecological advantages of recycled PET filament may render
3D printing more economical and accessible across diverse
industries. As a result, industries including manufacturing,
product design, and healthcare adopt additive
manufacturing technologies more quickly.

may
85-87

4. Conclusions

3D printing technology offers enormous potential for devel-
oping prosthetic sockets, particularly in enabling personalized,
efficient, and cost-effective fabrication. Through finite element
method analysis under gait cycle loading, the heel-strike phase
was identified as the most critical due to the abrupt trans-
mission of body load, resulting in peak stress concentrations at
the posterior-distal region of the socket. Among the materials
evaluated, polycarbonate (PC) demonstrated the highest struc-
tural integrity, making it ideal for applications requiring high
strength and durability. Polyamide 6/Nylon 6 (PA6) exhibited
excellent flexibility and deformation resistance, suitable for
dynamic loading conditions. Meanwhile, polyethylene tere-
phthalate (PET) provided a favorable compromise between
mechanical performance and cost efficiency. Ultimately, the
selection of prosthetic socket materials should align with the
specific anatomical and functional needs of individual users.
Careful material selection tailored to patient-specific conditions
can significantly enhance the comfort, reliability, and long-term
functionality of transtibial prosthetic sockets produced through
additive manufacturing. Further research is necessary to
examine the actual performance of these materials under
various operational conditions, thereby facilitating future
experimental validation. The mechanical properties of 3D-
printed prosthetic socket prototypes will be carefully
compared with the outcomes derived from finite element
analysis (FEA) simulations to evaluate the accuracy and reli-
ability of the computational predictions. This comparative
assessment will also evaluate material selection and design

© 2025 The Author(s). Published by the Royal Society of Chemistry
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parameters in relation to patient-specific requirements, thereby
enhancing the clinical relevance of the study.
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