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maceutical residues from aquatic
systems using bimetallic metal–organic
frameworks (BMOFs): a critical review

Kawan F. Kayani *

In recent years, pharmaceuticals have become a major environmental issue due to their ongoing release

and persistence in aquatic ecosystems, even at low concentrations. Among various solutions, bimetallic

metal–organic frameworks (BMOFs) have attracted considerable attention. This is not only because of

their tunable pore structures, large surface area, and excellent reactivity but also due to the

incorporation of multiple metal ions, which enhance their ability to remove and degrade pharmaceutical

residues. This review provides a detailed analysis of the advantages of BMOFs, introduces the occurrence

of pharmaceutical residues and their toxic effects on the environment and humans, and, for the first

time, explores their applications in removing pharmaceutical residues. Additionally, we discuss current

challenges and future perspectives for BMOFs, aiming to advance their development and maximize their

potential in environmental applications. We aim to provide detailed and meaningful insights to

researchers in both materials science and environmental studies, thereby driving advancement in this

interdisciplinary arena.
1 Introduction

Pharmaceutical pollutants are increasingly building up in both
wastewater and freshwater systems, emerging as a signicant
environmental concern. Each year, around 300 million tons of
pharmaceutical and industrial chemicals are discharged into
natural water sources.1 These micropollutants pose serious
environmental hazards due to their non-biodegradable nature,
high toxicity, and unique molecular structures.2 Consequently,
it is crucial to remove pharmaceuticals from wastewater to
mitigate their harmful impacts on the environment, human
health, and aquatic ecosystems.3–5 Aquatic environments are
continuously exposed to these persistent contaminants because
wastewater treatment processes oen fail to remove them
completely. Pharmaceuticals are typically excreted via urine and
feces as parent compounds, metabolites, or conjugates with
glucuronic and sulfuric acids.6 These substances enter aquatic
ecosystems through the discharge of both treated and untreated
wastewater.

The presence of pharmaceuticals in water can be linked to
sources such as personal care products, waste from the phar-
maceutical industry, hospital waste, and therapeutic drugs. The
detection of trace amounts of pharmaceuticals and other
xenobiotic compounds in treated drinking water raises signi-
cant public health concerns. Limited knowledge exists about
the potential chronic health effects of long-term exposure to
ce, University of Sulaimani, Kurdistan,

ivsul.edu.iq

0182
these compoundmixtures through drinking water.7–9 Therefore,
addressing the removal of pharmaceuticals and other priority
pollutants from wastewater before discharge has become
a critical issue in environmental science. Signicant efforts are
needed to study this problem and mitigate its impacts
effectively.

Recent studies emphasize photocatalytic degradation of
pharmaceuticals for its affordability and eco-friendliness.10

Materials such as metal oxides,11 activated carbon,12 , and
metal–organic framework (MOF)-based nanoparticles have
gained signicant attention for their success in environmental
treatment and protection.13 MOFs, in particular, have drawn
interest because of their tunable cavities, crystalline structures,
high surface area, open framework, and diverse designs ach-
ieved through the combination of sources of metal ions and
organic linkers.14–20 Their high specic surface area and easily
tunable porous structures make MOFs increasingly attractive
for catalysis. In various applications, MOFs serve as catalysts
and adsorbents for removing pollutants from wastewater.21

Compared to monometallic MOFs, bimetallic MOFs
(BMOFs) offer enhanced and distinct functionalities. The
incorporation of two metal ions increases the number of active
sites, improving structural stability and catalytic efficiency due
to synergistic interactions.22 BMOFs are benecial as multiva-
lent metals provide extra redox-active sites.23,24 Some BMOFs are
created by altering the synthesis of existing MOFs to include
a second metal ion. Ligand–metal interactions with similar
electronic properties promote a single-phase bimetallic struc-
ture over separate monometallic compounds.25 These
© 2025 The Author(s). Published by the Royal Society of Chemistry
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heterometallic derivatives retain similarities to monometallic
MOFs but oen exhibit greater efficiency, unique properties,
and stability.26,27 Therefore, it is crucial to develop BMOFs with
enhanced activity and to extensively explore their potential
applications in removing residual pharmaceuticals.

Numerous research groups have explored different
approaches to treating wastewater contaminated with pharma-
ceutical pollutants using various materials. This review summa-
rizes the application of BMOFs in removing pharmaceutical
pollutants, highlighting their efficiency as catalysts and adsor-
bents compared to other materials. Additionally, it examines the
presence of pharmaceutical residues, their harmful environ-
mental and human health effects, and the potential future
applications of BMOFs in this eld. To the best of our knowledge,
no existing review comprehensively focuses on the removal of
pharmaceutical pollutants specically using BMOFs. Therefore,
this paper aims to provide the most up-to-date insights into the
use of BMOFs for treating pharmaceutical-contaminated waste-
water, along with future research directions.
2 Occurrences of pharmaceutical
residues and their toxic effects on the
environment and humans

The widespread presence of xenobiotics in the environment has
raised increasing concerns among urban authorities and health
professionals due to their persistence and extended half-life. In
recent decades, rapid industrial growth and urban expansion
have led to the excessive depletion of essential natural
resources.28 The manufacturing processes for consumer goods
involve several stages that release signicant amounts of waste
in various forms liquid, solid, or gaseous forms, all of which
pose environmental hazards.29,30 According to the World Health
Organization (WHO), around 15% of hospital waste is catego-
rized as infectious, making it both toxic and dangerous.
Wastewater has long been a major reservoir for pharmaceutical
compounds (PCs),31 personal care products,32 pesticides,33 and
other similar pollutants. The widespread presence of PCs in the
environment can be attributed to their persistent release and
slow transformation rates. Pharmaceutical manufacturing
industries generate wastewater containing a diverse array of
PCs, oen with high chemical oxygen demand (COD) and
occasionally elevated salinity levels.34 The minimum concen-
trations of PCs in aquatic environments have been reported to
range from ng L−1 to mg L−1.35 PCs are chemically stable and
frequently referred to as micropollutants due to their complex
fate and transport mechanisms. The physicochemical proper-
ties of these compounds play a critical role in determining the
extent and severity of their contamination across various envi-
ronmental media, including soil, water, and air. Between 2000
and 2015, global antibacterial medication usage increased by
approximately 65%, and pharmaceutical consumption world-
wide is projected to rise by 200% by 2030, compared to the 42
billion dened daily doses recorded in 2015.36 The COVID-19
pandemic further accelerated the unprecedented use of drugs
and medications.37 Veterinary pharmaceuticals are oen
© 2025 The Author(s). Published by the Royal Society of Chemistry
excreted directly onto the ground or into surface waters without
undergoing treatment at wastewater treatment plants (WWTPs),
making their management and monitoring signicantly more
difficult. The soil can serve as a major source of water pollu-
tion,38 as many of these substances and their metabolites are
water-soluble and are expelled through urine and feces.39 In
intensive livestock farming, these pharmaceuticals may enter
the environment indirectly through the use of manure and
slurry as fertilizers, potentially transferring to humans via the
food chain. Additionally, pharmaceuticals utilized in sh
farming are released directly into surface waters.39

The pharmaceuticals most commonly detected in water
treatment effluents include steroids, antidepressants, antibi-
otics, antacids, analgesics, lipid-lowering agents, tranquilizers,
anti-inammatory drugs, antipyretics, beta-blockers, and stim-
ulants. PCs tend to inltrate host environments, such as surface
water, groundwater, the cryosphere, and wastewater, eventually
transforming into intermediate products through interactions
with biotic and abiotic environmental components. These
transformations, inuenced by the reactivity and sensitivity of
PCs, pose signicant threats to aquatic ecosystems, including
the development of resistant microbial species.40

Pharmaceuticals in the environment pose signicant risks
due to their ecological toxicity, physicochemical properties, and
consumption rates. Risk assessments are essential as these
substances can bioaccumulate, exhibit high water solubility,
persist in ecosystems, and potentially cause harmful or carcino-
genic effects on organisms.41 Even trace levels of pharmaceutical
residues in the environment can lead to acute and long-term
impacts on microbes, plants, and animals. These effects may
range from metabolic disruptions to hormonal imbalances and
can harm non-target species.42 The complexity of pharmaceutical
mixtures in the environment means that certain compounds can
cause severe damage even at very low concentrations, sometimes
below detectable thresholds. Some pharmaceuticals exhibit
effects on non-human species similar to their effects on
humans,43 as they are designed to interact with specic receptors
in humans and animals, which may also exist in other organ-
isms. This interaction can inhibit essential biological processes
such as cell envelope synthesis, protein synthesis, and nucleic
acid synthesis.44 Pharmaceuticals in the environment severely
impact a wide range of organisms, with environmentally bene-
cial microorganisms being more affected than aquatic organ-
isms. Drugs like uoxetine, diclofenac, ibuprofen, and
carbamazepine exhibit carcinogenic effects even at low concen-
trations, and diclofenac specically causes acute kidney failure in
humans and other toxic effects. The “complex pools” of phar-
maceutical mixtures in nature oen have greater toxicity than
individual compounds, yet chronic effects at ecological levels
remain underreported.45 Long-term, low-dose exposure to phar-
maceuticals in drinking water and their entry into the food chain
through plants, vegetables, and meat raise concerns about
cumulative impacts on health. Wastewater effluents contain
measurable concentrations of harmful pharmaceuticals, which
pose risks to microbes, humans, and higher organisms. Studies
show that while some aquatic species tolerate acute toxicity from
drugs, phytoplankton and invertebrates are particularly
RSC Adv., 2025, 15, 20168–20182 | 20169
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vulnerable. Chronic toxicity from compounds such as uoxetine,
carbamazepine, and 17 beta-estradiol presents signicant risks
to aquatic ecosystems, underscoring the need for further
research on pharmaceutical mixtures and their ecological
consequences.46

To reduce the presence of human and veterinary pharma-
ceuticals in the environment, it is essential to identify, test, and
implement measures across short-, medium-, and long-term
timeframes. Short-term measures to reduce pharmaceutical
pollution focus on controlling emissions from production
facilities, particularly in developing countries, and improving
hygiene standards in hospitals and livestock farming to mini-
mize infections and unnecessary antibiotic use. Efforts include
promoting targeted antibiotic use, optimizing farm manage-
ment practices, and exploring techniques such as manure
treatment and biogas fermentation to reduce veterinary phar-
maceutical residues. Mid-term measures emphasize developing
environmentally friendly drugs, sustainable manufacturing
processes, and formulations that minimize environmental
impact. Long-term strategies involve designing eco-friendly
pharmaceuticals through drug redesign and personalized
medicine, supported by incentives for manufacturers to priori-
tize environmental sustainability. Additionally, enhanced
monitoring, research on distribution pathways, and public
education on proper drug disposal are essential across all
timelines.47 Fig. 1 provides a comprehensive overview of the
various sources of pharmaceutical residues entering water
systems, including industrial discharge, hospital waste, and
agricultural runoff. It also illustrates their impact on wastewater
contamination, soil pollution, potential health risks to humans,
and adverse effects on aquatic ecosystems.
3 Bimetallic MOFs advancement over
monometallic MOFs

MOFs are an emerging class of highly structured crystalline
materials that form through the self-assembly of metal clusters
Fig. 1 Highlights the sources of pharmaceutical residues in water and t

20170 | RSC Adv., 2025, 15, 20168–20182
and organic linkers via precisely coordinated bonds. Their
unique physical and chemical properties have led to extensive
applications in pollutant removal.48,49 However, conventional
MOFs encounter several challenges, including complex prepa-
ration processes, limited adsorption sites, structural instability,
and the reliance on expensive metal salts. Research indicates
that a high density of active metal sites signicantly enhances
pollutant adsorption capacity.50 Compared to monometallic
compounds (MMCs), BMOFs provide several benets, including
enhanced electrical conductivity, a greater number of active
sites, adjustable electrochemical properties, and higher charge
storage capacity. Integrating MOFs with other electrochemically
active materials results in advanced composites with large
specic surface areas, improved conductivity, and superior
dispersion characteristics. Notably, certain BMOFs demonstrate
increased electrocatalytic performance when exposed to light,
making them suitable for use as photoelectrocatalysts.51

As a targeted strategy, BMOFs have garnered considerable
attention across various elds.52–55 These materials can be
produced by altering the synthesis process of a particular MOF
to incorporate a second metal ion. In this approach, the inter-
action between ligands and two metal ions with comparable
electronic structures and charge distributions promotes the
formation of a single-phase BMOF rather than a simple mixture
of two separate MMCs.23 Although these heterometallic deriva-
tives share similarities with monometallic MOFs, they oen
demonstrate enhanced stability, efficiency, and other distinc-
tive properties. This class of materials can function directly as
electrode components or serve as templates or precursors in the
fabrication of advanced composites.56 BMOFs offer greater
stability and efficiency than monometallic MOFs, enabling
a dual-function mechanism or synergistic metal interac-
tions.26,57 The combination of two metal cations improves
conductivity and enhances oxidation reactions, boosting elec-
trocatalytic efficiency. It is evident that the incorporation of dual
metal sites within a given MOF can result in superior electro-
chemical activity, attributable to the differing oxidation
heir impact on wastewater, soil, humans, and aquatic life.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The main unique characteristics of BMOFs.
Fig. 3 Pharmaceutical residues removed using BMOFs.
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potentials and associated electronic congurations.58 Finally,
facilitating multi-functional applications, BMOFs can serve
multiple roles, such as functioning both as catalysts and
adsorbents, making them suitable for integrated applications in
environmental remediation.59 Fig. 2 shows the main unique
characteristics of BMOFs.

4 Applications

Bimetallic organic frameworks (BMOFs) and their derivatives
demonstrate signicant potential as alternative sorbents and
catalysts for the efficient removal of a wide range of pharma-
ceuticals from aquatic solutions, including antibiotics,
nonsteroidal anti-inammatory drugs, and veterinary medica-
tions. The pharmaceuticals selected and reviewed in this study
primarily include various classes, such as tetracycline (TC),
ciprooxacin (CIP), sulfamethoxazole (SMX), carbamazepine
(CBZ), acetaminophen (ACP), chloramphenicol (CAP),
ibuprofen (IBP), diclofenac sodium (DCF), ceazidime (CAZ),
imatinib (IMB), doxorubicin (DOX), 5-uorouracil (5-FU),
enrooxacin (ENR), noroxacin (NOR), moxioxacin (MOX),
cefoperazone (CP), sertraline, ooxacin (OFX), and cefradine. As
illustrated in Fig. 3.

4.1 Tetracycline removal

Since the discovery of antibiotics, bacterial infection-related
diseases have been effectively managed. Among these, TC
antibiotics, known as multifunctional broad-spectrum antibi-
otics, are widely utilized to treat bacterial infections in both
humans and animals due to their ability to inhibit bacterial
protein synthesis.60 Additionally, TCs are used as feed additives
in animal husbandry to promote animal growth. However, the
overuse of antibiotics has led to a range of severe conse-
quences.61,62 Although TCs are biodegradable, their residual
presence can cause selective genetic variations in microorgan-
isms, resulting in the emergence of drug-resistant pathogens.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Bacteria can acquire antibiotic resistance genes through
mutations or gene transfer, and the exchange of these genes
between agricultural soil bacteria and clinical pathogens oen
facilitates the spread of antibiotic resistance, giving rise to
“superbugs”. Recent studies have revealed that over 30 antibi-
otics, including various TCs and quinolones, have been detec-
ted in karst river systems, posing threats to non-target
organisms across different trophic levels, such as algae, plants,
bacteria, invertebrates, and sh.63,64 However, the excessive use
of TC can have signicant impacts on human health, as TC
residues may accumulate in foods such as meat and milk.
Studies have shown that frequent consumption of TC can lead
to liver damage and kidney issues in humans. Pregnant women
are particularly vulnerable to TC-induced liver toxicity. Addi-
tionally, extensive data indicates that prolonged and repeated
use of TC can negatively affect dental health by disrupting tooth
growth and formation, as well as causing discoloration, turning
teeth yellow.65 BMOFs are promising porous materials for
addressing environmental pollution caused by pharmaceuticals
like TC, owing to their exceptional surface area, catalytic
activity, and porous architecture. The following section reviews
recent studies focused on the removal of TC, one of the most
commonly used antibiotics, using BMOFs.

Chen et al. successfully synthesized bimetallic MOFs (MIL-
53(Fe, Al)) for the efficient removal of TC from aqueous solu-
tions. Their experiments on adsorption and photocatalysis
revealed that a 3 : 2 molar ratio (40% MIL-53(Fe, Al)) yielded
optimal performance. The adsorption process followed the
Freundlich isotherm model and pseudo-second-order kinetics,
with a maximum adsorption capacity of 402.033 mg g−1. Under
photocatalytic conditions, 10mg of 40%MIL-53(Fe, Al) removed
94.33% of TC from a 70 mL solution (20 mg L−1) within 50
minutes of irradiation, outperforming MIL-53(Fe) (71.39%) and
MIL-53(Al) (81.82%). Additionally, the material demonstrated
a strong adsorption-photocatalytic synergy, with the pseudo-
rst-order kinetic constant increasing by 3.11 times under
RSC Adv., 2025, 15, 20168–20182 | 20171
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direct irradiation without prior dark adsorption.66 In another
study, Xia et al. developed a BMOF gel (JLUE-MOG-Fe/Y) for the
adsorption of chlortetracycline hydrochloride (CTC) from water.
This material exhibited exceptional stability, adaptability, and
recyclability, achieving a remarkable adsorption capacity of
584.83 mg g−1 at 25 °C.67 Similarly, Zhang et al. designed
transition metal/nitrogen-codoped hierarchically porous
carbons (MNHCs) by pyrolyzing bimetallic ZIFs to enhance the
adsorption of TC. The optimized MNHC, synthesized at 1000 °C
with a 2% Fe/(Fe + Zn) molar ratio, featured a large specic
surface area (920.73 m2 g−1), a hierarchical pore structure, high
nitrogen content, and abundant Lewis acid sites. These prop-
erties signicantly improved TC adsorption affinity and reduced
diffusion resistance, leading to superior performance.68

Zhang et al. developed a novel Fe/Mn-MOF combined with
a SnS2 Z-scheme heterojunction photocatalyst through self-
assembly. Leveraging the synergistic effects of the interfacial
heterojunction, the photocatalyst demonstrated exceptional
catalytic performance. With the aid of a persulfate-based
advanced oxidation process, it achieved a degradation effi-
ciency of nearly 91.4% for TC.69 Lastly, Liu et al. fabricated Fe-
doped zeolitic imidazolate frameworks-8 loaded cellulose (Fe/
ZIF-8@cellulose) aerogels. The incorporation of Fe into ZIF-8
resulted in a maximum TC adsorption capacity of 1359.2 mg
g−1, surpassing the performance of previously reported ZIF-8-
based polysaccharide adsorbents.70
Table 1 Removal of TC using BMOFs

Types of BMOFs Method Catalyst dos

Bi/Ni-MOF Degradation 30 mg
Fe/Ni-MOF Degradation 20 mg
Co/Zn-ZIF Adsorption, degradation 60 mg L−1

Sn/Bi-MOF Degradation 40 mg
Ag/Bi-MOF Degradation 30 mg
Fe/Mn-MOF Degradation 0.2 g L−1

Fe/Co-MOF Degradation 50 mg/L
Co/MIL-68(In)-NH2 Degradation 0.6 g L−1

Fe/Co-MOF Degradation 0.2 g L−1

Nb/Co-MOF Degradation 0.2g L−1

Fe/Co-MOF Adsorption 20 mg
Fe/Co-MOF Degradation 0.125 g L−1

Fe/Co-MOF Adsorption, degradation 30 mg, 10 m
Ni/Fe-MOF Adsorption 1 g L−1

Fe/Bi-MOF Degradation 0.5 g L−1

Fe/Co-MOF Degradation 0.1 g L−1

Zr/Cu-MOF Degradation 40 mg
Ni/Ti-MOF Degradation 0.2 g L−1

Zn/Fe-MOF Adsorption 10 mg
Co/Cu-MOF Degradation 0.1 g L−1

Fe/Zn-ZIFs Degradation 0.4 g L−1

Cu/Co-MOFs Adsorption 50 mg
Fe/Co-MOF Adsorption —
Cu/Fe-ZIF-8 Adsorption 100 mg L
Zn/Cu-MOF-74 Adsorption 15 mg
Zr/Fe-MOF Degradation 10 mg
Zn/Cu-MOF Adsorption 20 mg
Fe/Cu-MOF Degradation 0.6 g L−1

Fe/Co-MOF Degradation 10 mg

20172 | RSC Adv., 2025, 15, 20168–20182
Table 1 provides a summary of studies that have employed
BMOFs for TC removal.
4.2 Ciprooxacin removal

CIP one of the most commonly used second-generation qui-
nolones, is widely employed in the treatment of bacterial
infections.100 However, CIP is oen released into the environ-
ment through wastewater discharges and is frequently detected
in various aquatic ecosystems. Wastewater from pharmaceu-
tical industries and hospitals is particularly concerning, as it
can contain extremely high levels of CIP contamination,
reaching up to 31 mg L−1.101,102 Consequently, developing
environmentally and economically sustainable methods to
remove CIP from water is essential to mitigate public health
risks associated with the emergence of antibiotic resistance in
the environment.

Li et al. successfully synthesized a novel hetero-photo-Fenton
(PF) catalyst, consisting of dual MOF-derived Fe–Zr oxide
embedded in porous carbon skeleton. This hybrid photo-
catalyst, featuring a high surface area, well-developed porous
structures, strong light absorption, and a narrow band gap,
exhibited exceptional photo-Fenton activity, achieving around
99.1% degradation of CIP. Additionally, the catalyst system
performed well in treating real water matrices.103. Lastly, Zhang
et al. synthesized Cu/Ni-MOF for the targeted degradation of
CIP in advanced oxidation processes (AOPs). The specic
age Initial concentration Performance% Ref.

10 mg L−1 93.6 71
20 mg L−1 95.76 72
20 mg L−1 89.54 73
20 mg L−1 96.2 74
20 mg L−1 83 75
20 mg L−1 90.95 76
50 mg L−1 91.76 77
10 mg L−1 90.1 78
50 mg L−1 99 79
40 mg L−1 97.8 80
100 mg L−1 98 81
50 mg L−1 90 82

g 70 mg L−1, 20 mg L−1 87.5, 91 83
400 mg L−1 — 84
20 mg L−1 99.9 85
10 mg L−1 100 86
— 94 87
50 mg L−1 83 88
300 mg L — 89
20 mg L−1 98.7 90
50 mg L−1 92 91
30 ppm 93.7 92
20 mg L — 93
100 mg L 87.2 94
30 mg L−1 — 95
50 mg L−1 87 96
20 mg L−1 96.55 97
20 mg L−1 93 98
20 mg L−1 93.34 99

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Removal of CIP using BMOFs

Types of BMOFs Method Catalyst dosage Initial concentration Performance% Ref.

Fe/Cu or Mn-MOF Degradation 0.1 g L−1 20 mg L−1 88.96 105
Cu/Co-MOF Degradation 25 mg 20 mg L−1 90 106
Ti/Bi-MOFs Degradation 20 mg 10 mg L−1 93.3 107
Zn/Co-ZIF Degradation 0.1 g L−1 20 mg L−1 90 108
Zn/Co-ZIF Adsorption 0.5 g L−1 — 85.30 109
In/Cu-MOF Degradation 2 mg 15 mg L−1 81.70 110
Ce/Zr-MOF Degradation 20 mg 20 ppm 90.8 111
Fe/Cu-MOF Adsorption, degradation 0.1 g L−1 15 mg L−1 74.48, 57.88 112
Fe/Mn-MOF Degradation 5 mg 20 mg L−1 98.3 113
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recognition sites on Cu/Ni-MOF, enabled by electrostatic inter-
actions and functional group binding with CIP, provided
excellent selective recognition (Qmax = 14.82 mg g−1). This
allowed active radicals to efficiently target and degrade the
contaminants.104 Table 2 provides an overview of studies that
employed BMOFs for CIP removal.

4.3 Sulfamethoxazole removal

SMX, a widely used antimicrobial, treats infections and
supports livestock growth, with global consumption exceeding
84 240 tons annually.114 Unfortunately, only a small portion of
SMX is metabolized or absorbed by living organisms, with
approximately 70% being excreted through feces or urine and
subsequently discharged into water. However, due to the limi-
tations of current wastewater treatment technologies in effec-
tively removing such antibiotics, signicant concentrations of
SMX have been detected in the effluent frommedical industries,
municipal sewage systems, and livestock farms.115 These SMX
residues not only contribute to bacterial resistance and reduce
the efficacy of drug treatments but also pose risks to ecosystems
and human health.116 Therefore, it is crucial to develop more
effective treatment methods to eliminate SMX.

Tang et al. synthesized Fe/Cu-MOF and evaluated its
performance in the catalytic degradation of SMX. The BMOF
system demonstrated high efficiency for SMX degradation
across a broad pH range (4.0–8.6). At an initial pH of 5.6, the
BMOF catalyst achieved complete removal of SMX (20 mg L−1)
within 120 minutes, outperforming monometallic Fe-MOF and
Cu-MOF catalysts.117 In addition, Wu et al. utilized Mn/Fe-MOFs
as a cathode in a heterogeneous electro-Fenton system to
effectively remove SMX. At pH 3 and a current of 30 mA, the
system achieved 96% SMX degradation within 90 minutes, with
12.09 mg L−1 of H2O2 and 0.21 mM of $OH detected, high-
lighting its efficiency.118 Similarly, Zhou et al. developed a novel
Fe/Co-MOF for SMX removal in an AOP. The Fe/Co-MOF
demonstrated excellent catalytic performance in activating
peracetic acid (PAA) for SMX degradation under neutral condi-
tions. While increasing PAA concentration improved SMX
removal, varying the Fe/Co-MOF dosage from 0.05 to 0.2 g L−1

had minimal impact on degradation efficiency.119 Furthermore,
Xie et al. introduced a self-assembly strategy to synthesize
highly dispersed Co/Fe bimetallic carbon cages (CoFe50@C)
through the thermal transformation of Fe-doped dual MOFs.
Leveraging the well-dispersed Co/Fe species, synergistic effects,
© 2025 The Author(s). Published by the Royal Society of Chemistry
and enhanced carbon graphitization, CoFe50@C achieved 98%
SMX removal within 180 minutes.120 Guo et al. proposed a dual-
MOF-assisted strategy to construct core–shell magnetic Fe3-
O4@ZIFs composites for PAA activation. The Fe3O4@ZIFs
exhibited superior activity, achieving 99.3% SMX degradation
within 30 minutes, outperforming similar materials.121 Lastly,
Peng et al. synthesized a stable Fe/Co-MOF to activate perox-
ymonosulfate (PMS) for SMX degradation. Fe/Co-MOF demon-
strated exceptional catalytic performance, achieving 100%
degradation of 5 mg per L SMX within 30 minutes.122

4.4 Carbamazepine removal

CBZ is a commonly used pharmaceutical compound found in
drugs and PPCPs.123 It is a signicant micropollutant due to its
widespread use and high detection rate in natural water sour-
ces. Aer CBZ is administered to humans, various derivatives
are formed through in vivo metabolism and environmental
degradation of the parent compound. These derivatives are
oen more toxic and harder to degrade than CBZ itself, making
it essential to study their environmental behavior and develop
effective removal methods. Widely used in the treatment of
epilepsy and bipolar disorder, CBZ has a high annual
consumption rate.124 Research indicates that prolonged expo-
sure to CBZ can have toxic effects on the central nervous and
digestive systems, impair embryonic cell development, and
affect blood cell levels.125 As a result, there is an urgent need to
develop effective treatment technologies to eliminate CBZ and
its derivatives from aquatic environments.

Several studies have explored efficient catalysts for CBZ
degradation. Zheng et al. successfully developed a highly effi-
cient Mn-doped MIL-53 (Fe) precursor at high temperatures.
The FeMn@C-800/2 catalyst demonstrated the highest catalytic
performance for CBZ degradation, achieving an apparent rst-
order reaction rate 8.9 and 17.8 times greater than Fe@C-800
and Mn@C-800, respectively, under optimal conditions (cata-
lyst dosage: 50 mg L−1, pH: 4.0).126 Roy et al. synthesized NH2-
MIL-125(Ti)@MIL-53(Fe/Co) (AMIL@MIL). This catalyst facili-
tated CBZ mineralization in aqueous solution via PMS activa-
tion under visible light, completely degrading CBZ (10 mg L−1)
within one hour using 0.05 g L−1 of the composite containing
10 wt% NH2-MIL-125(Ti) and 0.25 g L−1 of PMS.127 Thai et al.
introduced MIL-100@ZIF-67@MXene, a novel metallic MOF
composite anchored on MXene nanosheets, designed for
enhanced CBZ degradation and PMS activation. Their study
RSC Adv., 2025, 15, 20168–20182 | 20173
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thoroughly investigated the composite's efficiency, reaction
parameters, and mechanisms, revealing that the MIL-100@ZIF-
67@MXene/PMS system reduced CBZ by 95%within 30minutes
under neutral pH conditions.128 Huang et al. developed Co/N–
PC-T precursors using solvent heating and immersionmethods,
followed by simple pot calcination of Co/Zn-MOF to obtain Co/
N–PC-T. These catalysts were employed for PMS activation and
pollutant degradation, with Co/N–PC-800 exhibiting exceptional
catalytic performance. When used for PMS activation, Co/N–PC-
800 achieved over 98% CBZ degradation in 30 minutes.129

4.5 Acetaminophen removal

ACP a pharmaceutical and PPCP, is one of the most widely used
painkillers and has been detected in sewage, sewers treatment
plants, and even drinking water due to its extensive use.130 It is
also commonly utilized as an analgesic and antipyretic and
serves as a key component in anti-u medications worldwide.131

ACP in water systems poses signicant risks to aquatic life and
human health. Research highlights its environmental impact
and associated health hazards, including liver failure, gastro-
intestinal disorders, and liver necrosis.132 Consequently, there is
an urgent need to develop effective methods to remove ACP
fromwastewater before it is released into aquatic environments.

Alrefaee et al. effectively removed pharmaceutical contami-
nants from wastewater using a novel adsorbent, La/Th-MOF.
This material consists of stacked nanorods of 2-methyl imid-
azole coordinated with lanthanum and thorium. It demon-
strated an impressive maximum adsorption capacity of
339.75 mg g−1 for ACT, highlighting its potential as a cost-
effective and efficient adsorbent for wastewater treatment. The
study found that pH levels signicantly inuence ACT adsorp-
tion, with optimal performance occurring in an acidic envi-
ronment (pH 5) at an adsorbent dosage of 0.02 g.133 Pattappan
et al. synthesized Fe/Co-MOF, which exhibited enhanced light
absorption in the visible spectrum and a bandgap energy of
1.73 eV. Photoluminescence analysis revealed a lower charge
carrier recombination rate in Fe/Co-MOF compared to bare Fe-
or Co-MOFs. The Fe/Co-MOF achieved a maximum AAP
conversion rate of 97.4% (rate constant 0.031 min−1) in 180
minutes, outperforming Fe-MOF (66%) and Co-MOF (73%). A
scavenger study identied superoxide anion radicals as the
primary agents responsible for AAP and 2,4-D degradation. The
catalyst maintained its stability over ve recycles without any
decline in AAP degradation efficiency. Fe/Co-MOF photo-
degraded 2,4-D by 79.8%.134 Li et al. successfully synthesized Fe/
Co-MOF by co-doping MIL-101(Fe). This material achieved
complete (100%) APAP degradation within 15 minutes at a Fe/
Co-MOF concentration of 0.05 g L−1 and a PMS concentration
of 0.8 mmol L−1. Notably, the degradation process remained
effective across a wide pH range (3–9), demonstrating the
material's versatility in various wastewater treatment
conditions.135

4.6 Chloramphenicol removal

CAP is a widely used antibiotic for treating bacterial infections
and is frequently detected in surface water, wastewater
20174 | RSC Adv., 2025, 15, 20168–20182
effluents, groundwater, and soil environments.136,137 CAP is
known for its blood toxicity, embryotoxicity, and potent
immunosuppressive effects, which can also disrupt the physi-
ological functions of plants, animals, and microorganisms.138

As a result, there is an urgent need to develop effective tech-
nologies and strategies to eliminate CAP.

Xue et al. developed a BMOF derivative to in situmodify bulk
CA (Ce/Fe@C-CA), creating a bifunctional composite cathode
for CAP degradation in the heterogeneous EF process. This
composite cathode demonstrated high CAP degradation effi-
ciency of 94.89% was achieved.139 Lei et al. synthesized a novel
nitrogen-doped Fe/Ni-MOF derivative for efficient ionizing
radiation-catalytic degradation of CAP. Compared to single
electron beam (EB) irradiation, the radiation-catalytic process
enhanced the degradation rate constant by 2.8 times and
improved the total organic carbon (TOC) removal rate by 21.2
times. Notably, a synergistic effect between Fe and Ni in their
valence states was observed, with Fe2+ playing a crucial role in
promoting hydroxyl radical production during the radiation-
catalytic process.140

4.7 Ibuprofen removal

IBP is a widely used non-steroidal anti-inammatory drug
commonly prescribed for pain relief, fever reduction, and
inammation management.141 It has proven highly effective in
treating rheumatoid arthritis. Due to its extensive global
consumption, IBP is frequently detected in freshwater sources,
raising concerns about its potential ecological effects. Studies
suggest it may have long-term adverse impacts on aquatic
life.142,143 Additionally, ibuprofen has been identied as an
indicator of wastewater contamination.144 Given its threat to
aquatic organisms and the stability of ecosystems, it is crucial to
remove this pollutant from wastewater before it is released into
the environment.

Li et al. successfully synthesized Mn-MIL-53(Fe) by adjusting
the Mn doping ratio. Using the UV/Mn-MIL-53(Fe)/PMS process,
IBP removal reached 79.7% within 30 minutes at a Mn-to-Fe
molar ratio of 1.0, with a reaction rate constant 26.9% higher
than the undoped counterpart.145 Similarly, Thai et al. devel-
oped an advanced bimetallic catalyst, Mn/ZIF-67@GO, for effi-
cient IBP degradation. The Mn/ZIF-67@GO/PMS system
exhibited outstanding catalytic performance, achieving 98%
degradation of a 0.05 mM IBP solution in just 15 minutes.
Additionally, the system proved versatile, successfully removing
over 80% of other tested antibiotics.146

4.8 Diclofenac sodium removal

DCF, a widely used anti-inammatory drug, is consumed
globally in large quantities. Its high water solubility and polarity
contribute to its frequent detection in wastewater, natural water
sources, and even drinking water.147 Prolonged exposure to DCF
poses potential health risks, including hemodynamic changes
and thyroid tumors.148 As a result, increasing attention has been
directed toward the removal of DCF from aqueous solutions.

Wang et al. successfully developed a novel adsorbent based
on a Ni/Co-MOF. Kinetic and isothermal analyses revealed that
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Removal of pharmaceutical residues using BMOFs

Types of BMOFs Name of residues Method Catalyst dosage Initial concentration Performance% Ref.

Fe/Cu-MOF CAZ Degradation — 5 mg L−1 99.5 151
Fe/Ni-MOF IMB Adsorption, degradation 99 mg, 50 mg 81 mg L−1, 50 mg L−1 89.12, 92.17 152
Co/Fe-MOF DOX, 5-FU Adsorption 0.5 g L−1 10 mg L−1 87.97 153
Co/Cu-MOF DOX Degradation 5 mg 20 mg L−1 80 154
Fe/Ni-MOF ENR Degradation 2 mg 30 mg L−1 95 155
Fe/Cu-MOF ENR Degradation 20 mg L−1 20 mg L−1 90 156
Fe/Cu-MOF NOR Degradation — 20 mg L−1 99.48 157
Co/Zn-MOF NOR Adsorption 0.8 g L−1 50 mg L−1 — 158
NI/Mo-MOF MOX Degradation 2 mg L−1 95 159
Ni/Co-MOF CP Degradation 0.25 g L−1 46.5 mg L−1 88.9 160
Co/Ni-MOF Sertraline Degradation 75 mg 117 mg L 97.19 161
Fe/Mn-MOF OFX Degradation 0.1 g L−1 5 mg L−1 81.85 162
Fu/Cu-MOF OFX Degradation 30 mg 30 mg L−1 100 163
Zr/Co-MOF Cefradine Adsorption 2 mg 20 mg L−1 95 164
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the adsorption behavior of Ni/Co-BTC MOF for DCF closely
followed the Langmuir and pseudo-second-order models, with
a maximum adsorption capacity of 343.05 mg g−1.149 Similarly,
He et al. synthesized an environmentally friendly Bi–Zr bime-
tallic MOF derived from plant-based materials and investigated
its adsorption properties for typical pharmaceutical and PPCPs,
specically DCF.150
4.9 Removal of other pharmaceutical residues

BMOFs have been used to remove various pharmaceutical
residues, as summarized in Table 3, including ceazidime
(CAZ), imatinib (IMB), doxorubicin (DOX), 5-uorouracil (5-FU),
enrooxacin (ENR), noroxacin (NOR), moxioxacin (MOX),
cefoperazone (CP), sertraline, ooxacin (OFX), and cefradine.
Table 3 presents a summary of studies that employed BMOFs
for various pollutant removal.
5 Conclusion and prospect

The presence and behavior of pharmaceuticals in the environ-
ment, particularly in aquatic systems, have been a signicant
focus of scientic research over the past two decades. Due to
their biologically active, lipophilic nature and resistance to
biodegradation, pharmaceuticals can accumulate and persist in
the environment, posing risks even at low concentrations. To
address this issue, BMOFs have emerged as promising mate-
rials for removing pharmaceutical residues. These materials
function as both adsorbents and catalysts, offering unique
advantages such as high surface area, exceptional porosity,
customizable pore sizes, and structural tunability. Compared to
monometallic compounds, BMOFs exhibit enhanced electrical
conductivity, greater charge capacity, increased active sites, and
adjustable chemical reactivity. While BMOFs demonstrate
excellent adsorption and degradation capabilities, challenges
remain in achieving consistent pore structures, durable
designs, and stable functional groups. Furthermore, eco-
toxicological analyses and life-cycle assessments are essential
for evaluating the environmental impact of BMOFs, particularly
in large-scale applications. Despite these challenges, BMOFs
© 2025 The Author(s). Published by the Royal Society of Chemistry
and their composites hold signicant potential as advanced
materials for pharmaceutical removal, contributing to sustain-
able environmental practices.
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