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Rapidly reconstructed CuCo,S;@Co-V-O-F
nanocatalysts for efficient and stable overall water

splitting in alkaline and seawater electrolysisf
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The strategic construction of bifunctional electrocatalytic electrodes integrating high activity and exceptional
durability is critical for sustainable hydrogen generation through water and seawater splitting. Addressing
challenges including sluggish reaction kinetics and chloride-induced corrosion in marine electrolyzers

remains imperative. Mixed transition metal oxides/sulfides, particularly cobalt—vanadium-based composites,

demonstrate superior electrocatalytic properties owing to their tunable electronic configurations,
multivalent redox states, enhanced charge transfer capabilities, and abundant exposed active sites. Here,
we have prepared CuCo,S;@Co-V-O-F. The electrode material is then calcined under argon protection,

and a synergistic structural engineering and surface treatment adjustment strategy is adopted to construct

nanostructures.
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The optimized catalyst exhibits
overpotentials of 87.8 mV (1 M KOH) and 95.5 mV (alkaline seawater) at —10 mA cm™2, coupled with OER

remarkable bifunctional performance: low HER

overpotentials of 227.3 mV and 213.5 mV, respectively. Notably, the symmetric electrolyzer assembled with
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1. Introduction

In the past few years, the exploration of green and renewable
energy as a sustainable alternative to environmentally harmful
and finite fossil fuels has become a major global focus.'” In this
context, among potential clean energy sources, hydrogen is
considered a promising candidate for future energy applica-
tions due to its high energy density and zero-carbon emis-
sions.*® Electrocatalytic water splitting represents a key
technology in efficient energy conversion and storage systems.
This process involves two half-reactions: the oxygen evolution
reaction (OER) at the anode and the hydrogen evolution reac-
tion (HER) at the cathode. The overall efficiency of water elec-
trolysis is largely determined by the coupled kinetics of these
two reactions. Since this thermodynamically non-spontaneous
process requires external electrical energy input to overcome
the Gibbs free energy barrier (AG > 0), minimizing the over-
potential brings the operating voltage closer to the theoretical
decomposition voltage of 1.23 V, thereby improving energy
efficiency.®™ It is known that there is an inevitable competition
between oxygen evolution reaction (OER) and chlorine evolu-
tion reaction (CER) in seawater decomposition. These two
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these nanowire arrays achieves an ultralow cell voltage of 1.796 V at 50 mA cm~2 demonstrating
exceptional efficiency for overall water splitting while maintaining robust stability in corrosive saline media.

reactions work together in the electrolysis process, resulting in
an unsatisfactory overall decomposition voltage for a wide
range of applications.”** Meanwhile, the O-H bond cleavage
and O-O bond formation in the OER process involve complex
multi electron transfer steps, resulting in slow kinetics of the
reaction and further increasing the difficulty of achieving effi-
cient seawater electrolysis.*™® To accelerate its sluggish
kinetics and adopt feasible electron transfer efficiency for
hydrogen energy production, catalysts are necessary.'”'®
Currently, the most effective electrocatalysts for OER are noble
metal oxides such as RuO, and IrO,, while Pt-based nano-
materials are the benchmark for HER. However, their scarcity
and high cost pose significant barriers to large-scale industrial
adoption of water splitting technologies. Therefore, developing
highly active and stable non-noble metal catalysts has become
a critical research focus in this field."**' Recent studies have
shown that ternary transition metal sulfides, such as NiCo,S,,
CuCo,S,, and MnCo,S,, due to their adjustable electronic
structures, good conductivity, and interatomic synergistic
catalytic effects, are considered promising electrode materials
for water splitting. Among them, CuCo,S, has been widely
studied owing to the high catalytic activity of cobalt-based
nanomaterials and the excellent conductivity of copper-based
nanomaterials.?*>* However, the surface oxidation and corro-
sion of metal sulfides severely affect the water splitting perfor-
mance and cycle stability of CuCo,S,.>> We chose to address
these issues through composite formation and fluorination. It
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is known from relevant literature that vanadium resources are
abundant and inexpensive, with excellent conductivity, and its
atomic radius is close to Co.?**” Moreover, the electronic and
environmental structure provided by V's multiple valence states
can effectively improve the deficiency of poor OER performance
of materials. Changes in morphology and electronic structure
brought about by bimetallic nanostructures also help expose
more active sites, thereby enhancing the activity of cobalt-based
materials and effectively improving the water-splitting perfor-
mance issues of CuCo,S,.”** Subsequent fluorination treat-
ments are considered feasible methods for regulating electronic
structures and optimizing the absorption of active components.
Therefore, introducing V, Co, F can effectively cause structural
changes and synergistic effects, enhancing the activity of the
catalyst and accelerating its kinetics.*>*' For instance, Tao
et al.** synthesized cobalt-vanadium-based nanocomposites via
a one-step hydrothermal method, achieving a current density of
10 mA cm™? at overpotentials of 210 mV for the oxygen evolu-
tion reaction and 130 mV for hydrogen generation. Kadam
et al.,*® through hydrothermal synthesis of bimetallic cobalt-
vanadium oxide Co;V,0g in 1 M KOH electrolyte, achieved
a hydrogen evolution reaction of 226 mV and a Tafel slope of
178 mV dec .

Inspired by the above, we adopted a multi-step hydrothermal
synthesis and (under argon protection) fluorination treatment
to prepare CuCo,S,@Co-V-O-F catalysts with nanowire arrays.
Through the synergistic effect of Cu and Co, high-valence V
providing additional redox centers, and surface modification by
fluorination, its surface chemistry was altered to promote the
adsorption and dissociation of water molecules, thereby
improving the performance and stability issues of the CuCo,S,
matrix. The prepared CuCo,S;@Co-V-O-F catalyst exhibits
excellent performance in hydrogen evolution reaction. In 1 M
alkaline KOH solution, it shows a low overpotential of 87.8 mV
to achieve a current density of —10 mA cm™~> and a Tafel slope of
176.7 mV dec™'. Meanwhile, in 1 M alkaline seawater KOH
solution, the HER performance only shows an overpotential of
95.5 mV, which is merely 7.7 mV higher than that in KOH
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Scheme 1 Schematic illustration of synthesizing of CuCo,S4@Co—-V-0O-F.1 foam nickel.
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solution, with a Tafel slope of 149.46 mV dec™ . After 24 hours
of cycling, the hydrogen evolution overpotential surprisingly
decreases from the original 225.7 mV (—50 mA cm ?) to
213.6 mV. In terms of OER performance, it also decreases from
227.3 mV in KOH solution to 212.3 mV to achieve a current
density of 10 mA cm ™2 and has a low cell voltage of 1.543 V when
electrolyzing seawater at 50 mA cm™>. Notably, regarding the
double-layer capacitance (Cq4;) corresponding to active sites for
hydrogen evolution reactions, it performs excellently, reaching
168.56 mF cm™ > and 208.95 mF cm ™2 respectively. This study
provides a beneficial guiding direction for exploring bifunc-
tional catalysts with higher activity and greater stability.

2. Experimental section

2.1. Materials

Cupric nitrate trihydrate [Cu(NO;),-3H,0, 99%], cobalt(u)
nitrate hexahydrate [Co(NO3),-6H,0, 99%], ammonium meta-
vanadate [NH,VO;], ammonium fluoride (NH,F, 96%), urea
(H,NCONH,, 99.5%), sodium sulfide nonahydrate (Na,S-9H,0,
98%), potassium hydroxide (KOH), anhydrous ethanol (C,HgO,
99.5%), hydrochloric acid (HCI), and nickel foam (Ni foam) were
all analytical grade chemicals purchased from Sigma-Aldrich
Chemical Company without the need for further purification.
All catalysts' hydrothermal synthesis was carried out in a stain-
less steel autoclave with a polytetrafluoroethylene liner.

2.2. Preparation of CuCo,S, nanosheets

First, the nickel foam was pre-treated by immersing it in 0.1 M
hydrochloric acid for 1 hour. After removal, it was cleaned in an
ultrasonic cleaner, rinsed three times with deionized water, and
then dried in an oven at 60 °C for 12 hours.

As shown in the formation steps in Scheme 1, a two-step
hydrothermal method was used to prepare the CuCo,S,
matrix. A solution was prepared by dissolving 4 mM Cu(NO;),-
-3H,0, 4 mM Co(NOj3),-6H,0, 4 mM NH,F, and 3 mM urea in
70 mL of deionized water under stirring for 45 minutes. The pre-
treated nickel foam (4 x 4 cm) and the above solution were then

After hydrothermal introduction of V5*
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placed into a 100 mL autoclave and maintained at 150 °C for 7
hours. After naturally cooling to room temperature, the
prepared precursor was washed with anhydrous ethanol and
deionized water, and dried at 60 °C for more than 12 hours.
Subsequently, a sulfidation treatment was carried out: 0.35 g of
Na,S-9H,0 was dissolved in 60 mL of deionized water, mixed
with the previously prepared nickel foam, and placed in the
autoclave at 120 °C for 4 hours. After natural cooling to room
temperature, the same washing and drying procedures were
followed. The resulting matrix was named CuCo,S, and served
as the precursor for subsequent treatments.

A one-step hydrothermal synthesis was performed on the
precursor as follows: 0.045 g Co(NO3),-6H,0; 0.009 g NH,VOs;
0.045 g Co(NOs),-6H,0; 0.018 g NH,VO;; 0.045 g Co(NO;),-
-6H,0, along with 4 mM NH,F and 3 mM urea, were added to
the autoclave and maintained at 120 °C for 4 hours. After
natural cooling to room temperature, the product was washed
and dried. The obtained product was transferred to ammonium
fluoride (15 mg) and heated to 450 °C at a rate of 2.5 °C min~"
under an argon atmosphere for 1 hour. After furnace cooling to
room temperature, the samples were collected and named
CuCo,S,@CoF,, CuCo0,S,@Co-V-O-F.1, and CuCo,S,@Co-V-
O-F.2, respectively.

2.3. Material characterization and electrocatalytic
performance characterization

The crystal structure of the prepared samples was characterized
by X-ray diffraction (XRD, Shimadzu-7000, Cu Ka) in the range
of 10-90° at a scanning speed of 8° min~*. The surface chemical
states, elemental valence states, and qualitative and quantita-
tive information of the elements were determined by X-ray
photoelectron spectroscopy (XPS, ESCALAB 250 with an Al Ka
source). The microscopic morphological changes of the
prepared samples were characterized by scanning electron
microscopy (SEM, Gemini 300-71-31).

All electrochemical tests were performed on a CHI760E
electrochemical workstation (Chenhua Instruments). Tests
were conducted in 1 M KOH (pH = 13.7) and 1 M KOH (pH =
13.51) alkaline seawater solutions as electrolytes. In a conven-
tional three-electrode system, Hg/HgO was used as the reference
electrode, graphite rod was used as the counter electrode for
HER performance evaluation, while a platinum (Pt) electrode
served as the counter electrode during OER testing, and the
prepared samples (0.5 cm x 0.5 cm) as the working electrodes
for electrochemical testing. Linear sweep voltammetry (LSV)
curves were corrected with 90% IR compensation and converted
to the reversible hydrogen electrode (RHE) scale using the
Nernst equation: Eryg = Eng/mgo +0.059 X pH + 0.098. The OER
overpotential was calculated using 7 = Erpgg — 1.23 V.

3. Results and discussion

First, the phase composition of the prepared samples was
characterized by X-ray diffraction (XRD). As shown in Fig. 1, the
strong diffraction peaks observed at 26 values of 44.4°, 51.6°,
and 76.1° correspond to the reflections of the nickel foam

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 XRD pattern.

substrate (JCPDS No. 04-0850). The CuCo,S,; matrix exhibits
diffraction patterns that are highly consistent with the standard
cubic crystal structure of CuCo,S, (PDF# 00-042-1450), indi-
cating that the sulfidation treatment successfully yielded the
desired crystalline phase. The characteristic peaks at approxi-
mately 26.5°, 31.2°, 37.9°, and 63.7° can be indexed to the (022),
(113), (004), and (335) crystal planes, respectively. For the
composite sample CuCo,S;@Co-V-O-F, strong diffraction
peaks corresponding to Co and V are observed at 25.9°, 30.3°,
45.4°, and 47.7°, which match well with the (102), (103), (006),
and (203) planes of CozV (PDF# 00-012-0378). Notably, the
lattice parameters undergo changes due to additional strain
introduced after compositing, resulting in lattice distortion.
This is manifested as a slight shift of the (004) plane to the left
by 0.8°. Furthermore, no distinct characteristic peaks attribut-
able to fluorine (F) or fluoride compounds are observed in the
XRD pattern, suggesting that F may exist on the catalyst surface
in the form of highly dispersed atoms or small clusters, with
either size or concentration below the detection limit of XRD.
The absence of detectable F-related peaks also indicates effec-
tive dispersion and incorporation of fluorine into the catalyst,
which may enhance its stability and activity without altering the
overall crystal structure.

SEM was used to characterize the microstructural changes of
the CuCo,S, matrix and its composite materials. The SEM
images in Fig. S1(a and b)} show that the CuCo,S, matrix
consists of coral-like nanoblocks forming nanospheres. After
compositing with CoF, material, the morphology transforms
into a structure with more nanowires (Fig. S1(c and d)}). The
formation of these nanowires increases the contact area
between the electrolyte and the catalyst, which positively
impacts the kinetics of the electrocatalytic reaction. This is one
of the main reasons for the improved electrocatalytic perfor-
mance of the CuCo,S;@CoF, sample. However, under high
magnification, some incompletely transformed nanodendrites
are still observed, appearing thin, poorly defined, and uneven.
In the high- and low-magnification images of Fig. 2a and b, the
nanowire arrays of the CuCo,S;@Co-V-O-F.1 sample show
significantly more uniform and complete transformation, with
the nanowires extending outward from their centers. These

RSC Adv, 2025, 15, 19443-19455 | 19445
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Fig. 2 Morphology and structure characterization of the as-prepared products. (a and b) SEM images of CuCo,S;@Co-V-O-F.1 (c) EDS
elemental mapping of Cu, Co, S, V and F for CuCo,S,@Co-V-0O-F.1. (d and e) TEM images of CuCo0,S,@Co-V-O-F.1 samples. (ff HRTEM image

of the CuCo0,5,@Co-V-O-F.1 composite.

peripheral fine nanowire structures contribute positively to
charge transfer. At the same time, as a substrate, nickel foam
provides a significant advantage for the uniform loading of
CuCo,S,@Co-V-O-F active components, largely due to its
three-dimensional porous structure and stable 3D skeletal
framework. This unique structure not only ensures excellent
structural stability but also enhances the adhesion between the
catalyst and the substrate. The large specific surface area and
good conductivity of nickel foam contribute to improving the
dispersion of CuCo,S,;@Co-V-O-F, further enhancing electron
transfer performance and increasing the density of exposed
catalytic active sites. Moreover, the strong interaction at heter-
ojunction interfaces effectively boosts the adhesion between the
catalyst and the substrate, preventing detachment or deactiva-
tion during long-term reactions. This combination of properties
makes nickel foam an ideal choice as a substrate material,
significantly contributing to the overall efficiency and durability
of the catalytic system. Fig. 2c shows the elemental mapping of
CuCo,S,; @Co-V-0O-F.1, where the presence of Cu, Co, S, V, and
F elements is identified, demonstrating their uniform distri-
bution. Fig. 2d and e present the TEM images of the

19446 | RSC Adv, 2025, 15, 19443-19455

CuCo,S,@Co-V-O-F.1 composite material, revealing its overall
structure. The surface morphology shows no significant aggre-
gation, nanoscale pores, or voids, indicating that the fluorine
(F) surface treatment effectively enhances the dispersion of the
material. Fig. 2f provides a high-resolution TEM (HRTEM)
image that clearly demonstrates the core-shell structure of the
CuCo0,S,;@Co-V-O-F.1 composite. The Co-V-O-F Ilayer
uniformly coats the CuCo,S, substrate at the nanoscale, form-
ing a well-defined core-shell architecture. The lattice fringes are
clearly visible in the HRTEM image, with interplanar distances
corresponding to the (004) plane of CuCo,S, and the (105) plane
of Co-V-O-F measured as 0.229 nm and 0.218 nm, respectively.
These values are consistent with the XRD analysis results shown
in Fig. 1, further confirming the structural characteristics of the
composite material. This clear and ordered crystalline
arrangement supports the successful formation of the core-
shell structure and highlights the precise control over the
material's nanoscale design.

In a three-electrode system, Fig. 3 shows the HER perfor-
mance of various samples in 1.0 M KOH alkaline electrolyte. As
shown in Fig. 3a, the sample CuCo,S,@Co-V-O-F.1 exhibits

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 HER performances in 1.0 M KOH solutions. (a) Polarization curves at scan rate of 5 mV s, (b) Tafel plots. (c) CV curves of double-layer
capacitance (Cq). (d) Nyquist plots. (e) Chronoamperometric stability tests and the insets are LSV curves. (f and g) Nyquist plots at multiple
voltages. (h and i) DRT spectrum of CuCo,S4@Co-V-O-F.1 sample before and after cycling.

a lower overpotential (87.8 mV at —10 mA cm ™ ?) compared to
CuCo,S,, CuCo,S,@CoF,, and CuCo,S,@Co-V-O-F.2, whereas
the overpotential for the precious metal Pt/C catalyst is 44.2 mV
at —10 mA cm~>. Kinetic factors cannot be ignored; the Tafel
slope value reflects the kinetics of water splitting. In Fig. 3b, the
Tafel slope for CuCo,S;@Co-V-O-F.1 is 176.77 mV dec’,
significantly lower than that of CuCo,S, (248.39 mV dec '),
CuCo0,S,@CoF, (176.92 mV dec™ '), and CuCo,S,@Co-V-O-F.2
(189.66 mV dec™ ). A lower Tafel slope has a positive effect on
the kinetic rate control. To discuss the issue of catalyst activity,
double-layer capacitance (Cq4;) was used to elucidate the elec-
trochemical active surface area (ECSA). As shown in Fig. 3c,
CuCo,S,@Co-V-0O-F.1 exhibits a relatively high ECSA of 168.56
mF cm 2 compared to other catalysts. Fig. 3d shows that the
sample CuCo,S,;@Co-V-O-F.1 has a smaller semicircle diam-
eter in the high-frequency region of the curve, which is closely
related to the charge transfer rate at the electrode surface. The

© 2025 The Author(s). Published by the Royal Society of Chemistry

smaller the diameter, the lower the charge transfer impedance,
and the faster the kinetics of the electrochemical reaction. In
the low-frequency region, reference can be made to the
following formula:**

Z =R+ Ry + ayw

1)

Among which, o, represents the Warburg factor, w repre-
sents the angular frequency. Z is attributed to the diffusion
resistance of OH . Subsequently, the cyclic stability of the
CuCo,S,@Co-V-O-F.1 catalyst in HER performance was tested
(Fig. 3e), finding that after 24 hours, the current decay rate was
slow. The inset shows a comparison of LSV curves before and
after cycling, indicating that after cycling, there is a trend of
decreased overpotential, highlighting the good stability of the
catalyst. These excellent HER performances are all benefited
from the change in micro-morphology with the addition of

RSC Adv, 2025, 15, 19443-19455 | 19447
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nanowires. Fig. 3f shows the three-dimensional impedance plot
(Bode plot) of CuCo,S,@Co-V-O-F.1 at various voltages corre-
sponding to —10 mA cm ™2, —20 mA cm™ > up to —100 mA cm ™.
The phase angle versus frequency curve reflects the dynamic
response of the catalyst sample.*® The figure indicates that as
the applied potential increases, the phase angle in the low-
frequency region decreases orderly, showing a continuous
decrease in charge transfer resistance (R.), which results in an
increasing charge transfer rate. The Bode plot after cycling
(Fig. 3g) shows that the phase angles after cycling are more
regularly arranged, further highlighting the excellent charge
transfer rate of CuCo,S,@Co-V-O-F.1. Fig. 3h presents the
Distribution of Relaxation Times (DRT) map for CuCo,S,@Co—
V-0-F.1, providing further explanation of polarization imped-

representing the frequency range; the left vertical axis shows the
voltage applied corresponding to gradually increasing current
density; the color gradient on the right vertical axis y/ohm-s™*
represents the distribution function of relaxation times (i.e., the
contribution of the polarization process to total impedance).***
As shown, with the continuous increase in applied voltage, the
color of characteristic peaks gradually fades, indicating
a decreasing contribution of polarization impedance, thereby
accelerating charge transport. The kinetics of the diffusion
process is negatively correlated with the polarization imped-
ance value. At the same time, in the high-frequency region, the
relaxation time t corresponds to rapid electrochemical
processes (such as charge transfer, interfacial polarization),
typically T < 107" seconds. In this region, the kinetics of the

ance. The horizontal axis represents relaxation time (tr), diffusion process are less likely to be impeded by
Table 1 Comparison of electrocatalytic performance of CuCo,5,@Co-V-O—F.1 with previous literature reports
Materials Performances Electrolyte 7 (mv) Ref.
CuCo,S,@Co-V-0O-F.1 HER 1 M KOH 87.8 mV (10 mA cm ?) This work
OER 227.3 mV (10 mA cm ™ ?)
CuCo,S,@Ni(OH), HER 1 M KOH 117 mV (10 mA cm ™2 47
(Co,V)-FeOOH OER 1 M KOH 227.5 mV (10 mA ecm™?) 48
CuCo0,S,@CoS, HER 1 M KOH 153 mV (10 mA cm ) 49
OER 261 mV (10 mA cm ?)
Co/VN HER 1M KOH 92 mV (10 mA cm2) 50
Co,VO, OER 300 mV (10 mA cm ?)
Ccvo HER 1 M KOH 91.4 mV (10 mA cm™2) 51
CoVFeN OER 1M KOH 264 mV (100 mA Cmfz) 52
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impedance.?®* Therefore, the DRT plot after cycling (Fig. 3i) not
only shows a reduction in the maximum impedance contribu-
tion but also an overall shift towards the high-frequency region
(to the left), with characteristic peaks moving towards higher
frequencies, and the interval corresponding to t has been
reduced, indicating a decrease in peak area. All these indicate
areduction in electrode interface charge transfer resistance and
polarization impedance, thus accelerating the charge transfer
process.

The LSV curves at a scan rate of 2 mV s~ * for the prepared
samples indicate that, at a current density of 50 mA cm ™2, the
overpotential for the CuCo,S,@Co-V-O-F.1 sample is
299.3 mV, which is higher than that of the precious metal IrO,
(289 mvV) but still advantageous compared to CuCo,S, (335.3
mvV), CuCo,S,@CoF, (313.3 mV), and CuCo,S,@Co-V-O-F.2
(306.7 mV). Moreover, the overpotential for a Ni substrate at the
same current density is 450 mV, indicating its negligible
contribution to electrocatalytic performance. The Tafel plot in
Fig. 4b explores the reaction kinetics of the samples, showing
that CuCo,S,;@Co-V-O-F.1 has a low Tafel slope of 84.88 mV
dec ™, suggesting efficient reaction kinetics. Fig. 4c compares
the Cq; (double-layer capacitance) values of the electrocatalysts,
from which the activity order can be deduced as CuCo,S,@Co-
V-0O-F.1 > CuCo0,S,@C0F, > CuCo0,S;@C0-V-0O-F.2 > CuCo0,S,.
Higher Cq4 values indicate larger active surface areas of the
electrocatalyst, providing more active sites for the electro-
catalytic reaction. Fig. 4d shows the EIS (Electrochemical
Impedance Spectroscopy) spectra, where the CuCo,S,@Co-V-
O-F.1 sample exhibits a smaller semicircle diameter in the
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high-frequency region, indicating lower impedance during
charge transfer. The radar chart in Fig. 4e showcases important
parameters related to HER and OER performance for the four
mentioned products, highlighting that CuCo,S,@Co-V-O-F.1
performs better overall. The prominence in HER-Cy4; and OER-
Cq) parts, along with other parameter sections, underscores its
comprehensive superiority. Introducing high-valence V into the
matrix enhances the OER performance due to its high oxidation
state,® enabling participation in more redox reactions and
improving electron transfer efficiency between the catalyst and
oxygen intermediates, thus lowering the energy barrier in the
OER process and boosting catalytic activity. A 24-hour long
cycling test (Fig. 4f) and the comparison of LSV curves before
and after cycling demonstrate good cyclic stability. Table 1
compares the electrocatalytic performance of CuCo,S,@Co-V-
O-F.1 with previously reported results, emphasizing the supe-
rior electrocatalytic performance of this sample.

Based on previous work, XPS was used to analyze the surface
chemical states and electronic structures of the CuCo,S,@Co-
V-O-F.1 sample before and after OER cycles. Elemental
composition CuCo,S,@Co-V-O-F.1 As shown in the percentage
content Graph S2,7 the sample indicates the presence of carbon
C, V, Cu, Co, S, and F, with vanadium accounting for 27.9% of
the composition, indicating its supporting role in the material.
Fig. 5a compares the full spectra before and after cycling,
revealing a significant increase in the C 1s peak, while other
elements showed a slight decrease, mainly due to the minor
precipitation of reactants during testing, leading to a reduction
in their concentration. Fig. 5b shows the Cu 2p spectrum of the
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prepared sample, where two peaks at 932.3 eV and 952.2 eV
correspond well with the spin-orbit doublets of Cu 2p;/, and Cu
2p12.*° In the Cu 2p spectrum, the characteristic peaks fitted at
932.3 eV and 952.2 eV can be assigned to Cu®", while two peaks
near 934.4 eV and 954.6 eV are attributed to the presence of
Cu'.*! Additionally, two peaks around 942.8 eV and 962.3 eV can
be attributed to shake-up satellites (denoted as Sat.). The post-
cycling Cu 2p spectrum shows an increased FWHM for Cu®
from 1.42 eV to 3.27 eV, indicating hydroxylation and changes
in elemental content, suggesting exposure of more coordination
sites. Meanwhile, there is a noticeable decrease in the satellite
peak of Cu®" at Cu 2psy,, likely related to changes in oxidation
state and chemical environment, which decreases with
consumption during testing, but the energy difference between
the main peaks remains approximately 20 eV without signifi-
cant change. Fig. 5c depicts the pre- and post-cycling spin-orbit
spectra of Co 2p. In the upper figure, two peaks at around 798 eV
and 781.7 eV correspond to Co 2p;, and Co 2pj, states,
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respectively. Moreover, peaks observed at 803 eV and 786.6 eV
confirm the presence of divalent Co, while peaks at 798 eV and
781.7 eV indicate the presence of Co’'. The ratio of Co**
(45.69%)/Co™" (23.95%) for Co 2p;, exceeds 1.9, and the Co™
(17.36%)/Co** (13.00%) ratio for Co 2p,, exceeds 1.3, indicating
the presence of oxygenated surfaces and Co”> oxidation
states.*>** During CO oxidation reactions, the surface typically
undergoes dynamic reduction (CO(m) — CO(u)) and reoxidation
(CO(m) — CO(m)) cycles. The reduction in Co** content in the
post-cycling Co 2p spectrum, converting to more divalent Co,
confirms this. In the S 2p spectrum (Fig. 5d), peaks at 161.6 eV
and 162.9 eV can be attributed to S 2ps, and S 2p,,,, respec-
tively, while a broad peak at 166.4 eV is a satellite peak.** An
increase and certain shift in S 2p,,, after cycling are explained
by strong interactions involving S in adsorption. Fig. 5e analyzes
the V 2p fitting curve spectrum, where a peak at 517.00 eV
corresponds to the characteristic peak of V°* in the V 2p orbital,
consistent with the oxidation state of vanadium in vanadium
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pentoxide (V,0s). A peak near 531.50 eV falls within the typical
binding energy range for O 1s orbitals (530-535 eV), possibly
corresponding to lattice oxygen O>~ in V,0s, whereas a peak
appearing at 523.8 eV after cycling can be attributed to V,0,.*°
This indicates the presence of different valence states of V in the
CuCo,S,@Co-V-O-F.1 nanowire array, and redox reactions of
Co and V in different valence states can accelerate electron
transfer, which is one of the main reasons for improved OER
performance. The F 1s spectrum in Fig. 5f reveals that the Co-F
bond dominates at 684.7 eV,* while the post-cycling binding
energy is 676.6 €V, indicating a significant shift in binding
energy due to interactions between fluorine and other elements,
proving effective doping of the F element and its contribution to
the sample's reaction.

In summary, we have successfully prepared the CuCo,S,@-
Co-V-O-F.1 catalyst using a multi-step hydrothermal process
followed by calcination under argon protection. This catalyst
exhibits excellent performance in both hydrogen evolution
reaction and oxygen evolution reaction in alkaline electrolytes,
showing low overpotentials of 87.8 mV for HER and 227.3 mV
for OER at —10 mA cm 2. Currently, most research on hydrogen
production via water electrolysis focuses on the use of high-
purity freshwater. However, freshwater resources account for
only 3.5% of the world's total water resources, and as these
resources become increasingly scarce, exploring alternative
water sources has become particularly important. The ocean is
almost an inexhaustible resource, with its contained hydrogen
energy potentially capable of meeting future human energy
needs.” Therefore, hydrogen production through seawater
electrolysis represents a highly promising approach. We
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evaluated the electrocatalytic activity and stability of the sample
in a simulated seawater environment, specifically in 1 M
seawater alkaline conditions. This work not only demonstrates
the potential of utilizing seawater for hydrogen production but
also highlights the adaptability and stability of the CuCo,S,@-
Co-V-O-F.1 catalyst under different environmental conditions.

For the evaluation of the electrocatalytic performance of the
samples in seawater, the HER performance of the electro-
catalyst was first tested in a 1.0 M KOH seawater alkaline elec-
trolyte. As shown in Fig. 6a, CuCo,S,@Co-V-O-F.1 exhibited an
overpotential of 95.5 mV at a current density of —10 mA cm 2,
which is lower than that of CuCo,S, (108.5 mV), CuCo0,S,@CoF,
(103.5 mV), and CuCo,S,@Co-V-O-F.2 (139.1 mV). To assess
the catalytic reaction kinetics for all catalysts, the correspond-
ing Tafel slopes were calculated from LSV curves. Fig. 6b shows
that CuCo,S,@Co-V-O-F.1 has the lowest Tafel slope of
149.46 mV dec ' compared to other samples, indicating
outstanding kinetics and excellent catalytic activity. The elec-
trochemical active surface area (ECSA) was used to study the
catalytic activity of the catalysts, and the Cq; values were plotted
for illustration. The slope value for CuCo,S,@Co-V-O-F.1 was
208.95 mF cm™ 2, higher than those of CuCoS, (198.02 mF
em?), CuCo,S,@CoF, (165.34 mF cm ™), and CuCo,S;@Co-V-
O-F.2 (192.5 mF ¢cm™?). According to EIS analysis (Fig. 6d), in
the Nyquist plot, the diameter of the semicircle in the high-
frequency region generally represents R.. It can be seen that
the CuCo,S,@Co-V-O-F.1 electrode material has a slight
advantage but no significant difference compared with other
samples, which can be further analyzed through subsequent
impedance diagrams. The cyclic stability test shown in Fig. 6e
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found that after 24 hours, the sample still maintained well,
which depends on the formation of a surface passivation layer
that protects the internal morphology and makes materials less
susceptible to corrosion. The comparison of LSV curves in the
inset indicates a decrease in overpotential after cycling,
demonstrating the excellent stability of the CuCo,S,@Co-V-O-
F.1 catalyst. Subsequently, we described the diffusion behavior
and arrangement patterns within the diffusion layer near the
electrode surface using Bode plots more intuitively, where
increased applied voltage is inversely proportional to charge
impedance, indicating reduced ion diffusion resistance of the
CuCo,S,@Co-V-O-F.1 sample. The post-cycling Bode plot
(Fig. 6g) showed a better decremental arrangement of phase
angles. Combined with Fig. 6h and i showing the DRT spectra of
CuCo,S,@Co-V-0O-F.1, it can be seen that after prolonged
cycling, there is a shift towards the high-frequency region (to the
left), with characteristic peaks also moving, suggesting that
after longer stability tests, the CuCo,S,@Co-V-O-F.1 sample is
likely to exhibit lower impedance contributions and charge
transfer resistance, which undoubtedly benefits charge trans-
port efficiency. One of the main reasons is that an over-
oxidation phenomenon occurred on the material surface
during the cycling process. Specifically, the outer layer of the
material underwent a certain degree of structural and chemical

transformation, forming a passivation interfacial layer
()
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composed of CuCo,S,@Co-V-O-F. This thin and stable surface
layer acts as a “protective shell,” effectively preventing further
oxidation and corrosion of the inner material. In particular, the
Co-V-O-F component is believed to be capable of modulating
the electronic structure and providing more active sites, while
the CuCo,S, core ensures good conductivity and structural
support. The synergistic effect between surface oxidation and
interface passivation is the key to the material's excellent
performance during long-term cycling.>*

Regarding the OER-LSV curve in Fig. 7a, it can be observed
that at a current density of 50 mA cm 2, the overpotential
required by the CuCo,S,;@Co-V-0O-F.1 sample is 279.1 mV <
CuCo,S,@CoF, (284 mV) < CuCo,S,@Co-V-0O-F.2 (298 mV) <
CuCo,S; (331 mvV). Fig. 7b shows that the Tafel value of
CuCo,S,@Co-V-0-F.1is 73.8 mV, only slightly higher than that
of CuCo,S,;@CoF, (60.13 mV dec ). However, in the Cg; graph,
the value for CuCo,S;@Co-V-O-F.1 (134.87 mF cm ?) is
significantly higher than that of CuCo,S;@CoF, (12.54 mF
cm™?). Moreover, in the EIS diagram (Fig. 7d), CuC0,S;@Co-V-
O-F.1 exhibits a notably smaller semicircle diameter range in
the high-frequency region compared to other samples, indi-
cating good reaction kinetics. Through the above analysis and
the more intuitive presentation in the radar chart in Fig. 7e, it
can be concluded that the various parameters of the CuCo,-
S4@Co-V-O-F.1 sample are clearly superior to those of
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CuCo,S,@CoF2, reflecting a faster rate of electrocatalytic reac-
tions overall. The stability test in Fig. 7f demonstrates that the
CuCo,S,@Co-V-0O-F.1 sample maintains good stability after 24
hours of long-term cycling, with the charge transfer resistance
showing no significant downward trend as indicated in the
inset impedance graph.

To further explore the potential application value of the
prepared electrocatalysts in overall water splitting, the prepared
samples (1.0 cm x 1.0 cm) were assembled at both the anode
and cathode of an electrolyzer. Fig. 8b shows that after a 50-
hour test in 1.0 M KOH, the corresponding voltage values for the
CuCo,S,@Co-V-0O-F.1 sample did not show any significant
decrease. Additionally, there was no noticeable difference in
impedance in the high-frequency region. Fig. 8c provides
a comparison of LSV curves, from which it can be seen that the
CuCo,S,;@Co-V-0O-F.1 catalyst outputs voltages of 1.796 V and
1.937 V at current densities of 50 mA cm > and 100 mA cm 2,
respectively. However, after cycling, the overall overpotential is
significantly reduced, indicating that the CuCo,S,@Co-V-O-
F.1 nanowire array exhibits lower cell voltages after prolonged
stability tests. The stability test in seawater (Fig. 8d) also
demonstrates good cycling life, with the LSV curves after cycling
showing that the overpotential does not significantly rise
excessively. It confirms that the prepared material possesses
excellent structural stability and rapid reaction kinetics during
the reaction process. This makes the CuCo,S;@Co-V-O-F.1
a promising candidate for efficient and stable performance in
overall water splitting applications, especially under chal-
lenging conditions such as those found in seawater electrolysis.

4. Conclusion

In work, we demonstrate the controlled synthesis of CuCo,-
S,@Co-V-0O-F.1 nanowire array architectures via hydrothermal
growth and subsequent calcination. The optimized catalyst
exhibits superior bifunctional activity across diverse electro-
lytes, delivering exceptional HER/OER overpotentials of 87.8/
227.3 mV at —10 mA cm 2 in alkaline freshwater, while main-
taining robust performance in simulated seawater (95.5 mV for
HER and 213.5 mV for OER at equivalent current density).
Morphological optimization coupled with strategic vanadium
doping synergistically enhances charge transfer kinetics and
stabilizes reactive intermediates during OER processes. A
symmetric electrolyzer employing this catalyst achieves an
industrially relevant water-splitting voltage of 1.796 V at 50 mA
cm 2, demonstrating practical viability for large-scale hydrogen
generation. This work elucidates structure-activity relation-
ships in transition metal oxy-sulfide hybrids. This indicates
significant potential for hydrogen production through water
splitting using this material, providing valuable reference and
research directions for advancing non-precious metal catalysts.
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