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CP/MAS NMR studies on binding environment of
CHzCN in Cu(i) complexes with disilane-bridged

bis(methylpyridine) ligands¥

Kei-ichi Sato,? Mineyuki Hattori

*a and Yoshinori Yamanoi (2 *°

CP/MAS NMR spectroscopies have developed as an important tool for studying the structure in the
crystalline state. In this work, the structures of representative Cu()) complexes 1-3 with disilane-bridged
bis(methylpyridine) ligands in the crystalline state were investigated by CP/MAS NMR. C CP/MAS NMR
confirmed the presence of CH3CN in the crystals of 2 and 3, but the environment around CHzCN could

not be determined. Natural abundance (ca. 0.36%) >N CP/MAS NMR measurements could confirm the
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difference of CHsCN environment between coordinating solvent in 2 and crystal solvent in 3. The N

CP/MAS of CHzCN in 3 shows a singlet because it is not coordinated to Cu() and the crystal structure is
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Introduction

Flexible molecular structures are known to induce crystalline
polymorphism. The transition between the stable and meta-
stable polymorphs triggered through external stimuli can
induce alternation of photophysical properties.”” Among them,
investigations on the relationship between structure and prop-
erties of Cu(i) complexes are of significant interest.>* Copper()
complexes have been shown to be excellent candidates for sol-
id-state emitters due to their high earth-abundance and low
cost, coupled with their ability of bright luminescence at rt,
resulting in complexes with interesting photophysical charac-
teristics. These compounds have been found to exhibit a variety
of structures from mononuclear to polynuclear copper
complexes. Recently, we reported the synthesis and photo-
physical properties of Cu(i) complexes with disilane-bridged
dipyridine ligands. Some compounds showed responsiveness
under external stimuli in the crystalline state.”

Solid-state NMR is a non-destructive measurement method,
and various information can be obtained by the measurement.***
Especially, CP/MAS NMR spectroscopy can provide information
about the structure and bonding of metal complexes in the
crystalline state. Recently, the techniques have been developed to
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stabilized by multiple intermolecular interactions. These data have provided valuable information on Cuf()
coordination environment, which was in good accordance with single-crystal X-ray analysis.

improve resolution by rotating at high speeds.” **C and >N CP/
MAS NMR, along with single-crystal X-ray structure analysis, are
powerful techniques for structural analysis."*"”

The major difficulty in employing "N NMR spectroscopy lies
in its sensitivity, which is very low due to the low natural
abundance (0.36%) of the >N isotope. Although nitrogen-15
labelling compounds were used to employ >N CP/MAS NMR,
N NMR can be measured even for unlabelled >N compounds
by increasing accumulation numbers and using high-resolution
NMR. Recently, we measured >N CP/MAS NMR to track struc-
tural changes of organosilicon compounds upon mechanical
stimulation.*®

Cu complexes often decompose in solution, requiring sol-
id-state NMR measurements. Previously, we reported the
synthesis and optical properties of several Cu(1) complexes.*
The *C CP/MAS NMR of 2 and 3 showed the peaks of CH;CN as
similar chemical shift, and it was impossible to distinguish
existence state between the crystal solvent and coordinated
ligand. >N CP/MAS NMR of transition metal complexes were
measured to distinguish binding mode of CH3;CN. As Cu()
complex, several "’N CP/MAS NMR of Cu(i) complexes were re-
ported in natural abundance.”*> However little clear evidence
has been given on the effect of metal binding to the >N nuclear
shielding constants.>**” In this paper, we used natural abun-
dance "N CP/MAS NMR to study binding mode of CH;CN in
Cu(i) complexes 1-3 (Fig. 1).

Experimental section
Materials

All chemicals and reagents were obtained from commercial
sources and used without additional purification.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Chemical structures of copper complexes 1-3 studied in this
work.

1,1,2,2-Tetramethyl-1,2-bis(4-methylpyridin-2-yl)disilane and
1,1,2,2-tetramethyl-1,2-bis(3-methylpyridin-2-yl)disilane were
prepared according to our previous report.”

Synthesis of 1

Cul (380 mg, 2.0 mmol) and
1,1,2,2-tetramethyl-1,2-bis(4-methylpyridin-2-yl)disilane

(300 mg, 1.0 mmol) were dissolved in CH;CN (40 mL) at rt. The
resulting yellow mixture was stirred at rt for 12 h. The solvent
was evaporated under reduced pressure and the residue was
washed with diethyl ether to give 1 as pale yellow crystalline
solid. The solid was recrystallized from CH;CN to obtain
analytically pure complex 1 as colorless cubes. Yield: 42% (290
mg). Elemental analysis. Caled for Cs3,H,sN,Cuyl,Siy: C, 28.20;
H, 3.55; N, 4.11. Found: C, 28.47; H, 3.53; N, 4.24.

Synthesis of 2

Cul (380 mg, 2.0 mmol)
1,1,2,2-tetramethyl-1,2-bis(3-methylpyridin-2-yl)disilane
(300 mg, 1.0 mmol) were dissolved in CH;CN (40 mL) at rt. The
resulting yellow mixture was stirred at rt for 12 h. The solvent
was evaporated under reduced pressure and the residue was
washed with diethyl ether to give 2 as pale yellow crystalline
solid. The solid was recrystallized from CH3;CN to obtain
analytically pure complex 2 as yellow cubes. Yield: 44% (305
mg). Elemental analysis. Caled for C3sHs4NeCu,yl,Siy: C, 29.92;
H, 3.77; N, 5.82. Found: C, 29.76; H, 3.70; N, 5.78.

and

Synthesis of 3

Cul (190 mg, 1.0 mmol) in CH;CN (15 mL) was added dropwise to
a solution of 1,1,2,2-tetramethyl-1,2-bis(4-methylpyridin-2-yl)
disilane (300 mg, 1.0 mmol) in CH;CN (5 mL) over 5 min at rt.
After stirring at rt for 10 min, 3 was obtained as a yellow crys-
talline solid (314 mg, 60%). The solid was recrystallized from
CH;CN to obtain analytically pure complex 3 as colorless cubes.
The spectroscopic data were identical to our previous reported
data.*

Single-crystal X-ray structural analyses

All single-crystal Xray diffraction measurements were conducted
using a Rigaku Mercury CCD diffractometer with graphite-
monochromated Mo Ko radiation (2 = 0.71073 A) and
a rotating-anode generator. Each crystal was mounted on a loop

© 2025 The Author(s). Published by the Royal Society of Chemistry
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using paraffin oil. Diffraction data were collected at around 100 K
and processed using the Crystal Clear program. Structures were
solved by direct methods using SIR-2011. Structural refinements
were conducted by the full-matrix least-squares method using
SHELXL-2013. All non-H atoms were refined anisotropically, and
all H atoms were refined using the riding model. All calculations
were performed using the Crystal Structure crystallographic
software package. The crystallographic data were deposited in the
Cambridge Crystallographic Data Centre.

Crystallographic data for 1

C3,H,5CuyI4N,Siy, crystal dimensions: 0.15 mm X 0.15 mm X
0.05 mm. M = 1362.86, monoclinic, P12,/n1, a = 9.8145(5) A,
b =14.0010(8) A, ¢ = 16.7363(10) A, & = 90°, § = 98.366(2)°, y =
90°, V=2275.3(2) A%, Z=2, T=109 K, Deaic = 1.989 g cm >, Fogq
=1304.0, 1 =0.71073 A (Mo Ka), u = 4.690 mm ™', R; = 0.0177 (I
> 24(I)), WR, = 0.0462 (all data). GOF = 1.063. CCDC 2419410.

Crystallographic data for 2

C36H5,CuyI4NgSiy, crystal dimensions: 0.15 mm X 0.15 mm x
0.05 mm. M = 1444.97, triclinic, P1, a = 9.3981(5) A, b =
10.1021(6) A, ¢ = 14.9219(8) A, o = 81.667(2)°, 8 = 74.599(1)°, v
= 64.227(1)°, V = 1229.25(12) A%, Z = 1, T = 112 K, Degie =
1.952 g em >, Fooo = 696.0, A = 0.71073 A (Mo Ka), u = 4.348
mm~ ', Ry, = 0.0340 (I > 24(I)), wR, = 0.0706 (all data). GOF =
1.036. CCDC 2419411.

Crystallographic data for 3

C,3H,,CulN;Si,, crystal dimensions: 0.15 mm x 0.13 mm X
0.05 mm. M = 532.04, orthorhombic, Pca2,, a = 16.7137(6) A,
b=10.0411(3) A, ¢ = 13.9102(5) A, @ = 90°, § = 90°, y = 90°, V=
2334.46(14) A®, Z = 4, T = 100 K, Deqie = 1.514 g cm ™2, Fyo =
1064.0, 2 = 0.71073 A (Mo Ka), u = 2.367 mm ', R, = 0.0221 (I >
20(I)), WR, = 0.0431 (all data). GOF = 1.033. CCDC 2339248.

CP/MAS NMR spectroscopy

The sample was packed into a 4 mm zirconia rotor and
measured with *C and "N cross-polarization/magic angle
spinning (CP/MAS) NMR using a spectrometer (Bruker AVANCE
III HD 600WB) at a Larmor frequency of 150.97 MHz (**C) and
60.86 MHz (*°N). Bruker MAS probe head (MAS4DR) was used
with a HR-MAS rotor with 4 mm diameter (HZ05538) and Teflon
insert (50 uL), and sample spin rates were 10 kHz for *C and 8
kHz for °N, respectively. The chemical shifts refer to tetrame-
thylsilane (**C) and nitromethane (*°N) at 0.00 ppm. Glycine
was used as a second reference material for *C NMR, and its
carbonyl signal was set at 176.46 ppm. NH4Cl (10 atom% "°N)
was used as a second reference material for >N NMR, which
was set at —341.15 ppm. The samples were measured at
ambient probe temperature.

Results and discussion

The **C CP/MAS NMR can be used to correlate solution NMR
data and X-ray structure data.”® ">*C CP/MAS NMR and X-ray

RSC Adv, 2025, 15, 16968-16972 | 16969
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Fig. 2 C CP/MAS NMR (151 MHz, 10 kHz MAS). (a) 1, (b) 2, and (c) 3.
The parameters of CP/MAS are as follows: CP contact time: 2 ms,
recycle delay: 8 s, and the number of scans: 2000. The signals with
asterisks indicate spinning side band.

analysis are shown in Fig. 2 and S1,f respectively. Chemical
shifts are sensitive to the surrounding environment, and hence
obvious changes can be found in different structures. In the
solid-state spectra of copper complex 1, we observed a number
of peaks than the number of chemically distinct carbon atoms
in the molecules (Fig. 2(a)). The doublet-like signals with the
intensity ratio of ca. 1: 1 observed in some peaks of "*C CP/MAS
NMR spectra arise due to structurally nonequivalent carbon of
the complex in the unit cell.

3C CP/MAS NMR reflects the unsymmetrized ligand mole-
cule by crystallization and CH;CN molecules. **C CP/MAS of 2
shows signals of CH;CN at 115 ppm (CH3;CN) and around 5 ppm
(CH;CN, overlapped with Si-CHj;) (Fig. 2(b)). The signal at
118 ppm and 5 ppm is attributed to the **C peaks of CH;CN in
the crystal of 3 (Fig. 2(c)). However, ">*C CP/MAS NMR did not
show obvious information based on structural differences on
CH;CN between 2 and 3.

Nitrogen is a constituent of many ligands which are impor-
tant in coordination chemistry. Natural abundance >N CP/MAS
NMR has been reported as a novel tool for investigating
molecular information. Particularly, it is possible to consider
the structure of metal complexes, and the >N chemical shifts
are sensitive to the coordinating or uncoordinating N atoms.
Therefore, we measured >N CP/MAS NMR of these copper
complexes 1-3.

When the >N NMR of copper complex 1 without CH;CN was
measured in the crystalline state, multiple peaks were observed

16970 | RSC Adv, 2025, 15, 16968-16972
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Fig. 3 Natural abundance N CP/MAS NMR (61 MHz, 8 kHz MAS). (a)
1, (b) 2, and (c) 3. The parameters of CP/MAS are as follows: CP contact
time: 5 ms, recycle delay: 10 s, and the number of scans: (a) 8000, (b)
12 000, and (c) 12 000.

at from —110 ppm to —126 ppm, which were assigned as '°N of
pyridine moiety (Fig. 3(a)). The >N chemical shift was consis-
tent with the results in analogous systems in solution.?*?* >N
resonance of the free pyridine-based ligand showed at around
—70 ppm while the coordination of the pyridine to Cu(i) in
solution showed the resonance at around —100 ppm in the **N
NMR.** The complicated peaks in the solid state are due to not
only the unsymmetrization observed in *C spectra but also
coupling between >N and **Cu/**Cu nuclei. In a similar system,
31p CP/MAS NMR of Cu(i) complexes having phosphine ligands
show complicated peaks due to coupling between the *'P and
SCu/*®Cu.?e

Complexes 2 and 3 contain one CH3;CN, which exist in
different states in the crystal. >N NMR chemical shifts are
sensitive to the environment of N moiety. Therefore, detect-
ability of CH;CN in crystals is discussed by CP/MAS "N NMR for
identifying specific chemical functional groups.

>N CP/MAS NMR of 2 was shown in Fig. 3(b). The multiple
peaks from —87 ppm to —101 ppm were >N chemical shifts of
pyridine ligands in 2. The chemical shift moved to the down-
field side in comparison with 1 are due to the difference in the
substitution position of the methyl group on pyridine ring. The
>N resonance of CH;CN in 2 was also observed as multiple
peaks from —164 ppm to —172 ppm. The chemical shift in the
characteristic >N resonance was observed upon N-cyano coor-
dination to Cu(i) via Cu---N=C-CHj; interactions.

CP/MAS "N NMR of 3 was measured (Fig. 3(c)). The multiple
peaks from —105 ppm to —122 ppm were assigned to >N of
pyridine ring coordinated to Cu(i). N peak of CH;CN mole-
cules as the crystal solvent was observed at —133 ppm as a sharp
peak, which was lower field relative to 2. The CH;CN peak of 3 is
sharp because CH;CN molecules have no Cu---N interaction in
the crystalline state. Although these results on CH;CN binding
mode agree with X-ray structures of 2 and 3, single crystal X-ray
determinations are not always available for analysing the
structure. The structures can often not be determined by Riet-
veld analysis of microcrystals. There is a need for alternative

© 2025 The Author(s). Published by the Royal Society of Chemistry
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spectroscopic methods to determine the ligand coordination
mode. >N CP/MAS NMR is a valuable tool for distinguishing the
binding environments in the crystals. This study provides
spectroscopic support for insight into the coordination mode of
solvent in metal complexes.

CH;CN molecules in 2 exist in the crystal through a coordi-
nation bond with Cu(i) (CH3;C=N---Cu), and CH3CN molecules
in 3 exist through hydrogen bonds between N lone pair of
CH;CN and aromatic proton (CH;C=N---H-Ar) (Fig. S2). The
SN NMR peak shapes of CH;CN change depending on the
coordination or uncoordination with Cu(). >N NMR peaks of
CH,4CN in 2 are complicated by the coupling between **N and *¥
%Cu nuclei due to the coordination of CH;CN to Cu(i). On the
other hand, there is no interaction between CH;CN and Cu(i) in
the crystal of 3, and >N NMR peak of CH;CN is observed as
a sharp singlet.

Conclusion

This work describes detailed structural information on Cu(i)
complexes in the crystalline state using natural abundance N
CP/MAS NMR. *C and "N CP/MAS NMR spectra of 1-3 were in
accord with the direct structural data on the complexes. CH;CN
in these complexes has restricted molecular motion in single
crystals and could be observed by CP/MAS NMR.*” Natural
abundance "N CP/MAS NMR spectra provided considerable
information on the crystalline state, because the state of the
solvents contained can be deduced from NMR spectroscopy in
addition to single crystal X-ray structure analysis. ">’N NMR peak
shapes of these Cu(i) complexes are related to the environment
of the nitrogen atoms in the crystal. The differences between
coordinated and uncoordinated CH;CN were able to be distin-
guished by >N CP/MAS NMR. Molecular packing had an impact
on the splitting patterns and peak shapes of the >N peak of
CH,CN.

The N chemical shift and peak shape were sensitive to
cyanide interactions observed in Cu(i) complexes. Sharp °N
signal was observed corresponding to CH;CN of crystal solvent
with the stabilization of multiple intermolecular interactions.
On the contrary, multiple >N signals of CH;CN was observed
corresponding to Cu---N=C-CHj; interactions. These observa-
tions suggest a detailed study of solvent environments in the
crystal.
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