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ural and waste sources for
synthesis of cellulose, chitin, and chitosan for
a suitable environment

Bipul Mondal Sagar,a Md. Mozahidul Islam,b Md. Lawshan Habib, *a

Samina Ahmed *c and Md. Sahadat Hossain *c

The growing need for sustainablematerials has sparked interest in natural polymers such as cellulose, chitin,

and chitosan. This review explored the synthesis routes and various natural and waste-derived sources of

these biopolymers. Chitin and chitosan, obtained primarily from crustaceans, insects, and

microorganisms, are economically valuable due to their biodegradability and biocompatibility. Chitosan is

produced through demineralization, deproteinization, and deacetylation using either chemical methods

or microbial fermentation. Cellulose is extracted from agro-waste (e.g., banana peels, rice husks) and

textile residues using chemical or mechanical techniques, with processing occurring on nano to macro

scales through pre-hydrolysis, bleaching, and pulping. Emphasizing synthesis conditions, environmental

implications, and industrial relevance, this review aims to comprehensively understand these polymers'

structural characteristics and processing pathways, offering guidance for future research and sustainable

waste valorization.
1. Introduction

As environmental pollution and climate change escalate,
sustainable waste management is crucial. Researchers are
developing eco-friendly materials to minimize ecological harm
and enhance resource efficiency.1,2 Every year, the seafood pro-
cessing industry generates millions of tons of shell debris, which
includes waste from shrimp, lobster, and crabs. The EU handles
more than 100 000 MT of shell trash, but India alone produces
up to 80 000 MT.3 The large volume of waste is difficult for the
seafood industry tomanage, and they are frequently viewed as an
environmental burden. Landlls, incineration, and ocean
dumping are examples of disposal techniques that harm
ecosystems, cause climate change, and deplete oxygen. Biological
decline, ocean acidication, and widespread coral siltation are
further environmental problems.4–6 Because of its non-toxic,
biodegradable, and biocompatible qualities, seafood waste,
which is abundant in polysaccharides like chitin and its deriva-
tive chitosan, has enormous potential.6,7 Chitin is a white, harsh,
rigid, and nitrogenous substance regarded as a regenerative raw
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material.8 The second most abundant polymer aer cellulose,
chitin is present in the exoskeletons of arthropods, yeast, and
marine life.6,9 Chitins are also mostly found in the exoskeletons
of insects, mollusks, fungi, and annelids.10 Its yearly biological
output is estimated to be between 1010 and 1012 tons worldwide.
Seafood waste is still mostly dumped in landlls or the ocean,
causing pollution despite its commercial potential.3

Waste textiles, consisting of cellulose, are plentiful but mostly
unused. In 2020, 109 million tons of ber were produced world-
wide, with 36% of that amount coming from plant and synthetic
cellulosic bers. The largest portion, 26.2 million tons, was
comprised of cotton. Only 14% of post-consumer apparel was
recycled in 2017, despite the possibility of recycling; the majority
ended up in landlls or incinerators.11 In 2010, 75.5 million tons
of textile bers were needed, and by 2030, that number is pre-
dicted to rise to 133.5 million tons.12 The accumulation of textile
waste in landlls favors the spread of diseases and contributes to
greenhouse gas emissions.13 European households generated
over 200 million tons of waste in 2014. Despite recycling systems,
much paper waste ends up in mixed municipal solid waste
(MSW). The EU set targets for 55% MSW recycling by 2025 and
65% by 2035, aiming to reduce landlling and enhance sustain-
ability through stricter packaging waste rules.14

The primary component of plant cell walls, cellulose, keeps
plants rigid and straight. The rst source of cellulose was
plants. The French chemist Anselme Payen used plants as
a source of cellulose. He extracted cellulose from plants and
determined its chemical formula in 1838.15 Based on size,
cellulose can be divided into two categories: microcellulose and
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5ra02896e&domain=pdf&date_stamp=2025-07-22
http://orcid.org/0009-0009-1235-4985
http://orcid.org/0000-0001-6626-3610
http://orcid.org/0000-0001-8273-8559
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra02896e
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA015032


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
0/

20
26

 8
:2

2:
09

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
nanocellulose.16 Nanocellulose (at least one dimension #100
nm) is further subdivided into three principal types: bacterial
nanocellulose (BNC), nanocrystalline cellulose (NCC or CNC),
and nano- or micro-brillated cellulose (NFC or MFC).17,18 BNC
is biosynthesized by certain bacterial species, such as Komaga-
taeibacter xylinus, and is known for its exceptional purity, high
crystallinity, and three-dimensional nanober network, making
it ideal for biomedical applications due to its outstanding
biocompatibility and mechanical strength.19 NCC is obtained
through acid hydrolysis of cellulose bers, producing rod-
shaped, highly crystalline particles typically 100–500 nm in
length and 5–20 nm in width.20 In contrast, NFC consists of
long, exible brils containing both crystalline and amorphous
domains. It is produced viamechanical shearing, oen assisted
by enzymatic or chemical pretreatments. It is characterized by
high viscosity, water-holding capacity, and potential applica-
tions in coatings, packaging, and biocomposites.21

There are three methods to extract cellulose: mechanical,
chemical, and bacterial methods. Among the mechanical
cellulose extraction techniques are steam explosion, crushing,
grinding, and high-pressure homogenization. Alkali treatment,
chemical retting, degumming, and acid retting are examples of
chemical extraction techniques.22 Cellulose can also be extrac-
ted from rice husk,23 rice straw,24 sugarcane bagasse,25 cotton
stalk,26 sisal ber,27 mengkuang leaves,28 kenaf,29 jute,30 coconut
coil,31 pineapple crown leaves,32 pineapple leaves,33 banana
peel,34 alfa grass,35 municipal grass36 Native African Napier
grass,37 sabai grass,38 bamboo,39 barks of mulberry,40 wheat
straw,41 corncob,42 poplar trees wood,43 soybean,44 lemon peel,45

jackfruit peel46 Palm oil empty fruit bunches,47 carrot peel,48

onion peel,49 pumpkin peel,50 tomato peel,51 potato residues,52

abaca pulp53 etc. Cellulose can also be extracted from waste
paper54 and textile waste fabrics.55

Chitin, chitosan, and cellulose are natural biopolymers
widely studied for their structural and functional properties.
These materials share several characteristics, including their
polysaccharide nature, biodegradability, and applications in
biotechnology.56 Despite structural differences, these biopoly-
mers exhibit hydrophilic properties, inuencing their solubility
and applications. Chitosan, unlike chitin and cellulose, is
soluble in acidic solutions, which enhances its usability in
biomedicine and environmental science.57 Chitosan is widely
applied in wastewater treatment, removing heavy metals and
contaminants, while cellulose derivatives contribute to
sustainable agriculture.58,59 Additionally, all three materials are
also used in wound healing and drug delivery due to their ability
to form lms and absorb impurities.60 Their biodegradability
and lm-forming ability enable environmentally friendly pack-
aging and bioplastics production.61 In the food industry,
chitosan-based coatings improve food preservation, while
cellulose enhances dietary ber content.62 In cosmetics, chito-
san aids skin hydration and hair care, whereas cellulose-based
polymers serve as anti-aging agents.63,64

While several reviews have extensively discussed the chemistry,
modications, and applications of cellulose, chitin, and chitosan,
limited comprehensive analysis focuses specically on their
extraction from diverse natural and industrial waste sources. This
© 2025 The Author(s). Published by the Royal Society of Chemistry
review lls that gap by providing a comparative overview of bio-
logical and chemical extraction techniques applied to various
waste materials, with detailed tabular data on extraction parame-
ters, sustainability concerns, and source-specic challenges.

2. Manuscript collection and search
strategy

A comprehensive and methodical literature search was con-
ducted to support the development of a focused and evidence-
based review on the extraction of cellulose, chitin, and chito-
san from both natural and waste-derived sources. The aim was
to identify high-quality, peer-reviewed studies that contribute
meaningfully to environmental sustainability and waste valori-
zation. Special attention was given to publications that
described chemical and biological extraction techniques and
assessed their efficiency, scalability, and ecological impact.

To ensure rigor and transparency, well-dened inclusion and
exclusion criteria were applied, including the relevance to the
review topic and publication within the last 10 to 15 years. A
multi-stage screening process was employed, and the search
encompassed several major scientic databases. The complete
methodology, including search parameters, keyword strategies,
lters applied, and selection criteria, is summarized in Table 1.

3. Chitin and chitosan

Chitin has two forms. The deacetylated form of chitin is known
as chitosan. Chitin and chitosan are composed of two polymers
collectively known as glycosaminoglycans. Glycosaminoglycans
are a group of glucosamine and acetylglucosamine. A polymer
composed only of acetylglucosamine is called chitin, and one
composed only of glucosamine is called chitosan. Chitin can be
converted into chitosan. As chitin is composed of an
unbranched N-acetyl-D-glucosamine chain, and chitosan
consists of only D-glucosamine. The N-acetyl part is absent in
chitosan. Therefore, if the acetyl groups are removed from
chitin, it converts into chitosan. That is how chitosan is
produced.65 We can dene chitin and chitosan based on solu-
bility. Based on the property, whether it is soluble or not in
0.1 M acetic acid, chitin and chitosan should be categorized
using the terminology suggested by the European Chitin Society
(EUCHIS); chitosan is the name for the soluble substance, while
chitin is the term for the insoluble one.66

3.1 Chemical structure

3.1.1 Chitin.While researching the cuticle of some insects,
Antoine Odier discovered it in 1823. He named it chitin, derived
from the Greek word “chiton”, which means cloak or wrap.
Children discovered nitrogen in 1824 by removing chitin from
the elytra of May bugs. In 1843, nitrogen was also observed by
Payen, Fischer, and Leuchs. Its primary component, according
to Karrer and Zechmeister, is N-acetylglucosamine. Early in the
20th century, Meyer and Pankow used X-ray diffraction experi-
ments to validate the structure of chitin.67 Chitin is one of the
most easily available natural polymers.67–69 The structure of
RSC Adv., 2025, 15, 26276–26301 | 26277
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Table 1 Literature search methodology

Step Description

Databases used ScienceDirect, Royal Society of Chemistry, Scopus, PubMed, SpringerLink, ACS, and Google Scholar
Search keywords Chitin extraction from waste, chitin and chitosan extraction method, chitosan extraction biological method,

green extraction of chitosan
Cellulose from cotton waste, chemical vs. biological extraction of chitin/chitosan, cellulose from newspaper,
cellulose extraction from agricultural waste, cellulose from plant source, cellulose extraction method

Time Frame Publications from 2010 to 2024
Language English only
Inclusion criteria � Peer-reviewed journal articles

� Experimental and review papers with detailed methodology
� Studies focused on the extraction of chitin, chitosan, or cellulose from natural or waste sources
� Studies describing detailed extraction methodologies (chemical, biological, or combined)
� Research involving green, eco-friendly, or sustainable extraction techniques
� Papers that include quantitative data (e.g., yield, purity, deacetylation degree, crystallinity index, etc.)
� Articles discussing novel or advanced technologies (e.g., enzymatic, microbial, or nano-based extraction
methods)
� Review papers that consolidate extraction processes, challenges, and sustainability considerations

Exclusion criteria � Non-English papers
� Duplicate entries
� Articles without relevant extraction data
� Non-peer–reviewed sources (e.g., blog posts, conference abstracts, patents)
� Focused only on applications

Screening process � Titles, abstracts, and conclusions were screened rst
� Full texts were reviewed for relevance and quality

Number of studies reviewed Approx. 200 articles were reviewed and evaluated
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chitin and cellulose is quite similar. The only difference is that,
unlike cellulose at carbon number 2, chitin has the N-acetyl
group (in Fig. 1), whereas cellulose has a hydroxyl group there.70

Chitin comes in three different forms: a, b, and g. The a-
form is abundantly available and mostly found in crab and
shrimp shells. Commercially, a and b chitin/chitosan are both
accessible. The alignment of the a-chitin chains is antiparallel,
accompanied by strong hydrogen bonds, which increases their
stability. The g-form of chitin has two parallel and one anti-
parallel strand, while the b-form, which is primarily found in
mollusks like squid, is oriented in parallel. When g-chitin is
treated with lithium thiocyanate, the reagent interacts with the
chitin chains, breaking weaker hydrogen bonds and facilitating
the rearrangement of the molecular structure. This process
Fig. 1 Chemical structure of chitin.71

26278 | RSC Adv., 2025, 15, 26276–26301
leads to the transformation of g-chitin into the more stable a-
chitin form.72

3.1.2 Chitosan. Chitosan is a polymer made entirely of
glucosamine. It is a naturally occurring biopolymer derived
from chitin, the primary structural element of squid pens,
shrimp and crab shells, and the cell walls of some fungi.72

Rouget discovered that heating chitin in an alkaline medium
produced a substance soluble in organic acids in 1859. Hoppe-
Seyler named this substance chitosan in 1894, but its chemical
makeup was not determined until 1950.70 High temperature
and strong alkali treatment are required for the deacetylation
process of chitin to convert it into chitosan (Fig. 2).73

The deacetylation process results in converting the acet-
amide groups of chitins into primary amino groups. This
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Chemical structure of chitosan.74
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polysaccharide is natural, biocompatible, recyclable, non-toxic,
and antibacterial. It comes in various forms, including solution,
powder form, ake, ber, and lm.75

3.2 Elemental composition of chitin and chitosan polymer
Name
Fig. 3 Flow sh

© 2025 The A
Carbon %
eet of the extra

uthor(s). Publish
Nitrogen %
ction process of

ed by the Royal S
Hydrogen %
chitin and chitosa

ociety of Chemistr
Ref.
Chitin
 47.3
 6.5
 6.9
 76

Chitosan
 44.11
 7.97
 6.84
 72
4. Extraction process of chitin and
chitosan

Chitin and Chitosan are extracted mainly from crab shells and
sea shrimp crustaceans. This extraction is done using (1)
Chemical method and (2) Biological method.77
n.8,79

y

4.1 Chemical method

Deproteinization, demineralization, and discoloration are the
three main steps of the chemical extraction method. Among all
extraction methods, the chemical extraction method is mostly
used. Deproteinization is mainly the depolymerization of
biopolymers, which breaks down the bond between the chitin
and protein. Demineralization is done using strong acids like
H2SO4, HCl, HCOOH, HNO3, and CH3COOH to remove calcium
carbonate and other minerals (Fig. 3).77 Generally, calcium
carbonate reacts with acids and produces salt, water molecules,
and carbon dioxide (in eqn (1)).78 Then the discoloration
process is done to get a colorless product by removing pigments
like b-carotene and astaxanthin. Mainly, acetone is used in this
process.8

2HCl + CaCO3 / CaCl2 + H2O + CO2[ (ref. 78) (1)

Suneeta Kumari et al. used three natural waste sources to
extract chitin. They used Labeo rohita as shery waste, the shell
of Crangon crangon as Crab waste for the source of chitin.79 At
rst, they removed the protein matter from their sources (3%
NaOH, 30 min, 80 °C), removed minerals, and extracted chitin
by treating them with 3% HCl for 30 minutes at room temper-
ature. Then they deacetylated chitin to produce chitosan (40%
KOH, 6 hours, 90 °C). The degree of deacetylation of chitosan
obtained from sh, shrimp, and crab was 75%, 78%, and 70%,
respectively.79
RSC Adv., 2025, 15, 26276–26301 | 26279
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Microwave irradiation can be incorporated with the
chemical extraction process to improve the quality and reduce
the time required for the chemical reactions. El Knidri H. and
El Khalfaouy combined microwave heating with the conven-
tional chemical extraction process. The deacetylation process
took around 24 minutes with microwave heating, whereas the
traditional method needed 6.5 hours. The degree of deacety-
lation with microwave irradiation was slightly higher than
that of the chitosan obtained by the traditional heating
method (82.73% and 81.50%, respectively). Moreover, the
molecular weight of the microwave-heated chitosan was
higher.80
4.2 Biological methods

Besides chemical methods, biological methods are also avail-
able to prepare chitosan. There are two types of biological
methods: (1) Enzymatic method (2) Fermentation method.70

This method is more environmentally friendly as it requires
no harsh chemicals. Acid-producing bacteria and protease-
producing bacteria are mainly used in this process for demin-
eralization and deacetylation. This process is time-consuming
compared to other processes. The efficiency and quality are
low as well. That is why this is a costly process with less
industrial usage.81

4.2.1 Enzymatic method. There is no difference between
chemical and enzymatic methods for the demineralization
process. The biological extraction process involves enzymes and
microorganisms to extract chitin from its sources. The enzyme
protease does the deproteinization process (Fig. 3). Pepsin,
trypsin, papain, alkaline, pancreatin, etc., are some commonly
used proteases. The primary sources of these proteases are
plants, microorganisms, and animals. Based on some parame-
ters, biological extraction is better than the chemical extraction
process because it is more environmentally friendly and does
not change the structure of chitin.8

In this method, acid removes the CaCO3 in the shell.70,82 As
this method uses proteinases for enzymatic deproteinization
and deacetylases extracted from microbes and sh intestines
for deacetylation, the application of elevated temperatures and
strong alkali treatment is eliminated. This makes the method
more environmentally friendly.83,84 For example, Alcalase is
obtained from Bacillus licheniformis. This method follows
complex reaction mechanisms. Using an acid/base reaction
mechanism, CE4 (a member of the carbohydrate esterase
enzyme family) may remove N-acetyl functional groups when
metal ions (oen zinc or cobalt) are attached to the enzyme's
reaction site.85

Furthermore, this method's degree of deacetylation value is
much lower, and this method is less effective than chemical
methods because the enzymatic method cannot remove the last
10% of the proteins during deproteinization.86 Fermentation
techniques have been created as an option for solving the
problem of the high cost of enzymes. This is because microor-
ganisms may multiply while secreting enzymes into reactors
under optimal reaction conditions, hence lowering the cost of
enzymes.86,87
26280 | RSC Adv., 2025, 15, 26276–26301
4.2.2 Fermentation method. The fermentation process is
used in place of the enzymatic method for making chitin or
chitosan. Various types of bacteria are used for this fermenta-
tion process. Bacteria that produce lactic acid are used in the
lactic acid fermentation process. Also, bacteria that produce
other organic acids rather than lactic acid are used in non-lactic
acid fermentation. These lactic or other types of organic acids
produced by the bacteria cause the demineralization of raw
materials (Fig. 3). When calcium carbonate and lactic acid
combine, calcium lactate is produced, which may be precipi-
tated and eliminated.70 Moreover, the deacetylation process to
convert chitin into chitosan can be carried out by acetyl xylan
esterase.66

Aranday-Garćıa used Lactobacillus brevis (20% v/w) and
Rhizopus oligosporus for the demineralization and deproteini-
zation, respectively.88 They inoculated shrimp shells with
Lactobacillus brevis and sucrose (10% w/w) for 2 hours at 30 °C.
Following that, they added Rhizopus oligosporus and glucose
(10% w/w) and incubated for 72 hours. The culture was then
kept for fermentation for 8 days. Aer 8 days of fermentation,
the chitin was rinsed with water and dried. The remaining
mineral and protein content was removed by the conventional
method (HCl 0.4 N 25 °C for 2 hours and NaOH 0.5 N 25 °C for 2
hours). The nal product was obtained by rinsing the sample
with distilled water and drying it for 2 days at 40 °C. The effi-
ciency of deproteinization and deacetylation was 96.8% and
97.5%, respectively.8

4.3 Combined chemical and biological methods

A combination of chemical and biological processes can extract
chitin and chitosan. Younes and Hajji used enzymatic protease
for deproteinization and conventional acid alkali methods for
demineralization and deacetylation because chitin produced by
deproteinization by enzymatic proteases has higher molecular
weights compared to chitin which is obtained by chemical
deproteinization.82 Several microbial and sh alkaline proteases
were used for the deproteinization of shrimp shells. They
digested shrimp shells with enzymes for 3 hours and stopped
the reaction by heating the solution for 20 minutes at 90 °C to
inactivate the enzymatic action. The solid product obtained
from the enzymatic action of Bacillus mojavensis A21 and
Balistes capriscus proteases was treated with HCl (1.5 M, 25 °C, 6
hours) for demineralization. Aer that, they were treated with
NaOH (12.5 M, 12 hours, 50 °C) for deacetylation. The efficiency
of deproteinization by Bacillus mojavensis A21 and Balistes cap-
riscus was 77 ± 3% and 78 ± 2%, respectively.82

4.4 Sources of chitin and chitosan

The extraction processes described in Sections 4.1 to 4.3 serve as
the basis for evaluating how chitin and chitosan can be ob-
tained from different biological sources. This section explores
how these methods are applied to various organisms, empha-
sizing waste.

There are several sources from which chitin may be extrac-
ted. Chitin is commercially extracted from the shells of shrimp,
crabs, crab sh, and krill. According to some recent research,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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other sources of chitin include insects, mushrooms, coral, and
resting eggs from crustaceans.79

4.4.1 Shrimp sources. The contents of shrimp biowaste and
sh scales are 15–30% chitin, 30–65% protein, 30–50%
minerals, and 10–20% calcium, respectively.79,82 Strong acids
and bases can be used to eradicate proteins and calcium
carbonate.82 The heads, shells, and tails of shrimp comprise 40–
50% of their weight worldwide. Environmental problems arise
because only 5% of it is used for animal feed, and the remainder
is thrown away.89,90

In Table 2, the main chemical is NaOH in the deproteiniza-
tion step to extract chitin and chitosan from shrimp sources,
whereas HCl is used in the demineralization step. The acetyl
group is removed using the strong alkali reagent NaOH in the
deacetylation step. During deproteinization, the best conditions
for obtaining the he maximum chitin yield (36.7–42.1%) and
chitosan (64.1–81.9%) were determined to be 10% w/v NaOH at
100 °C for one hour. Raising the NaOH concentration to 48% at
room temperature produced a much lower chitosan yield
(4.09%), suggesting that milder conditions are better for effec-
tive protein removal. To get the maximum yield percentage, 6%
(w/v) HCl is used for 2 hours in the demineralization step, and
50% (w/v) NaOH at 60 °C for 4 hours is applied in the deace-
tylation step. However, the yield percentage of chitosan is the
lowest, at 4.09%, when chitin is converted to chitosan using
48% w/v NaOH at room temperature for 48 hours. Chitin and
chitosan yield percentage differences are less signicant when
50% (w/v) NaOH is employed at 120 °C; they are 30% and 35%,
respectively.

The most commonly employed reagents in the chemical
extraction of chitin and chitosan are NaOH for deproteinization
and deacetylation, and HCl for demineralization. However,
using these strong acids and bases raises serious environmental
concerns, as they are corrosive, hazardous to handle, and
produce toxic effluents. These effluents oen require extensive
neutralization and treatment before disposal.

4.4.2 Insect sources. Since chitin is mainly sourced from
marine waste, the market demand for it now surpasses the
supply chain.103 The over two million insect species found
globally comprise 95% of the animal kingdom. Only a small
number of species, such as Bombyx mori, Bombus terrestris,
Musca domestica, Holotrichia parallela, Hogna radiata, and Geo-
lycosa vultuosa, have been found to have chitin.104 The alpha
form of insect chitin has physicochemical characteristics
similar to crustacea, such as the shells of shrimp and crabs.
Chitin from insects is easier to extract and more ecologically
friendly since it includes less calcium carbonate (<6%) than that
from crustaceans (30–50%). Additionally, it maintains greater
degrees of polymerization with enhanced mechanical, gelling,
biological, and exible qualities. Chitin extraction and its
conversion into bioproducts or biomaterials from different
insect species and body sections have been the subject of
several articles during the last ve years.103

In Table 3, the maximum amount of chitin can be extracted
from Apis mellifera, and the percentage range is 51 to 77.2%. At
this maximum quantity, 1 M HCl and 1 M NaOH are used for
demineralization and deproteinization, respectively. However,
© 2025 The Author(s). Published by the Royal Society of Chemistry
the chitin percentage of Hylobius abietis is 27.9%, below the
maximum amount of chitosan derived from its chitin, which is
86.2%. This source uses 2 M NaOH for 2 hours in the depro-
teination stage and 22 M NaOH for 4 hours at 100 °C in the
deacetylation phase.

4.4.3 Mushroom sources. Fungi and mushroom wastes are
some other sources of chitin and chitosan (Table 4). Unlike
chitosan derived from shrimp and crab shells, chitosan
extracted from mushroom waste requires less harsh solvents
and the process is also simpler. No demineralization process is
required to extract chitosan from mushrooms, as mushrooms
do not contain any signicant amount of metal salts. Agaricus
bisporus is the most consumed mushroom in the USA, and it is
also a good source of chitinous biopolymer. Wu, T. and Ziva-
novic S. extracted chitosan from stalks of White button mush-
rooms, A. bisporus. To remove proteins, alkali-soluble
polysaccharides, and other small molecules, the stalks were
stirred in NaOH (1 M, 30 minutes, 95 °C). The remaining
insoluble part was then separated by centrifugation and
washing and treated with 2% acetic acid (95 °C, 6 hours) to
extract acid-insoluble chitin. Chitin was then converted into
chitosan by the treating acetic acid at a pH of 10. Their yield was
up to 27% and the degree of deacetylation was from 75.8 to
87.6%.115,135

Chitosan might be produced using the chitin bers found in
the cell walls of mushrooms. Different mushrooms have been
reported to produce chitosan. However, quality mushrooms
may not be required, and waste from the mushroom business
might be useful.136 Fungal cell walls are complex structures
composed of polysaccharides, including chitin/chitosan. The
exterior layers of most fungi are more varied and adapted to the
physiology of a particular fungus, whereas the inner wall layer is
composed of branching b-(1,3) glucan, b-(1,6) glucan, and chitin
and is alkali-insoluble.137 With few members in the Ascomyco-
tina division, mushrooms belong to the higher fungus division,
basidiomycetes. With mycelia networks of hyphae, they are
recognizable and eshy. Being saprophytes, mushrooms may
grow in a variety of habitats and substrates. Because of their
excellent avor and high protein content, they have been
regarded as an important meal for millennia. A few types of
mushrooms have also been used medicinally. Tree trunk
tissues, fallen logs, or other nutrient-rich substrates can all
support the growth of mushrooms.138

In the deproteinization stage, chitin and chitosan are
extracted from mushroom specimens using NaOH, acetic acid,
oxalic acid, C2H5OH, HCl, and Na2S2O5. Alkaline solutions
(NaOH, NH4OH) and acidic solutions (CH3COOH, HCl) are used
to convert chitin into chitosan during the deacetylation step.
Temperature and time vary from chemical to chemical.

4.4.4 Annelida sources. There are various kinds of annelida
sources from which chitin and chitosan are extracted, including
Egeria radiata,148 Ensis arciatus,149 Pinna deltoides,150 Mytilus
edulis,151 Oyster shell,152 Chiton shell,153 Acanthopleura vaillan-
tii,154 Mussel shell,102 Haliotis tuberculate,155 Modiolus mod-
iolus,150 Bellamya jayanica,156 Donax scrotum,157 Murex trapa,158

Anadara granosa,159 Conus inscriptus,160 Snail shells,161 Perna
viridis162 etc. Generally, in demineralization and
RSC Adv., 2025, 15, 26276–26301 | 26281
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deproteinization steps, HCl and NaOH are used, respectively,
and in the deacetylation step, NaOH is used to convert chitin
into chitosan.157–160,163

In Table 5, 70.67% is the highest amount of chitin that can be
extracted from Pinna deltoides. Chitin extraction from oyster
shells has a 69.65 percent yield, nearly equal to the maximum
percentage. The highest chitosan production (85%) is obtained
from Doryteuthis singhalensis. In the deproteinization stage,
protein is removed for two hours at 90 °C using 4 M HCl, and
minerals are removed using NaOH in the demineralization stage.

In contrast, 40% NaOH is used in the deacetylation process at
90 °C for two hours. 1 N HCl, 1 N NaOH, and 33% NaOH are the
main chemicals used in cuttlesh sources, and the yield is 70%.

5. Cellulose
5.1 Chemical structure of cellulose

Cellulose is a carbon-rich material.47 It has axial carbon–
hydrogen (C–H) planes that are hydrophobic and hydrophilic
Fig. 4 Chemical structure of cellulose.180

Table 6 Common deinking agents and their parameters used in the ext

Sl no. Deinking and purifying reagents Strengths

1 NaOH 5% (w/v)
NaClO 2% (v/v)

2 NaOH 2% (w/w)
Na2SiO3 2% (w/w)

3 H2O2 1% (w/w)
4 NaOH 0.5 and 1.0 M

NaClO2 0.5, 1.0, and 2.0
5 NaOH 2.5% (w/w)

Na2SiO3 2.25% (w/w)
H2O2 0.50% (w/w)
NaClO2 1% (w/v)
KOH 3.5% (w/v)

6 NaOH 1.5% (w/v)
H2O2 3% (w/v)
Na2SiO3 5% (w/v)
SDBS 1.5% (w/v)

7 NaOH 1.2% (w/v)
Na2SiO3 1.8% (w/v)
C18H34O2 0.9% (w/v)
H2O2 0.8% (w/v)

8 NaOH 5% (w/v)
NaClO 2% (w/v)

9 NaOH 2% (w/v)
NaClO2 Not dened
KOH 2% (w/v)

10 NaOH 2% (w/v)
NaClO 2% (w/v)

11 CH3COOH Not dened

© 2025 The Author(s). Published by the Royal Society of Chemistry
hydroxyl groups.178 It is present mainly in plant cell walls. This
large-molecule polymer comprises repeated D-glucose units
connected by b-1,4-glycosidic linkages (Fig. 4).179

There are crystalline and amorphous parts that make up
cellulose.47 The primary chemical link that is widely distributed
is the hydrogen bond, which forms a vast network and directly
contributes to the crystalline structure.179 The amorphous part
of cellulose can be hydrolyzed to separate the nanocrystals. Pure
cellulose is hydrolyzed using strong acids at a regulated
temperature and duration.47
5.2 Extraction of cellulose

5.2.1 Extraction of cellulose from waste paper.Waste paper
is another good source of cellulose. Old newspapers, recycled
newsprint paper, office waste paper, etc., can be used to
synthesize cellulose.54,181,182 The deinking process on waste
paper is done to remove ink and other undesirable contami-
nants except cellulose.183 Papers are shredded into pieces and
converted into pulp before mixing the deinking agents in the
pulp. This is done by washing or oatation and NaOH, H2O2,
NaClO, NaClO2, surfactant sodium dodecyl benzene sulfonate
(SDBS), and NaSiO3 etc. are some common deinking agents
(Table 6).54,182,184,185

The otation technique is also used along with these
deinking agents to purify and extract cellulose from waste
papers. Air bubbles rise through the liquid in the tank with the
suspended contaminant particles and waste paper pulp during
the otation deinking process. As the bubbles rise, ink clumps
raction process of cellulose from waste paper

Duration Temperature References

Not dened 100 °C 54

30 min 53–57 °C 181

5 h Room temperature 184
M 1 h 75 °C

35 min 53–57 °C 183

1 h 75 °C
2 h 95 °C
30 min Not dened 185

1 h 45 °C 14

50 min
2 h 125 °C 182
2 h 125 °C
2 h 90 °C 186
1 h 75 °C
2 h 90 °C
3 h 100 °C 187
1 h 70 °C
1 h 70 °C
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and hydrophobic impurities are gathered. Aer that, the
adhered particles are shied to a layer of foam, from which they
can be readily removed.181 Tween-80 (0.1% w/w, 45 ± 2 °C for 7–
12 min), commercial ISTEMUL 780 (0.1%), and sodium-4-
polystyrene sulfonate (0.9%) are some oating agents used to
form the froth layer.14,181,183,188 The airow rate can be 10 Lmin−1

and a pressure of 3 bar.14 Besides the otation tank, mechanical
agitation can be applied by a hydrapulper or a repulper with
a rate of 800–1000 rpm. This mechanical force, along with
otation and deinking agents, helps the ink fall off the waste
paper and wash away other impurities like lignin and hemi-
cellulose. Thus, pure cellulose is extracted from used
papers.183,185

5.2.2 Extraction of cellulose from waste fabric. Sample
preparation: Supercritical CO2 (scCO2) is applied to clean and
sterilize wasted cotton cloths, and a moderate temperature is
maintained to remove microorganisms and impurities. Alkaline
pulping : NaOH is used in a 1 : 20 ratio to remove lignin in this
stage. This stage is important because it also helps it helps
remove pectin and hemicellulose.55 Bleaching: hydrogen
peroxide (H2O2) is used for decolorization of the pulped ber.
This step helps dissolve lignin and hemicellulose, enhancing
the cellulose yield. Acid hydrolysis: 64 wt%H2SO4 is used in this
step.2

Vanzetto et al. used cotton fabric (100% natural raw cotton)
waste and polyester fabric (50% polyester ber + 50% treated
natural cotton ber) as the source of cellulose. They cut the
waste sample into pieces of 1 cm × 1 cm. The sample was
treated by ultrane friction milling for 6 hours aer being
submerged in water for 24 hours. They oxidized the milled
textile residue with 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO). TEMPO reagent was mixed with distilled water to
prepare the initial solution. The textile sample was mixed with
the initial solution, in which NaBr (99.9% w/w) and NaClO (12%
v/v) were mixed. The pH of this solution was kept in the range of
10 to 10.5 with the help of 0.1 M NaOH solution. The mixture
was stirred for 20 minutes aer 5 mL of ethanol was added to it.
The oxidized cellulose was separated by centrifuging.13

S. Thambiraj and D. Ravi Shankaran used industrial waste
cotton to extract cellulose, convert the extracted cellulose ber
into cellulose microcrystals, and nally into cellulose nano-
crystals. They cut the cotton sample into pieces and washed it
with hot water. The washed cotton was then dried in an oven for
2 hours. The cotton sample was then treated by alkali hydro-
lysis. The cotton was heated under continuous stirring in 20%
NaOH solution for 4 hours at 40–60 °C. Then water was added to
the solution to neutralize the pH value. The neutral suspension
was ltered, and the ltrate underwent hydrolysis to remove
hemicellulose and lignin. 500 mL of 60% sulfuric acid was used
in this acid hydrolysis. Aer the hydrolysis for 8 hours at 50–60 °
C, the cellulose formed a white slurry. Again, water was added to
this slurry to make it neutral. It was kept for 12 hours to settle
down. Aer settling, the slurry was rewashed. Cellulose micro-
crystals were isolated from this slurry by centrifuging the
suspension at 5000 rpm, forwarded by drying in an oven over-
night at 60 °C, and puried with acetone.189
T
a Sl 1 2 3 4 5 6 7 8
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In Table 7, the sample was prepared using deionized water,
supercritical CO2, and citric acid, and the temperature was kept
between 60 and 100 °C. Different NaOH concentrations are
employed in alkaline treatment. When combined with 3%
CH3COOH and NaCl, NaClO4, and H2O2, it acts as a bleaching
agent. In the acidic treatment, several amounts of H2SO4, HNO3,
and HCl are oen used.

Chemical agents like NaClO, KOH, and Na2SiO3 pose envi-
ronmental risks due to toxicity and alkaline waste, while H2O2

and oleic acid are greener alternatives. Proper reagent selection
and wastewater management are essential for sustainable
cellulose extraction.

5.2.3 Extraction of cellulose from plant sources. Pre-
hydrolysis: rst, the raw materials are washed with distilled
water and cut into small pieces. Sometimes, toluene/ethanol
(2 : 1, v/v) is used to remove wax, phenolics, pigments, and
oils.52 Then NaOH or other alkali aqueous solution is used
under a mechanical stirrer to remove other constituents present
in the pulp.49 Pulping and Bleaching: there are two types of
pulping treatment. Firstly, alkaline treatment, and secondly,
acidic treatment. In alkaline treatment, plant materials are
treated with an alkaline solution, typically sodium hydroxide,
which helps to break down lignin from the cell wall.196 KOH,
KMnO4, K2Cr2O7, Na2S, etc., are also used in this step. The
cellulose extraction process is described in Fig. 5. Then, the
bleaching agent H2O2 is used to remove lignin and other non-
cellulosic components.197 We can perform an additional
bleaching step using another agent like sodium hypochlorite
(NaClO) or sodium perborate (NaBO3$nH2O) to achieve a higher
degree of purity and whiteness. An acidic treatment sometimes
follows bleaching steps to neutralize the alkaline residues and
further purify the cellulose. Typically, H2SO4 is used in this
step.198

Anuj Kumar and Yuvraj Singh Negi used sugarcane to extract
cellulose nanocrystallites.199 They rst extracted the cellulose
nanobers by following the method done by others. This
process requires less time for production than the conventional
processes. At rst, lignin was removed from the sample with the
help of sodium chlorite solution. Aer treatment with sodium
chlorite, the resultant white substance was treated with 3 wt%
Fig. 5 Flow sheet of the production of cellulose fiber from the plant so

© 2025 The Author(s). Published by the Royal Society of Chemistry
and 6 wt% of potassium hydroxides at 80 °C for 2 hours to leach
hemicellulose, pectin, and starch. Aer this, the puried
cellulose ber was soaked in distilled water and placed in an
ultrasonic generator at 20–25 kHz. Aer 30 minutes of ultra-
sonication, the nanobers of cellulose were isolated. Cellulose
nanocrystals were then extracted from cellulose nanobers by
acid hydrolysis. This hydrolysis was done with the help of
sulfuric acid (64% w/w) solution at 45 °C for 60 minutes to
isolate the cellulose nanocrystals from cellulose microcrystals,
they used a method similar to Anuj Kumar and Yuvraj Singh
Negi.199 Except, they heated the microcrystals with the sulfuric
acid solution for 30–180 minutes, and the solution was centri-
fuged for 30 minutes.189 Bibin Mathew Cheriana et al. used
pineapple leaves as the source of cellulose.200

To scale up cellulose production in the industrial sector and
increase production efficiency, Sakinul Islam et al. used the
high-pressure process (HPP) and low-pressure process (LPP).
They used rice husk from the paddy mill as the source of
cellulose. The delignication process was done under LPP and
HPP. They concluded that removing amorphous components
like lignin, hemicellulose, etc., was more efficient in HPP. The
cellulose content was higher (93.68%) in HPP than in LPP
(75.23%).201

Hemmati, F. et al. used walnut shells as the cellulose ber
source. They slightly modied the method proposed by Bano
and Negi to extract cellulose from the walnut shell. The walnut
shell was ground and sieved before undergoing the dewaxing
process. They used a methanol and benzene solution (ratio of
20 : 80) for 6 hours. They used a 1 M sodium hydroxide solution
under continuous stirring for 4 hours at 85 °C to remove
hemicellulose. Aer rinsing with distilled water several times,
they used acetic acid and sodium chlorite to maintain the pH
level at 3–4.202

Xiao-Feng Sun and Run-Cang Sun used a chlorine-free
method to extract cellulose from straw. This method is more
environmentally friendly than other conventional methods.
They dewaxed dried straw in a toluene-ethanol solution. The
dewaxed straw was then preheated with NaOH in 60% meth-
anol (0.5 M, 60 °C, 2.5 hours). Then it was post-treated with
2% H2O2 and 0.2% TAED (tetra acetylene diamine) (48 °C, pH
urce.
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11.8, 12 hours). The crude cellulose was puried with 80%
acetic a and 70% nitric acid.203 Their method creates less
pollution than the conventional methods, but it is more time-
consuming and costly. The size distribution of cellulose ber
was lower in the conventional method than in the chlorine-
free method.27

In Table 8, carrot peel (81%) and pineapple leaves (81.27%)
have the highest cellulose content. Pretreatment of pineapple
leaves involves a 2% detergent solution at 70 °C, followed by
bleaching with 10% NaClO at 100 °C and 17.5% NaOH. 2%
NaOH is applied for three hours at 80 °C during the pulping
stage. Carrot peel cellulose is extracted using an aqueous acetic
buffer containing 1.7% aq. The bleaching step uses a chlorite
solution, while the pulping step uses 2% NaOH at 80 °C for
three hours. Jackfruit peel contains the least quantity of cellu-
lose (20.08%). This source is pretreated with 1 M NaOH and
bleached with 1.5% NaClO2 at 70 °C for two hours. In the
pulping stage, 65% H2SO4 is used for 1 h at 37 °C.
6. Conclusion

Utilizing natural and waste-derived resources, such as crab
shells, plant leovers, textile scraps, and newspaper waste, to
extract cellulose, chitin, and chitosan has become more impor-
tant due to the increasing demand for eco-friendly and sustain-
able products. The basic chemical and biological extraction
methods of chitin and chitosan have been described in this
study, focusing on the steps of demineralization, deproteiniza-
tion, and deacetylation. Because of their increased production
and efficiency, chemical methods continue to govern industrial
applications and pose environmental challenges. On the other
hand, although being ecologically safe, biological approaches are
limited by their higher prices, longer processing times, and lower
efficiency. A potential approach for recovering plentiful textile
and agricultural waste is cellulose extraction, which involves
a series of steps such as pre-hydrolysis, pulping, bleaching, and
washing. Reagent use and energy input, however, continue to be
signicant issues that necessitate more environmentally friendly
options. Future studies should focus on developing microbial
strains and enzyme engineering to enhance the efficiency and
reduce the cost of biological extraction methods. Incorporating
sustainable reagents and improving hybrid approaches that
combine the advantages of chemical and biological processes
must also be priorities. These developments will widen the
possibility for greater industrial use and signicantly support
a circular economy by bridging the gap between the generation of
waste and resource recovery.
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