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Chemometrics-driven discrimination of flue-cured
tobacco aroma types via GC-MS/MS and
multivariate analysis

Hongjing Yang, ' Jiandong Zhang, Chen Liu, Kai Song, Yunzhen Gao, Jinbin Wej,
Yanling Liu, Zhipeng Zang* and Zhen Wang*

In this work, a novel classification model for flue-cured tobacco aroma types is presented by integrating
chemometric modeling with quantitative aroma component analysis. Three representative types of flue-
cured tobacco samples were selected for their distinct flavor profiles and commercial importance.
Sensory characteristics were quantified by descriptive analysis of a trained panel. Gas chromatography-
triple quadrupole tandem mass spectrometry (GC-MS/MS) was employed to rapidly identify the aroma
components. The aroma types of flue-cured tobacco were studied using correlation analysis,
hierarchical clustering, principal component analysis (PCA), and discriminant analysis. In total, 31 aroma
components of flue-cured tobacco were identified by GC-MS/MS. Each flue-cured tobacco sample was
first assigned an aroma style based on geographical origin and subsequently corroborated by the
descriptive panel. Correlation analysis successfully identified compounds related to aroma substances
and the descriptive analysis indices of flue-cured tobacco. Cluster analysis cleanly segregated the
samples into the three predefined aroma types. Six principal components were extracted from the PCA
to construct the discriminant model. Internal and cross-validation both confirmed the discriminant
model's reliability and accuracy. This study evaluated the potential of using tobacco aroma components
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1 Introduction

Tobacco, a major global commercial crop, is cultivated in
various countries, including China, the USA, and Brazil." Within
the same tobacco variety, variations in geographical settings,
climatic factors, and agricultural practices can lead to
substantial disparities in both chemical and aromatic profiles,
which in turn result in notable distinctions in the style and
characteristics of the tobacco.»® In China, leveraging the
ecological traits of the national flue-cured tobacco cultivation
regions, Luo et al.* identified eight distinct ecological zones.
Correspondingly, they categorized the flavor profiles of tobacco
leaves into eight specific types: clear sweet flavor, honey sweet
flavor, alcohol-sweet flavor, burnt sweet burnt aroma, burnt
sweet alcohol sweet flavor, clear sweet honey sweet, sweet burnt
fragrance, and woody honey sweet flavor.” For example, the
tobacco leaves from Yunnan and Sichuan are considered to
have a clear sweet flavor, the tobacco leaves from Guizhou are
considered to have a honey sweet flavor, and the tobacco leaves
from Hunan and Anhui are considered to have a burnt sweet
alcohol sweet flavor.*” This -classification highlights the
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to distinguish and classify flue-cured tobacco aroma types.

complex interaction between geographical factors and the
sensory attributes of tobacco.

The aroma type classification of flue-cured tobacco plays
a critical role in guiding cigarette product development, pro-
cessing techniques, and maintenance strategies. The classifi-
cation of flue-cured tobacco leaves by geographical origin and
sensory characteristics enables rapid identification of tobacco
aroma types. However, this method also presents specific
challenges and limitations that need to be addressed.® Classi-
fication based on geographical origin typically focuses on the
main tobacco-producing regions in China. In some less prom-
inent tobacco-producing areas, the division is not apparent
enough.”'® Descriptive sensory analysis has long been the
primary method for assessing the flavor of flue-cured tobacco.
However, it faces limitations, including subjectivity, inter-
evaluator variability, and an inability to provide detailed
chemical insights into flavor profiles. Descriptive sensory
analysis relies on human perception, which is susceptible to
individual bias, environmental influences, and fatigue."™**
Crucially, sensory methods fail to establish direct correlations
between flavor attributes and specific chemical compounds,
complicating flavor profile optimization and standardization.

Chemometric analysis, a discipline focused on the system-
atic collection, organization, analysis, and interpretation of
data, is widely used in agricultural and food sciences, including

© 2025 The Author(s). Published by the Royal Society of Chemistry
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principal component analysis (PCA), cluster analysis, and
partial least squares discriminant analysis (PLS-DA)."**¢ In the
field of tobacco, Li et al® used partial least squares analysis
(PLSA) to analyze the chemical composition of Shandong
tobacco leaves, and identified 29 aroma precursors related to
the sweet and burnt sweetness of Shandong tobacco leaves.
Meng et al.*” applied correlation analysis and PLS to explore the
relationship between tobacco leaf color characteristics and
natural chromatography during baking. Jing et al.*® used GC-MS
pseudotargeted metabolomics, combined with chemometrics,
to examine the relationships between tobacco metabolites and
tobacco leaf geographical location and yield. PCA results
showed that the effect of geographical location on metabolites
was greater than that of yield. Chemometric analysis can
objectively classify tobacco grades, evaluate sensory quality, and
identify varieties, achieving an accuracy of over 90%."?>
Compared with professional classification, the statistical
model-based classification of stoichiometric analysis takes less
time, effectively reducing costs while ensuring work quality.*®*
Although chemometrics analysis has certain advantages, there
remains a significant knowledge gap regarding how best to
integrate these methods for flue-cured tobacco flavor
classification.

In this study, a chemometrics model for classifying flue-cured
tobacco aroma types was developed to effectively distinguish
them based on quantitative analysis of aroma components. The
tobacco leaves with clear sweet, honey sweet and burnt sweet
alcohol sweet were selected as the research objects. The aroma
components in tobacco leaves were rapidly and quantitatively
analyzed using GC-MS/MS. By combining aroma components
and chemometrics, a model was established to accurately iden-
tify three aroma types in flue-cured tobacco leaves. The estab-
lished discriminant model for aroma types can classify flue-cured
tobacco leaves based on the aroma components of unknown
samples. The discriminant model provides essential data to
identify flue-cured tobacco flavor types, thereby holding both
practical and theoretical significance for this classification.

2 Experimental
2.1 Chemicals

All chemicals were used as received without further purifica-
tion. Trans-2-hexenoic acid, N,O-bis(trimethylsilyl)
trifluoroacetamide (BSTFA), dichloromethane (BCM), and
acetonitrile (ACN) were procured from Ballantine Co., Ltd.
Standards for aroma components were obtained from Aladdin
Reagents Co., Ltd, with purities exceeding 95%. All reagents
used in the study were of chromatographic grade.

2.2 Experimental materials

All tobacco varieties provided by the Gansu tobacco industry
were the Yunyan 87 variety, harvested in 2022, as shown in
Table S1. According to the relationship between origin and
aroma type, these tobacco leaves were classified into aroma
types.”® Samples Al to C3 serve as the modeling dataset,
whereas samples X1 to X3 constitute the validation dataset.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.3 Descriptive analysis of flue-cured tobacco

Cigarette sample preparation: Tobacco leaf samples were
moisture-adjusted, de-veined, shredded, and rolled into
uniformly sized sticks using an automatic cigarette rolling
machine (HAUNIBABY D-7300, BGWT, Germany). Prior to
smoke sensory analysis, cigarette samples were equilibrated for
48 h at 25 + 5 °C and 40 + 5% relative humidity.>*

The sensory analysis was conducted using a descriptive
method, and the panel consisted of seven smoking assessors
with at least 10 years of experience in cigarette sensory evalua-
tion. The evaluation took place in a sensory room maintained at
18-25 °C and 55-70% relative humidity with good ventilation.
The descriptive analysis indices of the cigarette samples were
evaluated in accordance with the YC/T 530 standard.”
Descriptive analysis indexes included aroma quality, aroma
quantity, diffusivity, satisfaction, saliva production sense,
smoke concentration, offensive taste, irritancy, and aftertaste.
Each descriptive analysis index was scored on a 5-point scale,
with higher scores indicating better sensory quality. The
concept of each descriptive analysis index is shown in Table S2.

2.4 GC-MS/MS analysis

The sample analysis was carried out using a TRACE1310-GC
coupled to a TSQ8000E-MS/MS (GC-MS/MS, Thermo Fisher,
USA). In the GC-MS/MS analysis, the liquid injection method
was used, with an injection volume of 1 pL.

GC conditions were as follows: an Hp-5 MS chromatographic
column (60 m x 0.25 mm x 0.25 pm) was used. The carrier gas
was 99.999% pure helium, flowing at 1.5 mL min '. The
temperature gradient program was set as follows, with the
column temperature initially maintained at 60 °C. It was then
ramped to 95 °C at 5 °C min~' and held for 2.5 min. Subse-
quently, the temperature was increased to 150 °C at a rate of 3 ©
C min !, and held for 1 min. Finally, the temperature was
ramped to 250 °C at 5 °C min~". A split injection mode was
employed with a split ratio of 3 : 1, and the split flow rate was set
to 5 mL min~".

The mass spectral conditions included an electron energy of
70 eV and an ion source temperature of 280 °C. The quadrupole
temperature was 280 °C, and the transfer line temperature was
280 °C. The scanning mode was multiple reaction monitoring
(MRM).

Qualitative and quantitative analysis was performed using
ThermoFisher's Chameleon software. Compound identification
was based on the NIST20 mass spectral library. Quantification
by the internal standard method.*

2.5 Preparation of standard working solutions

The aroma standard was accurately weighed on an analytical
balance (accuracy of +0.0001 g), dissolved in DCM, and trans-
ferred to a 10 mL volumetric flask. Diluted to the mark with
DCM to prepare a single standard stock solution of aroma
substances. A 100 pL aliquot of each stock solution was
combined in a new 10 mL volumetric flask. This mixture was
diluted to the mark with DCM to prepare the mixed standard
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stock solution. Different volumes of the mixed stock solution
and 50 pL of the internal standard (¢rams-2-hexenoic acid,
12.39 mg mL ™" in DCM) were added to 10 mL volumetric flasks.
These solutions were diluted to volume with DCM/ACN (1: 2, v/
v) to generate a standard working solution. From each standard
working solution, 1 mL was transferred into a chromatographic
vial, followed by the addition of 100 pL of BSTFA. The mixture
was reacted in a water bath at 60 °C for 40 min, cooled to room
temperature, and subjected to GC-MS/MS analysis.”

2.6 Sample preparation

The sample pretreatment was carried out according to the
literature report, and the corresponding modification was
applied.?®?® Each tobacco sample (50 g) was crushed and sieved
through a 0.25 mm aperture. One gram of tobacco powder was
placed into a 50 mL centrifuge tube, and 1.5 mL of pH 3.0 PBS
was added; then the mixture was allowed to stand for 20 min.
Then, 50 pL of the internal standard solution and 10 mL of DCM
were added. The mixture was vortexed at 2000 rpm for 20 min to
facilitate extraction, then centrifuged at 6000 rpm for 10 min.
The supernatant was filtered through a 0.45 um organic phase
filter membrane. Transfer the filtrate into a chromatographic
vial to a volume of 1 mL, then add BSTFA to a volume of 100 pL.
The vial was heated in a water bath at 60 °C for 40 min, cooled to
room temperature, and then analyzed by GC-MS/MS.

2.7 Chemometrics analysis

All experimental samples were weighed at least three times, and
each sample was prepared and analyzed independently to
ensure the reliability of the results. Before statistical analysis,

. . X —
the data were standardized using the formula, z = T (x
o

original value of the variable, u = the variable's mean, ¢ = the
variable's standard deviation).*® This standardization ensured
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all features operated on comparable scales. Statistical analyses
were performed using Minitab17 software. In the cluster anal-
ysis, the association method was determined by selecting the
sum of squared deviations. For measuring distances between
clusters, Euclidean distance was chosen. In the principal
component analysis, a correlation coefficient matrix of the
matrix type was employed to assess the relationships among
variables. In the context of discriminant analysis, the discrim-
inant function used a linear model and cross-validation to
assess predictive accuracy.

3 Results and discussion
3.1 Evaluation of the GC-MS/MS method

A novel GC-MS/MS method has been developed for determining
the aroma components in tobacco. Fig. 1 presents the total ion
chromatogram (TIC) profile obtained from the analysis. The
retention times (RT) and corresponding qualitative/quantitative
ion pairs for aroma components are detailed in Table S4. These
ion pairs were carefully selected based on their relative abun-
dance and specificity to ensure reliable identification and
quantification of the target compounds. Method validation
studies demonstrated satisfactory analytical performance
(Table 1). All compounds exhibited excellent linear relation-
ships within specific concentration ranges. The correlation
coefficients (R?) for all compounds surpassed 0.99, indicating
a high degree of linearity and reliability in the method's quan-
titative capabilities. The limit of detection (LOD) was deter-
mined based on a signal-to-noise (S/N) ratio of =3, while the
limit of quantitation (LOQ) was established using an S/N ratio of
=10.*" The low LOD and LOQ values obtained indicate that the
method is highly sensitive and capable of detecting trace levels
of aroma components in complex matrices (Table 1). The
recovery (%) was calculated by the standard addition method.
An analyte of known concentration was added to the tobacco

counts

Fig. 1 TIC of tobacco aroma components by GC-MS/MS analysis.
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Table 1 Evaluation indexes of 31 aroma components
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Flavor composition

Standard curve/ng mL~' R®

Concentration range/ng mL "

Recovery/% LOD/ng mL™' LOQ/ng mL ™"

2-Methylbutyric acid
Pentanoic acid

Hexyl alcohol
Dichromic acid

Lactic acid

Hexanoic acid
Hydroxyacetic acid
2-Methyl-2-pentenoic acid
2-Methylcaproic acid
3-Hydroxypropionic acid
Benzyl alcohol
2-Hydroxybutyrolactone
Heptylic acid

Sorbic acid
2-Methylheptanoic acid
Guaiacol

Phenethyl alcohol
o-Isopropylphenol
Benzoic acid
3,4-Dimethylphenol
5-Hydroxymethyl-2(5H)furanone
4-Hydroxystyrene

2,4, 6-Trimethylphenol
Carvacrol

n-Nonanoic acid
n-Decyl alcohol
p-Hydroxy benzaldehyde
Capric acid

4-Oxonaic acid
Cinnamic acid
4-Hydroxyphenylethanol

y = 0.0020x — 0.2281 0.9948
y = 0.0068x — 0.1558 0.999

y = 0.0211x — 0.1109 0.9969
y = 0.0072x — 0.1485 0.9997
y = 0.0031x + 0.6750 0.9996
y = 0.0014 — 0.0128 0.9974
y = 0.0011x + 0.0503 0.9995
y = 0.0007x + 0.0805 0.9986
y = 0.0033x + 0.0383 0.9994
y = 0.0008x — 0.0366 0.9992
y = 0.0016x + 1.4841 0.9914
y = 0.0003x — 0.0078 0.9995
y = 0.0061x — 0.0747 0.9993
y = 0.0020x — 0.0917 0.9995
y = 0.0023x — 0.0917 0.9996
y = 0.0142x + 0.0901 0.9996
y = 0.0014x + 0.2255 0.9977
y = 0.0018x + 0.0345 0.9992
y = 0.0017x — 0.1046 0.9994
y = 0.0016x — 0.0678 0.9996
y = 0.0021x — 0.0717 0.9924
y = 0.0012x — 0.1532 0.9952
y = 0.0025x — 0.1149 0.9996
y = 0.0094x — 0.2435 0.9984
y = 0.0031x — 0.6836 0.9904
y = 0.0071x — 0.0321 0.9972
y = 0.0009x — 0.0387 0.9948
y = 0.0055x — 0.7638 0.9904
y = 0.0001x — 0.0029 0.9917
y = 0.0010x — 0.0260 0.9956
y = 0.0112x — 0.8419 0.9959

25-500
24-480
30-600
18.6-372
125-2500
100-1000
20.2-404
90-1800
3-60
10-100
46.4-4640
120-1200
20.4-408
25.8-516
22.8-456
25.2-504
213-4260
11.6-116
248-2480
11.4-114
50.5-505
105-1050
7.05-112.8
14.8-185
60-750
10-100
52-832
18.4-368
60.5-968
116-1160
516-6450

115.91
108.81
82.54
97.97
105.66
93.02
114.27
114.91
111.38
108.2
85.41
89.58
118.39
108.31
108.31
90.93
113.58
114.47
118.43
115.93
111.89
117.19
107.1
91.48
98.97
87.96
88.72
91.34
84.72
87.51
89.9

6.18
0.66
0.69
1.27
4.57
21.29
0.6
6.58
0.41
1.21
2.26
1.67
1.97
7.51
6.64
0.59
2.28
1.39
45.67
2.07
0.32
0.33
1.25
1.37
0.47
0.03
1.2
0.27
7.41
1.29
0.46

20.59
2.19
2.3
4.23

15.23

70.97
2.00

21.92
1.38
4.05
7.54
5.58
6.58

25.05

22.14
1.97
7.61
4.64

152.22

6.91
1.05
1.09
4.17
4.58
1.56
0.1
4.00
0.89
24.69
4.3
1.54

sample, and then the recovery rate was calculated using the
formula: [(sample spiked with standard-original sample)/spiked
amount] x100.*> The recovery of different flavor components
was shown in Table 1, and the recoveries were in the range of 80
to 120%. These results collectively demonstrate that the devel-
oped GC-MS/MS method has high accuracy and precision,
making it a powerful tool for analyzing aroma components in
various samples.

3.2 Aroma components in flue-cured tobacco

The extraction conditions for aroma components in tobacco
and the derivatization reaction conditions were optimized, and
the specific details were provided in the supplementary infor-
mation. The determination of these aroma components was
executed under the optimized conditions. Table S5 illustrates
the contents of 31 aroma components identified in flue-cured
tobacco samples from different types of flue-cured tobacco
leaves.

These aroma components were classified by functional
group, and the contents of the tobacco samples are presented in
Table 2. Among them, sample X1 exhibited the highest content
of aroma compounds, with a maximum value of 149.00 mg
kg '. Specifically, sample C2 had the highest content of acidic
compounds, X3 contained the highest levels of phenolic

© 2025 The Author(s). Published by the Royal Society of Chemistry

compounds, and X1 had the highest content of alcohols.
Moreover, X1 contained a notably greater diversity of four other
types of compounds compared to the remaining 16 tobacco
leaves.

Table 2 The content of aroma compounds in 17 flue-cured tobacco
leaves (mg kg™

Sample ID  Phenols  Others Alcohols  Acids Sum

Al 4.6471 8.3683 51.6564 40.7771 105.4488
A2 3.6614 7.9645 37.0100 43.8389 92.4747
A3 4.8141 7.1333 46.4344 52.3358 110.7175
A4 2.7914 5.9239 28.7697 38.8871 76.3720
A5 4.5847 6.5969 44.4501 45.8834 101.5151
A6 3.4205 5.9454 29.4347 38.5491 77.3497
X1 7.8818 13.8674 62.4373 64.8193 149.0058
B1 2.8474 8.9802 26.7068 43.6927 82.2271
B2 4.3019 10.0445 11.5337 44.2407 70.1208
B3 3.3930 12.7480 13.7018 53.5056 83.3484
B4 3.5068 9.7178 33.9845 42.8406 90.0498
B5 4.1275 8.1158 42.9985 56.8090 112.0508
X2 4.7938 12.8534 34.7690 74.8703 127.2865
C1 5.0083 10.8484 44.1083 68.5724 128.5374
C2 4.4713 13.3675 35.3942 75.8308 129.0636
C3 4.3905 10.3242 35.1948 53.4571 103.3666
X3 12.4753 1.8237 31.3839 49.0707 94.7536

RSC Adv, 2025, 15, 42354-42363 | 42357
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Table 3 Contents of chemical components in three aroma types of

flue-cured tobacco leaves (mg kg™

Flavor composition

Clear sweet Honey sweet

flavor flavor

Burnt sweet alcohol
sweet flavor

Acids
Phenols
Alcohols
Others
Sum

46.4415 52.6598
4.5430 3.8284
42.8846 27.2824
7.9714 10.4099
101.8405 94.1805

Class A

61.7328
6.5863
36.5203
9.0909
113.9303

View Article Online
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In the aroma classification of 17 flue-cured tobacco samples,
classifications based on geographical origin and the descriptive
analysis by a trained panel showed high consistency (Tables S1
and S3). The samples could be categorized into three aroma
types. The samples Al to A6 represented a clear, sweet flavor
style; samples B1 to B5, a honey-sweet flavor style; and samples
C1 to C3, a burnt-sweet, alcohol-sweet flavor style. Sample X1
was the clear sweet flavor style, sample X2 was the honey sweet
flavor style, and sample X3 was the burnt sweet alcohol sweet
flavor style. The aroma compounds of the three types of flue-
cured tobacco are shown in Table 3. Among the three types of

2-Methylbutyric acid 4

Pentanoic acid 4

Hexanoic acid

2-Methylcaproic acid 4
3-Hydroxypropionic acid 4
Heptylic acid 4

Sorbic acid

o-Isopropylphenol 4
4-Hydroxystyrene 4
5-Hydroxymethyl-2(5H)furanone

n-Nonanoic acid -

® 3

60

0.75

0.50

Class B

2-Methylbutyric acid 1

Pentanoic acid -

Hydroxyacetic acid 1

3-Hydroxypropionic acid {

Heptylic acid 4

2-Methylheptanoic acid 4

Phenethyl alcohol 4

Guaiacol 4

4-Oxonaic acid 4

@ O
® O

LR

1@

6 06660

)
2
g
Pearson r

Class C

Dichromic acid
2-Methylcaproic acid 4
Benzyl alcohol
Heptylic acid 4
2-Methylheptanoic acid 4
3, 4-Dimethylphenol 4
4-Hydroxystyrene -
5-Hydroxymethyl-2(5H)furanone
Carvacrol

n-Nonanoic acid -
4-Oxonaic acid 4

Cinnamic acid 4

4-Hydroxyphenylethanol 4

0.75

Fig. 2 Pearson correlation analysis between sensory quality and aroma compounds in flue-cured tobacco. Clusters A, B, and C represent clear
sweet flavor style, honey sweet flavor style, and burnt sweet alcohol sweet flavor style, respectively. Note: * indicates p < 0.05, ** indicates p <
0.01, and *** indicates p < 0.001, denoting statistically significant correlations.
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flue-cured tobacco leaves, burnt sweet alcohol sweet flavor
exhibited the highest average content of both acidic and
phenolic compounds. Meanwhile, the clear, sweet flavor had
the highest average alcohol content. It was difficult to directly
determine the relationship between the flue-cured tobacco
aroma type and aroma content; multivariate analysis was per-
formed to investigate potential patterns.

3.3 Correlation analysis

To investigate the relationship between aroma components and
aroma types in flue-cured tobacco, Pearson correlation analysis
was employed. The correlation coefficient (r) and the corre-
sponding significance level (p value) of each aroma type and
volatile compound pair were calculated by binarizing the aroma
type variables.*® When the |r| value is closer to 1, it indicates
a stronger correlation. The results were shown in Table S6; the
clear sweet aroma type showed strong negative correlations with
4-hydroxystyrene, 5-hydroxymethyl-2(5H)-furanone, heptylic
acid, and p-hydroxybenzaldehyde. The honey-sweet aroma type
exhibited strong correlations with 2-methylcaproic acid, 3, 4-
dimethylphenol, phenethyl alcohol, and n-nonanoic acid. Burnt
sweet alcohol sweet aroma type demonstrated strong positive
associations with 4-hydroxystyrene, 5-hydroxymethyl-2(5H)-
furanone, heptylic acid, and benzoic acid.

The relationship between sensory attributes and aroma
compounds in different aroma types of flue-cured tobacco was
studied. Given that p-values are often hard to reach significant
levels with small samples, this study focuses on statistically
significant results (p < 0.05) to ensure the analysis is robust and
credible. The results were presented in Fig. 2, and significant
correlations emerged between multiple compounds and the
specific sensory attributes. For instance, in clear sweet flavor
tobacco, the aroma quality and quantity exhibited negative
correlations with pentanoic and hydroxyacetic acid content. In
honey-sweet flavor tobacco, smoke concentration intensity
showed a positive correlation with hydroxyacetic acid content
and a negative correlation with 3-hydroxypropionic acid
content.

3.4 Cluster analysis

Cluster analysis, a statistical method, is used to categorize both
samples and variables into distinct groups.**** The aim is to
segment the data into distinct clusters, where samples within
the same cluster are more similar and those in different clusters
are more distinct. Cluster analysis was performed using the
content of 31 aroma components in flue-cured tobacco as the
dataset. The smaller the distance between classes, the greater
the similarity of samples, and the greater the distance between
classes, the better the clustering effect.®®

The clustering results were shown in Fig. 3, with the hori-
zontal axis representing the sample number and the vertical
axis representing the distance metric. At a clustering distance of
11.04, the 14 tobacco samples were discernibly grouped into
three distinct clusters. Sub-cluster 1 contained 6 samples with
a clear sweet flavor, sub-cluster 2 included 5 samples of honey-
sweet flavor tobacco leaves, while 3 samples from burnt, sweet

© 2025 The Author(s). Published by the Royal Society of Chemistry
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16.56

11.04

Distance

5.52

0.00

Al A5 A3 A4 A6 A2 Bl B4 B3 BS B2 C3 C2 Cl
Observed value

Fig. 3 Cluster analysis diagram of flue-cured tobacco leaves.

alcohol sweet flavor were grouped into sub-cluster 3. These
results of cluster analysis indicated that the aroma components
of flue-cured tobacco were affected by aroma types, and
different aroma types of flue-cured tobacco may be character-
ized by their aroma components.

3.5 Principal component analysis

PCA is a dimension reduction technique that transforms
multiple variables into several factors, called principal compo-
nents (PCs), which contain most of the information existing in
the original data set.*”*®* The PCA analysis of 31 aroma compo-
nents in 14 samples was carried out to obtain the eigenvalue,
contribution rate, and cumulative contribution rate of the
correlation matrix. As shown in Table 4, the cumulative
contribution rate of the first six PCs was 87.8%, indicating that
these PCs accounted for 87.8% of the information in the orig-
inal dataset. Therefore, the first six PCs were selected instead of
the 31 original variables for subsequent discriminant analysis.

Both PC1 and PC2 were extracted, accounting for 34.2% and
23.8% of the variance, respectively (Fig. 4). The flue-cured
tobacco samples from different flavor types and producing
areas were clearly separated, indicating that their chemical
components can be effectively distinguished.

The factor loadings of the principal components can be
estimated from the correlations between the principal compo-
nent scores and the original data. As shown in Table 5, the
absolute values of the coefficients of variation of compounds
heptanoic acid, 2-methyl-2-pentenoic acid, 4-hydroxystyrene,

Table 4 Eigenvalue, variance contribution rate, and cumulative vari-
ance contribution rate of PCA

Variance contribution Cumulative variance

PC Eigenvalue rate% contribution rate%
PC1 10.615 34.2 34.2
PC2 7.376 23.8 58.0
PC3 2.913 9.4 67.4
PC4 2.426 7.8 75.3
PC5 2.297 7.4 82.7
PC6 1.577 5.1 87.8
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Fig. 4 PCA projections of tobacco flavor components.

and 5-hydroxymethyl-2(5H)-furanone in PC1 were larger, indi-
cating that they contributed more to this component. Similarly,
2-methylhexanoic acid, benzyl alcohol, phenethyl alcohol, and
guaiacol showed higher absolute values of the coefficient of
variation in PC2, indicating a greater impact on PC2.

3.6 Establishment and verification of the discriminant
model

Discriminant analysis is a statistical method that uses the
known classifications of a sample set to derive a functional

Table 5 Principal component factor loading matrix

View Article Online
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relationship that encapsulates them.***° To mitigate the impact
of multicollinearity among independent variables on discrimi-
nation results, this study develops a discriminant analysis
model based on PCA. Using the 14 modeling samples as the
training set, the scores of the first six PCs were utilized as input
variables. The resulting discriminant function was formulated
as follows, and the prediction model for clear sweet flavor was
presented below: D(4) = -7.453 — 3.181F; + 2.894F, — 1.591F; +
0.909F, — 2.188Fs + 2.929F, the equation gave honey sweet
flavor: D(B) = -3.827 + 0.868F; — 2.442F, + 0.234F; — 0.105F, +
1.563F5 — 1.190Fg, burnt sweet alcohol sweet flavor was given by
the equation: D(C) = —14.088 + 4.915F; — 1.718F, + 2.794F; —
1.642F, + 1.771Fs — 3.875Fs. The samples were subjected to
both self-verification and cross-validation to assess the model.
The actual categories of the training samples, determined by
descriptive analysis and origin classification, were entered into
the model for analysis. As shown in Table 6, the self-verification
method achieved 100% accuracy. All training set samples were
correctly classified into their respective categories. Cross-
validation achieved an accuracy of 85.7%, calculated based on
the number of correctly classified samples (12 out of 14) divided
by the total number of samples in the testing subset, as detailed
in Table S7.

To rigorously evaluate the discriminant model's accuracy,
three external validation samples were incorporated into the
model. The PC scores were calculated using the corresponding

Flavor composition Fy F, F; F, F; Fe

2-Methylbutyric acid 0.4584 0.2287 —0.2638 0.6355 0.2416 —0.3485
Pentanoic acid 0.7300 0.4686 —0.2668 —0.0652 0.3355 —0.0111
Hexyl alcohol 0.6284 0.2192 —0.1307 0.2197 0.4653 0.2337
Dichromic acid —0.2849 0.6009 0.4284 0.0046 0.2379 —0.2569
Lactic acid 0.4073 —0.5436 0.3921 0.2027 —0.2193 0.1679
Hydroxyacetic acid 0.6246 0.3907 0.3130 —0.3041 0.2799 0.3636
Hexanoic acid 0.7190 —0.1675 0.3077 —0.1127 —0.1561 0.4983
2-Methyl-2-pentenoic acid 0.9221 —0.0237 —0.0600 0.0548 —0.0268 0.2193
2-Methylcaproic acid 0.4611 0.7630 0.1435 —0.0523 —0.3205 0.1111
3-Hydroxypropionic acid 0.5646 —0.6056 0.3780 0.1208 —0.3243 0.1947
Benzyl alcohol —0.1864 0.7578 —0.0674 0.3431 —0.1685 0.1793
2-Hydroxybutyrolactone 0.5440 —0.3817 0.2232 0.1617 —0.3809 —0.1222
Heptylic acid 0.8402 —0.0549 0.1889 —0.3412 0.2189 —0.0986
Sorbic acid 0.2085 —0.2974 —0.5019 0.1718 —0.4315 0.3020
2-Methylheptanoic acid 0.2340 0.3758 0.2529 —0.2554 —0.2490 —0.6200
Phenethyl alcohol 0.2790 0.9056 0.0014 0.2367 —0.0105 0.0964
o-Isopropylphenol 0.6134 —0.2986 0.4071 0.4285 —0.0065 —0.1550
Guaiacol 0.1925 0.9100 —0.0500 0.2781 0.0429 0.0816
Benzoic acid 0.8021 0.4672 —0.1362 0.0570 0.0804 —0.0954
3,4-Dimethylphenol 0.6111 0.7076 —0.0182 0.0970 —0.1745 0.0042
4-Hydroxystyrene 0.8820 —0.2316 0.2498 0.0505 —0.1546 —0.2231
5-Hydroxymethyl-2(5H)furanone 0.8828 —0.2281 0.2496 0.0517 —0.1560 —0.2219
2,4,6-Trimethylphenol —0.2472 —0.5739 0.3295 0.2448 0.5898 0.0587
Carvacrol —0.2382 —0.5318 0.3831 0.2325 0.6213 0.0702
n-Nonanoic acid 0.1240 —0.6879 —0.5739 —0.3019 0.0765 0.0346
p-Hydroxy benzaldehyde 0.7806 —0.4578 —0.2167 —0.1979 —0.0258 —0.0657
n-Decyl alcohol 0.6872 —0.3563 —0.4135 —0.1767 0.1352 —0.2848
Capric acid 0.7232 —0.0161 —0.3099 —0.4980 0.1532 —0.0774
4-Oxonaic acid 0.6909 0.2250 0.3195 —0.3576 0.3473 0.0778
Cinnamic acid 0.5698 —0.1315 —0.5639 0.3432 0.1823 0.1132
4-Hydroxyphenylethanol 0.4488 —0.5147 —0.1493 0.5867 0.0308 —0.1646
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Table 6 The self-verification results of the training set
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Observed value Actual group Prediction group Group Square distance Probability
Al A A A 6.326 1.000
B 30.803 0.000
C 57.678 0.000
B1 B B A 55.273 0.000
B 7.536 1.000
C 23.575 0.000
A4 A A A 5.818 1.000
B 31.177 0.000
C 89.343 0.000
B2 B B A 42.368 0.000
B 5.491 1.000
C 39.36 0.000
A6 A A A 1.563 1.000
B 42.662 0.000
C 86.127 0.000
A5 A A A 4.246 1.000
B 61.289 0.000
C 90.912 0.000
C3 C C A 62.316 0.000
B 29.707 0.000
C 3.446 1.000
A2 A A A 2.526 1.000
B 48.43 0.000
C 96.112 0.000
B3 B B A 25.268 0.000
B 5.086 1.000
C 42.616 0.000
C1 C C A 82.328 0.000
B 34.583 0.000
C 5.842 1.000
C2 C C A 99.657 0.000
B 40.089 0.000
C 5.952 1.000
A3 A A A 4.106 1.000
B 40.455 0.000
C 62.534 0.000
B5 B B A 53.204 0.000
B 3.763 1.000
C 38.229 0.000
B4 B B A 41.924 0.000
B 4.300 1.000
C 30.962 0.000

matrix operations and employed as the sample group members (Table 7) and the expert panel evaluations attests to the model's
for prediction purposes. The perfect consistency (100% cross- predictive performance and its promising utility in practical

validation accuracy) between the external sample predictions settings.

Table 7 The results of the validation set

Observed value Actual group Prediction group Group Square distance Probability
X1 A A 14.059 0.631
B 15.131 0.369
C 53.287 0.000
X2 B A 38.508 0.000
B 19.016 0.976
C 26.427 0.024
X3 C A 46.996 0.000
B 16.752 0.009
C 7.302 0.991

© 2025 The Author(s). Published by the Royal Society of Chemistry
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To address the limitation of a small sample size, we replace
the verification and training sets and adopt a strict external
verification strategy. Group A samples were iteratively elimi-
nated as external sets (A1-A6 excluded iteratively, supplement
X1), group B samples as external sets (iteratively exclude B1-B5,
increase X2), and group C samples (iteratively exclude C1-C3,
supplement X3). For each iteration, the training set is used to re-
PCA; these repeated PCA calculations are shown in Table S8.
The first six PCs explained >85% of the cumulative variance, so
they were retained to reconstruct the discriminant model.
Subsequently, the model is applied to predict the excluded test
sample categories. As shown in Table S9, while the model
demonstrated strong overall accuracy (85.7%), performance
varied across groups, with Group C showing notably lower
prediction accuracy (33.3%). This limitation is primarily
attributable to the small sample size in class C, which makes
the model sensitive to class imbalance and reduces minority-
class accuracy. While the limited sample size constrained the
model's performance in Group C, this study establishes
a foundational framework. It identifies key compounds relevant
to aroma-type discrimination that merit further validation in
larger-scale studies.

4 Conclusion

In this work, a discriminant model for flue-cured tobacco aroma
types was developed based on aroma component analysis.
Following optimization of extraction parameters and method-
ological validation, a GC-MS/MS-based approach was estab-
lished to quantify 31 aroma compounds accurately. The aroma
type of flue-cured tobacco samples was determined by dual
verification of geographical origin and descriptive analysis
using a trained panel. Correlation analysis identified aroma
components associated with tobacco aroma profiles and
sensory characteristics. Both cluster analysis and PCA effectively
discriminated distinct flavor types of flue-cured tobacco leaves.
Based on PCA results, a discriminant model for flue-cured
tobacco aroma type was constructed. The discriminant anal-
ysis model demonstrated accurate performance across multiple
validation methods. It should be noted that the sample size in
this study, while sufficient for initial model construction, may
limit the generalizability of the findings. Future work will
prioritize expanding the dataset to include a broader range of
geographical origins and harvest years to enhance the model's
robustness and applicability.
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