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riven discrimination of flue-cured
tobacco aroma types via GC-MS/MS and
multivariate analysis

Hongjing Yang, Jiandong Zhang, Chen Liu, Kai Song, Yunzhen Gao, Jinbin Wei,
Yanling Liu, Zhipeng Zang* and Zhen Wang*

In this work, a novel classification model for flue-cured tobacco aroma types is presented by integrating

chemometric modeling with quantitative aroma component analysis. Three representative types of flue-

cured tobacco samples were selected for their distinct flavor profiles and commercial importance.

Sensory characteristics were quantified by descriptive analysis of a trained panel. Gas chromatography-

triple quadrupole tandem mass spectrometry (GC-MS/MS) was employed to rapidly identify the aroma

components. The aroma types of flue-cured tobacco were studied using correlation analysis,

hierarchical clustering, principal component analysis (PCA), and discriminant analysis. In total, 31 aroma

components of flue-cured tobacco were identified by GC-MS/MS. Each flue-cured tobacco sample was

first assigned an aroma style based on geographical origin and subsequently corroborated by the

descriptive panel. Correlation analysis successfully identified compounds related to aroma substances

and the descriptive analysis indices of flue-cured tobacco. Cluster analysis cleanly segregated the

samples into the three predefined aroma types. Six principal components were extracted from the PCA

to construct the discriminant model. Internal and cross-validation both confirmed the discriminant

model's reliability and accuracy. This study evaluated the potential of using tobacco aroma components

to distinguish and classify flue-cured tobacco aroma types.
1 Introduction

Tobacco, a major global commercial crop, is cultivated in
various countries, including China, the USA, and Brazil.1 Within
the same tobacco variety, variations in geographical settings,
climatic factors, and agricultural practices can lead to
substantial disparities in both chemical and aromatic proles,
which in turn result in notable distinctions in the style and
characteristics of the tobacco.2,3 In China, leveraging the
ecological traits of the national ue-cured tobacco cultivation
regions, Luo et al.4 identied eight distinct ecological zones.
Correspondingly, they categorized the avor proles of tobacco
leaves into eight specic types: clear sweet avor, honey sweet
avor, alcohol-sweet avor, burnt sweet burnt aroma, burnt
sweet alcohol sweet avor, clear sweet honey sweet, sweet burnt
fragrance, and woody honey sweet avor.5 For example, the
tobacco leaves from Yunnan and Sichuan are considered to
have a clear sweet avor, the tobacco leaves from Guizhou are
considered to have a honey sweet avor, and the tobacco leaves
from Hunan and Anhui are considered to have a burnt sweet
alcohol sweet avor.6,7 This classication highlights the
nter, Gansu Tobacco Industry Co. Ltd.,
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complex interaction between geographical factors and the
sensory attributes of tobacco.

The aroma type classication of ue-cured tobacco plays
a critical role in guiding cigarette product development, pro-
cessing techniques, and maintenance strategies. The classi-
cation of ue-cured tobacco leaves by geographical origin and
sensory characteristics enables rapid identication of tobacco
aroma types. However, this method also presents specic
challenges and limitations that need to be addressed.8 Classi-
cation based on geographical origin typically focuses on the
main tobacco-producing regions in China. In some less prom-
inent tobacco-producing areas, the division is not apparent
enough.9,10 Descriptive sensory analysis has long been the
primary method for assessing the avor of ue-cured tobacco.
However, it faces limitations, including subjectivity, inter-
evaluator variability, and an inability to provide detailed
chemical insights into avor proles. Descriptive sensory
analysis relies on human perception, which is susceptible to
individual bias, environmental inuences, and fatigue.11–13

Crucially, sensory methods fail to establish direct correlations
between avor attributes and specic chemical compounds,
complicating avor prole optimization and standardization.

Chemometric analysis, a discipline focused on the system-
atic collection, organization, analysis, and interpretation of
data, is widely used in agricultural and food sciences, including
© 2025 The Author(s). Published by the Royal Society of Chemistry
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principal component analysis (PCA), cluster analysis, and
partial least squares discriminant analysis (PLS-DA).14–16 In the
eld of tobacco, Li et al.5 used partial least squares analysis
(PLSA) to analyze the chemical composition of Shandong
tobacco leaves, and identied 29 aroma precursors related to
the sweet and burnt sweetness of Shandong tobacco leaves.
Meng et al.17 applied correlation analysis and PLS to explore the
relationship between tobacco leaf color characteristics and
natural chromatography during baking. Jing et al.18 used GC-MS
pseudotargeted metabolomics, combined with chemometrics,
to examine the relationships between tobacco metabolites and
tobacco leaf geographical location and yield. PCA results
showed that the effect of geographical location on metabolites
was greater than that of yield. Chemometric analysis can
objectively classify tobacco grades, evaluate sensory quality, and
identify varieties, achieving an accuracy of over 90%.19–21

Compared with professional classication, the statistical
model-based classication of stoichiometric analysis takes less
time, effectively reducing costs while ensuring work quality.18,22

Although chemometrics analysis has certain advantages, there
remains a signicant knowledge gap regarding how best to
integrate these methods for ue-cured tobacco avor
classication.

In this study, a chemometrics model for classifying ue-cured
tobacco aroma types was developed to effectively distinguish
them based on quantitative analysis of aroma components. The
tobacco leaves with clear sweet, honey sweet and burnt sweet
alcohol sweet were selected as the research objects. The aroma
components in tobacco leaves were rapidly and quantitatively
analyzed using GC-MS/MS. By combining aroma components
and chemometrics, a model was established to accurately iden-
tify three aroma types in ue-cured tobacco leaves. The estab-
lished discriminantmodel for aroma types can classify ue-cured
tobacco leaves based on the aroma components of unknown
samples. The discriminant model provides essential data to
identify ue-cured tobacco avor types, thereby holding both
practical and theoretical signicance for this classication.
2 Experimental
2.1 Chemicals

All chemicals were used as received without further purica-
tion. Trans-2-hexenoic acid, N,O-bis(trimethylsilyl)
triuoroacetamide (BSTFA), dichloromethane (BCM), and
acetonitrile (ACN) were procured from Ballantine Co., Ltd.
Standards for aroma components were obtained from Aladdin
Reagents Co., Ltd, with purities exceeding 95%. All reagents
used in the study were of chromatographic grade.
2.2 Experimental materials

All tobacco varieties provided by the Gansu tobacco industry
were the Yunyan 87 variety, harvested in 2022, as shown in
Table S1. According to the relationship between origin and
aroma type, these tobacco leaves were classied into aroma
types.23 Samples A1 to C3 serve as the modeling dataset,
whereas samples X1 to X3 constitute the validation dataset.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2.3 Descriptive analysis of ue-cured tobacco

Cigarette sample preparation: Tobacco leaf samples were
moisture-adjusted, de-veined, shredded, and rolled into
uniformly sized sticks using an automatic cigarette rolling
machine (HAUNIBABY D-7300, BGWT, Germany). Prior to
smoke sensory analysis, cigarette samples were equilibrated for
48 h at 25 ± 5 °C and 40 ± 5% relative humidity.24

The sensory analysis was conducted using a descriptive
method, and the panel consisted of seven smoking assessors
with at least 10 years of experience in cigarette sensory evalua-
tion. The evaluation took place in a sensory roommaintained at
18–25 °C and 55–70% relative humidity with good ventilation.
The descriptive analysis indices of the cigarette samples were
evaluated in accordance with the YC/T 530 standard.25

Descriptive analysis indexes included aroma quality, aroma
quantity, diffusivity, satisfaction, saliva production sense,
smoke concentration, offensive taste, irritancy, and aertaste.
Each descriptive analysis index was scored on a 5-point scale,
with higher scores indicating better sensory quality. The
concept of each descriptive analysis index is shown in Table S2.
2.4 GC-MS/MS analysis

The sample analysis was carried out using a TRACE1310–GC
coupled to a TSQ8000E-MS/MS (GC-MS/MS, Thermo Fisher,
USA). In the GC-MS/MS analysis, the liquid injection method
was used, with an injection volume of 1 mL.

GC conditions were as follows: an Hp-5 MS chromatographic
column (60 m × 0.25 mm × 0.25 mm) was used. The carrier gas
was 99.999% pure helium, owing at 1.5 mL min−1. The
temperature gradient program was set as follows, with the
column temperature initially maintained at 60 °C. It was then
ramped to 95 °C at 5 °C min−1 and held for 2.5 min. Subse-
quently, the temperature was increased to 150 °C at a rate of 3 °
C min−1, and held for 1 min. Finally, the temperature was
ramped to 250 °C at 5 °C min−1. A split injection mode was
employed with a split ratio of 3 : 1, and the split ow rate was set
to 5 mL min−1.

The mass spectral conditions included an electron energy of
70 eV and an ion source temperature of 280 °C. The quadrupole
temperature was 280 °C, and the transfer line temperature was
280 °C. The scanning mode was multiple reaction monitoring
(MRM).

Qualitative and quantitative analysis was performed using
ThermoFisher's Chameleon soware. Compound identication
was based on the NIST20 mass spectral library. Quantication
by the internal standard method.26
2.5 Preparation of standard working solutions

The aroma standard was accurately weighed on an analytical
balance (accuracy of ±0.0001 g), dissolved in DCM, and trans-
ferred to a 10 mL volumetric ask. Diluted to the mark with
DCM to prepare a single standard stock solution of aroma
substances. A 100 mL aliquot of each stock solution was
combined in a new 10 mL volumetric ask. This mixture was
diluted to the mark with DCM to prepare the mixed standard
RSC Adv., 2025, 15, 42354–42363 | 42355
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stock solution. Different volumes of the mixed stock solution
and 50 mL of the internal standard (trans-2-hexenoic acid,
12.39 mg mL−1 in DCM) were added to 10 mL volumetric asks.
These solutions were diluted to volume with DCM/ACN (1 : 2, v/
v) to generate a standard working solution. From each standard
working solution, 1 mL was transferred into a chromatographic
vial, followed by the addition of 100 mL of BSTFA. The mixture
was reacted in a water bath at 60 °C for 40 min, cooled to room
temperature, and subjected to GC-MS/MS analysis.27
2.6 Sample preparation

The sample pretreatment was carried out according to the
literature report, and the corresponding modication was
applied.28,29 Each tobacco sample (50 g) was crushed and sieved
through a 0.25 mm aperture. One gram of tobacco powder was
placed into a 50 mL centrifuge tube, and 1.5 mL of pH 3.0 PBS
was added; then the mixture was allowed to stand for 20 min.
Then, 50 mL of the internal standard solution and 10mL of DCM
were added. The mixture was vortexed at 2000 rpm for 20 min to
facilitate extraction, then centrifuged at 6000 rpm for 10 min.
The supernatant was ltered through a 0.45 mm organic phase
lter membrane. Transfer the ltrate into a chromatographic
vial to a volume of 1 mL, then add BSTFA to a volume of 100 mL.
The vial was heated in a water bath at 60 °C for 40min, cooled to
room temperature, and then analyzed by GC-MS/MS.
2.7 Chemometrics analysis

All experimental samples were weighed at least three times, and
each sample was prepared and analyzed independently to
ensure the reliability of the results. Before statistical analysis,

the data were standardized using the formula, z ¼ x� m

s
(x =

original value of the variable, m = the variable's mean, s = the
variable's standard deviation).30 This standardization ensured
Fig. 1 TIC of tobacco aroma components by GC-MS/MS analysis.

42356 | RSC Adv., 2025, 15, 42354–42363
all features operated on comparable scales. Statistical analyses
were performed using Minitab17 soware. In the cluster anal-
ysis, the association method was determined by selecting the
sum of squared deviations. For measuring distances between
clusters, Euclidean distance was chosen. In the principal
component analysis, a correlation coefficient matrix of the
matrix type was employed to assess the relationships among
variables. In the context of discriminant analysis, the discrim-
inant function used a linear model and cross-validation to
assess predictive accuracy.

3 Results and discussion
3.1 Evaluation of the GC-MS/MS method

A novel GC-MS/MS method has been developed for determining
the aroma components in tobacco. Fig. 1 presents the total ion
chromatogram (TIC) prole obtained from the analysis. The
retention times (RT) and corresponding qualitative/quantitative
ion pairs for aroma components are detailed in Table S4. These
ion pairs were carefully selected based on their relative abun-
dance and specicity to ensure reliable identication and
quantication of the target compounds. Method validation
studies demonstrated satisfactory analytical performance
(Table 1). All compounds exhibited excellent linear relation-
ships within specic concentration ranges. The correlation
coefficients (R2) for all compounds surpassed 0.99, indicating
a high degree of linearity and reliability in the method's quan-
titative capabilities. The limit of detection (LOD) was deter-
mined based on a signal-to-noise (S/N) ratio of $3, while the
limit of quantitation (LOQ) was established using an S/N ratio of
$10.31 The low LOD and LOQ values obtained indicate that the
method is highly sensitive and capable of detecting trace levels
of aroma components in complex matrices (Table 1). The
recovery (%) was calculated by the standard addition method.
An analyte of known concentration was added to the tobacco
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Evaluation indexes of 31 aroma components

Flavor composition Standard curve/ng mL−1 R2 Concentration range/ng mL−1 Recovery/% LOD/ng mL−1 LOQ/ng mL−1

2-Methylbutyric acid y = 0.0020x − 0.2281 0.9948 25–500 115.91 6.18 20.59
Pentanoic acid y = 0.0068x − 0.1558 0.999 24–480 108.81 0.66 2.19
Hexyl alcohol y = 0.0211x − 0.1109 0.9969 30–600 82.54 0.69 2.3
Dichromic acid y = 0.0072x − 0.1485 0.9997 18.6–372 97.97 1.27 4.23
Lactic acid y = 0.0031x + 0.6750 0.9996 125–2500 105.66 4.57 15.23
Hexanoic acid y = 0.0014 − 0.0128 0.9974 100–1000 93.02 21.29 70.97
Hydroxyacetic acid y = 0.0011x + 0.0503 0.9995 20.2–404 114.27 0.6 2.00
2-Methyl-2-pentenoic acid y = 0.0007x + 0.0805 0.9986 90–1800 114.91 6.58 21.92
2-Methylcaproic acid y = 0.0033x + 0.0383 0.9994 3–60 111.38 0.41 1.38
3-Hydroxypropionic acid y = 0.0008x − 0.0366 0.9992 10–100 108.2 1.21 4.05
Benzyl alcohol y = 0.0016x + 1.4841 0.9914 46.4–4640 85.41 2.26 7.54
2-Hydroxybutyrolactone y = 0.0003x − 0.0078 0.9995 120–1200 89.58 1.67 5.58
Heptylic acid y = 0.0061x − 0.0747 0.9993 20.4–408 118.39 1.97 6.58
Sorbic acid y = 0.0020x − 0.0917 0.9995 25.8–516 108.31 7.51 25.05
2-Methylheptanoic acid y = 0.0023x − 0.0917 0.9996 22.8–456 108.31 6.64 22.14
Guaiacol y = 0.0142x + 0.0901 0.9996 25.2–504 90.93 0.59 1.97
Phenethyl alcohol y = 0.0014x + 0.2255 0.9977 213–4260 113.58 2.28 7.61
o-Isopropylphenol y = 0.0018x + 0.0345 0.9992 11.6–116 114.47 1.39 4.64
Benzoic acid y = 0.0017x − 0.1046 0.9994 248–2480 118.43 45.67 152.22
3,4-Dimethylphenol y = 0.0016x − 0.0678 0.9996 11.4–114 115.93 2.07 6.91
5-Hydroxymethyl-2(5H)furanone y = 0.0021x − 0.0717 0.9924 50.5–505 111.89 0.32 1.05
4-Hydroxystyrene y = 0.0012x − 0.1532 0.9952 105–1050 117.19 0.33 1.09
2,4, 6-Trimethylphenol y = 0.0025x − 0.1149 0.9996 7.05–112.8 107.1 1.25 4.17
Carvacrol y = 0.0094x − 0.2435 0.9984 14.8–185 91.48 1.37 4.58
n-Nonanoic acid y = 0.0031x − 0.6836 0.9904 60–750 98.97 0.47 1.56
n-Decyl alcohol y = 0.0071x − 0.0321 0.9972 10–100 87.96 0.03 0.1
p-Hydroxy benzaldehyde y = 0.0009x − 0.0387 0.9948 52–832 88.72 1.2 4.00
Capric acid y = 0.0055x − 0.7638 0.9904 18.4–368 91.34 0.27 0.89
4-Oxonaic acid y = 0.0001x − 0.0029 0.9917 60.5–968 84.72 7.41 24.69
Cinnamic acid y = 0.0010x − 0.0260 0.9956 116–1160 87.51 1.29 4.3
4-Hydroxyphenylethanol y = 0.0112x − 0.8419 0.9959 516–6450 89.9 0.46 1.54

Table 2 The content of aroma compounds in 17 flue-cured tobacco
leaves (mg kg−1)
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sample, and then the recovery rate was calculated using the
formula: [(sample spiked with standard-original sample)/spiked
amount] ×100.32 The recovery of different avor components
was shown in Table 1, and the recoveries were in the range of 80
to 120%. These results collectively demonstrate that the devel-
oped GC-MS/MS method has high accuracy and precision,
making it a powerful tool for analyzing aroma components in
various samples.
Sample ID Phenols Others Alcohols Acids Sum

A1 4.6471 8.3683 51.6564 40.7771 105.4488
A2 3.6614 7.9645 37.0100 43.8389 92.4747
A3 4.8141 7.1333 46.4344 52.3358 110.7175
A4 2.7914 5.9239 28.7697 38.8871 76.3720
A5 4.5847 6.5969 44.4501 45.8834 101.5151
A6 3.4205 5.9454 29.4347 38.5491 77.3497
X1 7.8818 13.8674 62.4373 64.8193 149.0058
B1 2.8474 8.9802 26.7068 43.6927 82.2271
B2 4.3019 10.0445 11.5337 44.2407 70.1208
B3 3.3930 12.7480 13.7018 53.5056 83.3484
B4 3.5068 9.7178 33.9845 42.8406 90.0498
B5 4.1275 8.1158 42.9985 56.8090 112.0508
X2 4.7938 12.8534 34.7690 74.8703 127.2865
C1 5.0083 10.8484 44.1083 68.5724 128.5374
C2 4.4713 13.3675 35.3942 75.8308 129.0636
C3 4.3905 10.3242 35.1948 53.4571 103.3666
X3 12.4753 1.8237 31.3839 49.0707 94.7536
3.2 Aroma components in ue-cured tobacco

The extraction conditions for aroma components in tobacco
and the derivatization reaction conditions were optimized, and
the specic details were provided in the supplementary infor-
mation. The determination of these aroma components was
executed under the optimized conditions. Table S5 illustrates
the contents of 31 aroma components identied in ue-cured
tobacco samples from different types of ue-cured tobacco
leaves.

These aroma components were classied by functional
group, and the contents of the tobacco samples are presented in
Table 2. Among them, sample X1 exhibited the highest content
of aroma compounds, with a maximum value of 149.00 mg
kg−1. Specically, sample C2 had the highest content of acidic
compounds, X3 contained the highest levels of phenolic
© 2025 The Author(s). Published by the Royal Society of Chemistry
compounds, and X1 had the highest content of alcohols.
Moreover, X1 contained a notably greater diversity of four other
types of compounds compared to the remaining 16 tobacco
leaves.
RSC Adv., 2025, 15, 42354–42363 | 42357
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Table 3 Contents of chemical components in three aroma types of
flue-cured tobacco leaves (mg kg−1)

Flavor composition
Clear sweet
avor

Honey sweet
avor

Burnt sweet alcohol
sweet avor

Acids 46.4415 52.6598 61.7328
Phenols 4.5430 3.8284 6.5863
Alcohols 42.8846 27.2824 36.5203
Others 7.9714 10.4099 9.0909
Sum 101.8405 94.1805 113.9303

Fig. 2 Pearson correlation analysis between sensory quality and aroma c
sweet flavor style, honey sweet flavor style, and burnt sweet alcohol swe
0.01, and *** indicates p < 0.001, denoting statistically significant correl

42358 | RSC Adv., 2025, 15, 42354–42363
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In the aroma classication of 17 ue-cured tobacco samples,
classications based on geographical origin and the descriptive
analysis by a trained panel showed high consistency (Tables S1
and S3). The samples could be categorized into three aroma
types. The samples A1 to A6 represented a clear, sweet avor
style; samples B1 to B5, a honey-sweet avor style; and samples
C1 to C3, a burnt-sweet, alcohol-sweet avor style. Sample X1
was the clear sweet avor style, sample X2 was the honey sweet
avor style, and sample X3 was the burnt sweet alcohol sweet
avor style. The aroma compounds of the three types of ue-
cured tobacco are shown in Table 3. Among the three types of
ompounds in flue-cured tobacco. Clusters A, B, and C represent clear
et flavor style, respectively. Note: * indicates p < 0.05, ** indicates p <
ations.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Cluster analysis diagram of flue-cured tobacco leaves.

Table 4 Eigenvalue, variance contribution rate, and cumulative vari-
ance contribution rate of PCA

PC Eigenvalue
Variance contribution
rate%

Cumulative variance
contribution rate%

PC1 10.615 34.2 34.2
PC2 7.376 23.8 58.0
PC3 2.913 9.4 67.4
PC4 2.426 7.8 75.3
PC5 2.297 7.4 82.7
PC6 1.577 5.1 87.8
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ue-cured tobacco leaves, burnt sweet alcohol sweet avor
exhibited the highest average content of both acidic and
phenolic compounds. Meanwhile, the clear, sweet avor had
the highest average alcohol content. It was difficult to directly
determine the relationship between the ue-cured tobacco
aroma type and aroma content; multivariate analysis was per-
formed to investigate potential patterns.

3.3 Correlation analysis

To investigate the relationship between aroma components and
aroma types in ue-cured tobacco, Pearson correlation analysis
was employed. The correlation coefficient (r) and the corre-
sponding signicance level (p value) of each aroma type and
volatile compound pair were calculated by binarizing the aroma
type variables.33 When the jrj value is closer to 1, it indicates
a stronger correlation. The results were shown in Table S6; the
clear sweet aroma type showed strong negative correlations with
4-hydroxystyrene, 5-hydroxymethyl-2(5H)-furanone, heptylic
acid, and p-hydroxybenzaldehyde. The honey-sweet aroma type
exhibited strong correlations with 2-methylcaproic acid, 3, 4-
dimethylphenol, phenethyl alcohol, and n-nonanoic acid. Burnt
sweet alcohol sweet aroma type demonstrated strong positive
associations with 4-hydroxystyrene, 5-hydroxymethyl-2(5H)-
furanone, heptylic acid, and benzoic acid.

The relationship between sensory attributes and aroma
compounds in different aroma types of ue-cured tobacco was
studied. Given that p-values are oen hard to reach signicant
levels with small samples, this study focuses on statistically
signicant results (p < 0.05) to ensure the analysis is robust and
credible. The results were presented in Fig. 2, and signicant
correlations emerged between multiple compounds and the
specic sensory attributes. For instance, in clear sweet avor
tobacco, the aroma quality and quantity exhibited negative
correlations with pentanoic and hydroxyacetic acid content. In
honey-sweet avor tobacco, smoke concentration intensity
showed a positive correlation with hydroxyacetic acid content
and a negative correlation with 3-hydroxypropionic acid
content.

3.4 Cluster analysis

Cluster analysis, a statistical method, is used to categorize both
samples and variables into distinct groups.34,35 The aim is to
segment the data into distinct clusters, where samples within
the same cluster are more similar and those in different clusters
are more distinct. Cluster analysis was performed using the
content of 31 aroma components in ue-cured tobacco as the
dataset. The smaller the distance between classes, the greater
the similarity of samples, and the greater the distance between
classes, the better the clustering effect.36

The clustering results were shown in Fig. 3, with the hori-
zontal axis representing the sample number and the vertical
axis representing the distance metric. At a clustering distance of
11.04, the 14 tobacco samples were discernibly grouped into
three distinct clusters. Sub-cluster 1 contained 6 samples with
a clear sweet avor, sub-cluster 2 included 5 samples of honey-
sweet avor tobacco leaves, while 3 samples from burnt, sweet
© 2025 The Author(s). Published by the Royal Society of Chemistry
alcohol sweet avor were grouped into sub-cluster 3. These
results of cluster analysis indicated that the aroma components
of ue-cured tobacco were affected by aroma types, and
different aroma types of ue-cured tobacco may be character-
ized by their aroma components.

3.5 Principal component analysis

PCA is a dimension reduction technique that transforms
multiple variables into several factors, called principal compo-
nents (PCs), which contain most of the information existing in
the original data set.37,38 The PCA analysis of 31 aroma compo-
nents in 14 samples was carried out to obtain the eigenvalue,
contribution rate, and cumulative contribution rate of the
correlation matrix. As shown in Table 4, the cumulative
contribution rate of the rst six PCs was 87.8%, indicating that
these PCs accounted for 87.8% of the information in the orig-
inal dataset. Therefore, the rst six PCs were selected instead of
the 31 original variables for subsequent discriminant analysis.

Both PC1 and PC2 were extracted, accounting for 34.2% and
23.8% of the variance, respectively (Fig. 4). The ue-cured
tobacco samples from different avor types and producing
areas were clearly separated, indicating that their chemical
components can be effectively distinguished.

The factor loadings of the principal components can be
estimated from the correlations between the principal compo-
nent scores and the original data. As shown in Table 5, the
absolute values of the coefficients of variation of compounds
heptanoic acid, 2-methyl-2-pentenoic acid, 4-hydroxystyrene,
RSC Adv., 2025, 15, 42354–42363 | 42359
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Fig. 4 PCA projections of tobacco flavor components.
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and 5-hydroxymethyl-2(5H)-furanone in PC1 were larger, indi-
cating that they contributed more to this component. Similarly,
2-methylhexanoic acid, benzyl alcohol, phenethyl alcohol, and
guaiacol showed higher absolute values of the coefficient of
variation in PC2, indicating a greater impact on PC2.

3.6 Establishment and verication of the discriminant
model

Discriminant analysis is a statistical method that uses the
known classications of a sample set to derive a functional
Table 5 Principal component factor loading matrix

Flavor composition F1 F2

2-Methylbutyric acid 0.4584 0.2287
Pentanoic acid 0.7300 0.4686
Hexyl alcohol 0.6284 0.2192
Dichromic acid −0.2849 0.6009
Lactic acid 0.4073 −0.5436
Hydroxyacetic acid 0.6246 0.3907
Hexanoic acid 0.7190 −0.1675
2-Methyl-2-pentenoic acid 0.9221 −0.0237
2-Methylcaproic acid 0.4611 0.7630
3-Hydroxypropionic acid 0.5646 −0.6056
Benzyl alcohol −0.1864 0.7578
2-Hydroxybutyrolactone 0.5440 −0.3817
Heptylic acid 0.8402 −0.0549
Sorbic acid 0.2085 −0.2974
2-Methylheptanoic acid 0.2340 0.3758
Phenethyl alcohol 0.2790 0.9056
o-Isopropylphenol 0.6134 −0.2986
Guaiacol 0.1925 0.9100
Benzoic acid 0.8021 0.4672
3,4-Dimethylphenol 0.6111 0.7076
4-Hydroxystyrene 0.8820 −0.2316
5-Hydroxymethyl-2(5H)furanone 0.8828 −0.2281
2,4,6-Trimethylphenol −0.2472 −0.5739
Carvacrol −0.2382 −0.5318
n-Nonanoic acid 0.1240 −0.6879
p-Hydroxy benzaldehyde 0.7806 −0.4578
n-Decyl alcohol 0.6872 −0.3563
Capric acid 0.7232 −0.0161
4-Oxonaic acid 0.6909 0.2250
Cinnamic acid 0.5698 −0.1315
4-Hydroxyphenylethanol 0.4488 −0.5147

42360 | RSC Adv., 2025, 15, 42354–42363
relationship that encapsulates them.38,39 To mitigate the impact
of multicollinearity among independent variables on discrimi-
nation results, this study develops a discriminant analysis
model based on PCA. Using the 14 modeling samples as the
training set, the scores of the rst six PCs were utilized as input
variables. The resulting discriminant function was formulated
as follows, and the prediction model for clear sweet avor was
presented below: D(A) = -7.453 − 3.181F1 + 2.894F2 − 1.591F3 +
0.909F4 − 2.188F5 + 2.929F6, the equation gave honey sweet
avor: D(B) = -3.827 + 0.868F1 − 2.442F2 + 0.234F3 − 0.105F4 +
1.563F5 − 1.190F6, burnt sweet alcohol sweet avor was given by
the equation: D(C) = −14.088 + 4.915F1 − 1.718F2 + 2.794F3 −
1.642F4 + 1.771F5 − 3.875F6. The samples were subjected to
both self-verication and cross-validation to assess the model.
The actual categories of the training samples, determined by
descriptive analysis and origin classication, were entered into
the model for analysis. As shown in Table 6, the self-verication
method achieved 100% accuracy. All training set samples were
correctly classied into their respective categories. Cross-
validation achieved an accuracy of 85.7%, calculated based on
the number of correctly classied samples (12 out of 14) divided
by the total number of samples in the testing subset, as detailed
in Table S7.

To rigorously evaluate the discriminant model's accuracy,
three external validation samples were incorporated into the
model. The PC scores were calculated using the corresponding
F3 F4 F5 F6

−0.2638 0.6355 0.2416 −0.3485
−0.2668 −0.0652 0.3355 −0.0111
−0.1307 0.2197 0.4653 0.2337
0.4284 0.0046 0.2379 −0.2569
0.3921 0.2027 −0.2193 0.1679
0.3130 −0.3041 0.2799 0.3636
0.3077 −0.1127 −0.1561 0.4983

−0.0600 0.0548 −0.0268 0.2193
0.1435 −0.0523 −0.3205 0.1111
0.3780 0.1208 −0.3243 0.1947

−0.0674 0.3431 −0.1685 0.1793
0.2232 0.1617 −0.3809 −0.1222
0.1889 −0.3412 0.2189 −0.0986

−0.5019 0.1718 −0.4315 0.3020
0.2529 −0.2554 −0.2490 −0.6200
0.0014 0.2367 −0.0105 0.0964
0.4071 0.4285 −0.0065 −0.1550

−0.0500 0.2781 0.0429 0.0816
−0.1362 0.0570 0.0804 −0.0954
−0.0182 0.0970 −0.1745 0.0042
0.2498 0.0505 −0.1546 −0.2231
0.2496 0.0517 −0.1560 −0.2219
0.3295 0.2448 0.5898 0.0587
0.3831 0.2325 0.6213 0.0702

−0.5739 −0.3019 0.0765 0.0346
−0.2167 −0.1979 −0.0258 −0.0657
−0.4135 −0.1767 0.1352 −0.2848
−0.3099 −0.4980 0.1532 −0.0774
0.3195 −0.3576 0.3473 0.0778

−0.5639 0.3432 0.1823 0.1132
−0.1493 0.5867 0.0308 −0.1646

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 The self-verification results of the training set

Observed value Actual group Prediction group Group Square distance Probability

A1 A A A 6.326 1.000
B 30.803 0.000
C 57.678 0.000

B1 B B A 55.273 0.000
B 7.536 1.000
C 23.575 0.000

A4 A A A 5.818 1.000
B 31.177 0.000
C 89.343 0.000

B2 B B A 42.368 0.000
B 5.491 1.000
C 39.36 0.000

A6 A A A 1.563 1.000
B 42.662 0.000
C 86.127 0.000

A5 A A A 4.246 1.000
B 61.289 0.000
C 90.912 0.000

C3 C C A 62.316 0.000
B 29.707 0.000
C 3.446 1.000

A2 A A A 2.526 1.000
B 48.43 0.000
C 96.112 0.000

B3 B B A 25.268 0.000
B 5.086 1.000
C 42.616 0.000

C1 C C A 82.328 0.000
B 34.583 0.000
C 5.842 1.000

C2 C C A 99.657 0.000
B 40.089 0.000
C 5.952 1.000

A3 A A A 4.106 1.000
B 40.455 0.000
C 62.534 0.000

B5 B B A 53.204 0.000
B 3.763 1.000
C 38.229 0.000

B4 B B A 41.924 0.000
B 4.300 1.000
C 30.962 0.000
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matrix operations and employed as the sample group members
for prediction purposes. The perfect consistency (100% cross-
validation accuracy) between the external sample predictions
Table 7 The results of the validation set

Observed value Actual group Prediction group

X1 A

X2 B

X3 C

© 2025 The Author(s). Published by the Royal Society of Chemistry
(Table 7) and the expert panel evaluations attests to the model's
predictive performance and its promising utility in practical
settings.
Group Square distance Probability

A 14.059 0.631
B 15.131 0.369
C 53.287 0.000
A 38.508 0.000
B 19.016 0.976
C 26.427 0.024
A 46.996 0.000
B 16.752 0.009
C 7.302 0.991
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To address the limitation of a small sample size, we replace
the verication and training sets and adopt a strict external
verication strategy. Group A samples were iteratively elimi-
nated as external sets (A1–A6 excluded iteratively, supplement
X1), group B samples as external sets (iteratively exclude B1–B5,
increase X2), and group C samples (iteratively exclude C1–C3,
supplement X3). For each iteration, the training set is used to re-
PCA; these repeated PCA calculations are shown in Table S8.
The rst six PCs explained >85% of the cumulative variance, so
they were retained to reconstruct the discriminant model.
Subsequently, the model is applied to predict the excluded test
sample categories. As shown in Table S9, while the model
demonstrated strong overall accuracy (85.7%), performance
varied across groups, with Group C showing notably lower
prediction accuracy (33.3%). This limitation is primarily
attributable to the small sample size in class C, which makes
the model sensitive to class imbalance and reduces minority-
class accuracy. While the limited sample size constrained the
model's performance in Group C, this study establishes
a foundational framework. It identies key compounds relevant
to aroma-type discrimination that merit further validation in
larger-scale studies.

4 Conclusion

In this work, a discriminant model for ue-cured tobacco aroma
types was developed based on aroma component analysis.
Following optimization of extraction parameters and method-
ological validation, a GC-MS/MS-based approach was estab-
lished to quantify 31 aroma compounds accurately. The aroma
type of ue-cured tobacco samples was determined by dual
verication of geographical origin and descriptive analysis
using a trained panel. Correlation analysis identied aroma
components associated with tobacco aroma proles and
sensory characteristics. Both cluster analysis and PCA effectively
discriminated distinct avor types of ue-cured tobacco leaves.
Based on PCA results, a discriminant model for ue-cured
tobacco aroma type was constructed. The discriminant anal-
ysis model demonstrated accurate performance across multiple
validation methods. It should be noted that the sample size in
this study, while sufficient for initial model construction, may
limit the generalizability of the ndings. Future work will
prioritize expanding the dataset to include a broader range of
geographical origins and harvest years to enhance the model's
robustness and applicability.
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