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Synthesis of quaternized magnetic chitosan and
adsorption performance for methyl orange from

aqueous solutionf
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Chitosan is considered an excellent carrier material with great potential due to its good biocompatibility,

abundant reserves, and high chemical reactivity. However, chitosan's chemical instability and low

mechanical strength limit its applications. In this study, quaternized magnetic chitosan (QMCS) was

prepared by modifying magnetic chitosan microspheres (MCS) with quaternary ammonium. The

obtained adsorbent was characterized using scanning electron microscopy (SEM), Fourier transform

infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The
effect of pH value and adsorbent dosage on the adsorbent's performance was investigated. The

experimental results indicated that QMCS exhibited superior adsorption performance for methyl orange
(MO) compared to MCS. At 298 K and pH 4, the adsorption capacity of QMCS for a 125 mg L™! methyl
orange (MO) solution reached 486.13 mg g~% with a removal efficiency of 99.38%. The adsorption
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behavior of the adsorbent towards MO was in good agreement with the Langmuir isothermal model and

the quasi-second-order kinetics model. The mechanism of adsorption may be attributed to electrostatic
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1 Introduction

Energy scarcity and environmental pollution represent two
major challenges to human development. Industry's rapid
growth has led to the consumption of most non-renewable
resources. This consumption leads to the emission of various
pollutants, seriously polluting the Earth's limited water
resources. In the field of environmental protection, removing
toxic and harmful chemicals from water has become a crucial
task.'™*

Natural polymer materials such as chitosan, biochar, and
alginates are considered excellent carriers for adsorbing
pollutants in water treatment.*®* Compared with traditional
carriers, natural polymer materials have advantages such as low
cost, low toxicity, excellent biocompatibility, and high
availability.”™* Chitosan is widely recognized as a highly effi-
cient biopolymer, known for its exceptional adsorption
capacity, stability in the presence of metal ions, and strong
attraction to transition metals.””*® Chitosan is derived from
chitin through a deacetylation process. Chitin is a linear amino
polysaccharide that occurs widely in the wings or shells of
arthropods.”” The amine and hydroxyl functional groups in the
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interactions and ion exchange. The synthesis of QMCS was simple, environmentally friendly, and has
significant potential for water pollution treatment.

chitosan molecular structure possess exceptional bioactivity,
enabling it to exhibit remarkable biological functions and the
ability for chemical modification reactions.’**° Due to the
protonation of its amino groups, chitosan tends to dissolve in
acidic solutions, limiting its widespread application in water
treatment. To overcome this limitation, various cross-linking
agents were used to crosslink the amino and hydroxyl groups
on the chitosan chain, thereby enhancing its chemical stability
and versatility.”>** However, due to cross-linking reactions, the
amino and hydroxyl groups on chitosan are partially consumed,
which reduces their adsorption capacity to various harmful
substances.

The modification of chitosan can alter its chemical and
physical properties, enhancing its applicability for water
treatment.”*?® Quaternized chitosan is a novel functional
material with potential applications among chitosan deriva-
tives.”” Grafting quaternary ammonium groups onto chitosan
molecules can increase the positive charge density on the chi-
tosan surface. Quaternized chitosan retains the excellent
adsorption capacity, biocompatibility, and biodegradability of
chitosan, while exhibiting quaternary ammonium salts’ anti-
bacterial and moisturizing properties.”®* This makes chitosan
widely applicable in pharmaceuticals, antibacterial agents,
moisturizers, catalysts, and bi-material carriers.*

Fe;0,4 NPs are a common iron-based magnetic material. It is
widely used in many fields due to its simple preparation, stable
oxidative activity, and easy recovery.**** When combined with

RSC Adv, 2025, 15, 21121-21132 | 21121


http://crossmark.crossref.org/dialog/?doi=10.1039/d5ra02862k&domain=pdf&date_stamp=2025-06-21
http://orcid.org/0000-0003-2916-0481
https://doi.org/10.1039/d5ra02862k
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra02862k
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA015026

Open Access Article. Published on 23 June 2025. Downloaded on 10/31/2025 11:03:32 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

chitosan, they form composite microspheres that possess both
the physicochemical properties of chitosan and the magnetic
responsiveness of Fe;O, NPs. Currently, magnetic chitosan
microspheres have found extensive applications in the fields of
food, medicine, and water treatment.**>® These composite
microspheres are used in protein adsorption and immobiliza-
tion, enzyme purification, organic acid extraction, and removal
of dye molecules and heavy metal ions.>”** The application of
an external magnetic field allows for the rapid separation of
these composite microspheres from the solution, effectively
preventing secondary contamination. After desorption, they can
be reused, which is significant in terms of environmental
protection and cost savings.*®

In this study, the quaternized magnetic chitosan micro-
spheres were prepared as adsorbents, and their adsorption
performance was investigated. The obtained adsorbents were
characterized using SEM, FTIR, XRD, and XPS. The effect of the
synthetic condition on the adsorption performance of the
adsorbent was discussed, and the adsorption kinetics and
isotherm models of the microspheres for methyl orange were
studied.

2 Experimental details
2.1 Materials

Chitosan (CS, with a deacetylation degree of 80.0-95.0%),
glacial acetic acid, liquid paraffin, span-80, glutaraldehyde (GA,
with a concentration of 25%), trisodium citrate, iron(ur) chlo-
ride hexahydrate (FeCl;-6H,0), and anhydrous sodium acetate
were all supplied by China Pharmaceutical Group Chemical
Reagent Co. Ltd. (Shanghai, China). Ethyl acetate (EA, with
a concentration of 99.5%) was purchased from Shanghai
Aladdin Bio-Chem Technology Co. Ltd. (Shanghai, China).
Glycidyl trimethyl ammonium chloride (GTMAC,=95%) was
acquired from Shanghai McLean Biochemical Technology Co.
Ltd. (Shanghai, China). Ethylene glycol, petroleum ether (60-
90), and anhydrous ethanol were purchased from Xilong
Scientific Co. Ltd. (Guangdong, China). Methyl orange (MO) was
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provided by Shanghai Runjie Chemical Reagent Co. Ltd.
(Shanghai, China). All reagents used in the experiments were
analytical grade and used as received.

2.2 Preparation of Fe;0,

Fe;0, nanoparticles were prepared through the following
procedure.** Firstly, 0.46 g of trisodium citrate and 1.08 g of
FeCl;-6H,0 were added to 40 mL of ethylene glycol. The
mixture was stirred continuously at 80 °C for 0.5 h to form
a dispersion solution. Subsequently, 2.4 g of anhydrous sodium
acetate was added to the above solution. The mixed solution
was stirred for 0.5 h at 80 °C and then transferred to a sealed
polytetrafluoroethylene reactor at 200 °C for 12 h. The reactor
was cooled to room temperature. The black precipitate was
collected using a magnetic block and repeatedly rinsed with
deionized water and ethanol. The obtained black powder was
dried at 60 °C in a vacuum for 12 h.

2.3 Preparation of quaternized magnetic chitosan

0.50 g of Chitosan was added to 20 mL of acetic acid solution
(Wt.2%) and stirred to form a uniform solution. Then, the ob-
tained Fe;O, was ultrasonically dispersed in the CS solution.
60 mL of liquid paraffin and an appropriate amount of Span 80
were added to a three-necked flask, stirring the mixture for
0.5 h. Subsequently, the Fe;O,/chitosan solution was intro-
duced into the three-necked flask and heated to 45 °C with
continuous stirring for 1.0 h. An appropriate amount of
glutaraldehyde was slowly introduced into the mixed system,
which was then heated to 60 °C and stirred for 3.0 h. The
magnetic chitosan (MCS) was washed sequentially with anhy-
drous ethanol, petroleum ether, and deionized water several
times, and then dried at 50 °C for 12 h.

A solution was prepared by mixing 1.97 g of GTMAC with
50 mL of deionized water in a flask. Subsequently, 0.46 g of MCS
was introduced into the solution of quaternary ammonium salt,
and the resulting mixture was heated to 80 °C for 8 hours under
stirring. The product was rinsed multiple times with anhydrous
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Scheme 1 Synthesis route of QMCS.
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ethanol and deionized water. Finally, the products were dried at
50 °C for 12 h to obtain quaternized magnetic chitosan (QMCS).
The synthesis route of QMCS was illustrated in Scheme 1.

2.4 Characterization

The scanning electron microscopy (SEM) images were observed
by Zeiss Merlin compact field emission with an accelerating
voltage of 10 kV. Fourier transformed infrared (FT-IR) of CS,
MCS, QMCS, and QMCS-MO was collected with a Nicolet IS 10
(ThermoFisher) with the wavenumber range of 4000 to
500 cm™'. X-ray diffraction (XRD) patterns were determined
using an XRD-6000 X-ray diffractometer (Shimadzu, Japan) with
a CuKa radiation source in the 26 range of 10-90° at a scan
speed of 5°/min. UV-vis absorption spectra were measured
using an L8 spectrophotometer (Shanghai Yidian, China) with
a wavelength range from 200 to 800 nm. X-ray photoelectron
spectra (XPS) were recorded using a PHI5800 X-ray photoelec-
tron spectroscopy analyzer (ULVCA-PHI, USA).

2.5 Adsorption experiments

The adsorption experiments of QMCS with MO were carried out
in 100 mL round-bottom centrifuge tubes. 20 mg of QMCS was
put into 80 mL of the methyl orange solution with 125 mg L.
The centrifuge tubes were placed in an oscillator (150 rpm) at
a preset temperature, and the supernatant of the reaction was
periodically collected. The absorbance was measured using
a UV-visible spectrophotometer at the wavelength of maximum
absorption of MO. The effects of pH (4-10), contact time (1-360
min), and temperature (15, 25, 35 °C) on the adsorption effi-
ciency of MCS and QMCS were systematically investigated. The
pH of the methyl orange solution was adjusted using 0.1 M HCI
and 0.1M NaOH solutions. These data were used to calculate the
adsorbent's adsorption capacity and removal efficiency. More-
over, a series of experiments were conducted to investigate the
effect of pH value and adsorbent dosage on adsorption perfor-
mance, as well as adsorption kinetics and adsorption
isotherms. The relevant formulas and parameters used in these
experiments are provided in Table S1 of the ESL.}

2.6 Regeneration of the sorbent elution

To desorb the adsorbed MO, the adsorbent after adsorption was
immersed in 0.1 M NaOH for 6 h. The adsorbent was collected
with a magnet, rinsed with anhydrous ethanol and deionized
water, then vacuum dried at 60 °C for 6 h. The regenerated
adsorbents were cycled five times under the same adsorption
and desorption conditions. The conditions for the adsorption
experiment were as follows: the initial concentration of MO of
100 mg L™, the initial pH of 5, the adsorption temperature of
298 K, and the adsorption time of 12 h.

3 Results and discussion

3.1 Characterization

3.1.1 SEM. The SEM images of MCS and QMCS are shown
in Fig. 1. It can be observed that the chitosan is a spherical
particle, and its size is about 3-15 pm. The surface of spherical

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

Fig. 1 SEM images of MCS (al, a2) and QMCS (b1, b2).

particles has an irregular shape, and Fe;O, nanoparticles are
uniformly anchored on the surface of MCS, as shown in
Fig. 1(a2).* In Fig. 1(b1-b2), it can be observed that the surface
structure of the QMCS exhibited no significant changes
compared to the MCS. The Fe;O, nanoparticles are still
anchored on both the surface and inside of the microspheres.
The irregular surface of MCS and QMCS microspheres increases
their specific surface area and provides more adsorption sites
for the adsorption of pollutants.*

3.1.2 FTIR analysis. The FT-IR spectra of CS, MCS, QMCS,
and QMCS-MO (QMCS adsorbed with MO) are described in
Fig. 2. The peak at 3433 cm ™ is the stretching vibration of O-H.
The absorption peaks at 2920 cm ™" and 2876 cm ™" belong to the
stretching vibration peaks of the -CH, and -CH; groups. The
absorption peak at 1650 cm™ " is attributed to the stretching
vibration peak of C=0, and the peak at 1150 cm™ " belongs to
the stretching vibration peaks of C-O-C. The absorption peak at
1598 cm ! belongs to the bending vibration of the N-H of the
amide group, and the peak at 1318 cm ™ in the CS belongs to
the stretching and bending vibration of C-N and N-H of the
amide group. The absorption peak at 1560 cm™" of MCS was
attributed to the formation of an imine bond resulting from the
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QMCS : ; it
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Fig. 2 FT-IR spectra of CS, MCS, QMCS, and QMCS-MO.
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Fig. 3 The XRD patterns of FezO,4, MCS, and QMCS.
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nucleophilic addition reaction between glutaraldehyde and the
amide groups.?® The intensity of absorption peaks at 1560 cm ™
and 1318 cm ! exhibited a decrease, which can be attributed to
the depletion of the amide groups during the crosslinking
reaction.

For QMCS, the absorption peak at 1560 cm™ ' can be
observed to disappear, which is attributed to the quaternary
ammonium salt grafted onto the chitosan molecule chain. A
new absorption peak appears at 1488 cm™ ', attributed to the
C-H bending vibration in the quaternary ammonium salt.** The
peak of the amide group in QMCS at 1318 cm™ ' showed
a significant weakening. The changes indicated that GTMAC
has successfully grafted onto MCS through the amide groups.
For QMCS-MO, the peak at 1488 cm ™" exhibited a considerable
decrease. The absorption peaks at 1605 cm™ ' and 1025 cm ™'
correspond to the stretching vibration of N=N and the
stretching vibration of S=0, respectively.*” This indicated that

—— QMCS-M
() - QMCS-MO
—— QMCS
c. ——MCS
S Clyy Ny S|
! L-._A_“_Il
- Acnn
= |
& !
el ]
z ‘
4 . f—-_A-_JWk o
2 T
= l
ol 1
o .
1 " 1 1 1 . L
0 200 400 600 800 1000 1200
Binding Energy (eV)
b 286.1 eV 284.6 eV 399.6 eV
(b) oN _C-HIC-C © ... 0=C-N
2879eV ¥ - N(CHy);"
C-0/C=0 ../
QMCS-MO QMCSMO 4 X
286.1 eV T 2846eV 399.6 eV
< CQI‘ . C-HICC 2 i : 0=C-N
. < : + ] 3y
:;% 287.9¢V 3 5 -N(CHy);
= C-0/C=0 L 2 \
g \ g W,
2 N5 -] QMCS / \
= |omes : S bt X
284.6 ¢V ‘3‘12 e;
286.1 eV “ CGHICC 402.2 eV .
g C-N=C
288.6 eV C-§
C-0/C=0 \ .
MCS Thay, ,,
292 290 288 286 284 282 280 408 406 404 402 400 398 396 394
Binding Energy (eV) Binding Energy (¢V)

Fig.4 The full-scale XPS of MCS, QMCS, and QMCS-MO (a), high-resolution XPS spectra of C 1s (b) and N 1s (c) for MCS, QMCS, and QMCS-MO.
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the quaternary ammonium salt in QMCS participated in the
adsorption process.

3.1.3 XRD. The XRD pattern of Fe;O, was recorded in
Fig. 3. The peaks at 18.42°, 30.14°, 35.58°, 37.14°, 43.26°, 53.64°,
57.10°, and 62.74° corresponded to the (111), (220), (311), (222),
(400), (422), (511), and (440) crystal planes of Fe;0, (JCPDS card
no. 19-0629), respectively.** XRD pattern of MCS confirmed the
presence of Fe;0, which indicated that the Fe;0, mixed well
with chitosan during the preparation of MCS. The peaks of
QMCS at 30.28°, 35.58°, 42.96°, 53.72°, 57.12°, and 62.6° sug-
gested that quaternary ammonium modification of MCS does
not affect the structure of Fe;0,.

3.1.4 XPS. X-ray photoelectron spectroscopy (XPS) was used
to examine the surface chemical state and elemental composi-
tion of the samples. Fig. 4(a) shows the elemental composition
of MCS, QMCS, and QMCS-MO, including S, Cl, C, N, and O.
Comparing the XPS full spectra of MCS and QMCS, the N peak
in QMCS showed a significant increase compared to that in
MCS. Additionally, a new Cl peak appeared at 198.1 eV, indi-
cating the successful composite formation of GTMAC with MCS.
Comparing the XPS full spectra of QMCS and QMCS-MO, it can
be observed that the adsorption of MO led to a significant
decrease in the Cl peak at 198.1 eV in QMCS, accompanied by
the emergence of the S peak at 168.1 eV. This indicates that an
exchange occurred between the Cl™ ions of the quaternary
ammonium salt and the -SO;~ of MO during the adsorption
process of MO by QMCS.

Fig. 4(b) represents the C 1s spectra for MCS, QMCS, and
QMCS-MO. The high-resolution spectra of C 1s in MCS show
three peaks located at 284.6 eV, 286.1 eV, and 288.6 €V, repre-
senting the C-H and C-C, C-N, and C-O/C=0, respectively.’* In
QMCS, a significant enhancement was observed in the C-N
peak at 286.1 eV, and the peak of C-O/C=O shifted from
288.6 eV to 287.9 eV. For QMCS-MO, the peaks at 284.6 eV,
286.1 eV, and 287.9 eV remained unshifted, suggesting that the
C-H, C-C, C-N, and C-O/C=0 in QMCS did not undergo any
reactions during the adsorption process of MO. Fig. 5(c)
displays the N 1s spectra for MCS, QMCS, and QMCS-MO. The
high-resolution spectra of the N 1s in MCS show two peaks at
399.6 eV and 402.2 eV, representing the O=C-N and C-N=C."
A slight shift of the N 1s peak to 402.6 eV was observed in QMCS,
which can be attributed to the introduction of -N(CH;)** during
the grafting process. For QMCS-MO, a shift in the peak of the
quaternary ammonium group was observed from 402.8 eV to
402.5 eV, indicating the involvement of the quaternary ammo-
nium group in the adsorption reaction of MO by QMCS.

3.2 Adsorption performance

3.2.1 Effect of pH. The pH value of the solution has
a significant effect on the adsorption capacity of the adsorbent.
The effect of pH value on the adsorption capacity of MCS and
QMCS is illustrated in Fig. 5. When the pH value gradually
increases from 4 to 10, the adsorption capacity gradually
decreases. At an initial pH value of 4, the maximum adsorption
capacities of MCS and QMCS were observed to be 431.49 mg g™ "
and 486.13 mg g, respectively. The amino groups of chitosan

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.5 Effect of solution pH on adsorption capacity of MCS and QMCS.

undergo protonation, forming -NH;" groups in acidic condi-
tions. This enhances the electrostatic adsorption of sulfonic
acid groups present in methyl orange with MCS. As a result,
with an increase in pH value, the adsorption efficiency of MCS
for methyl orange decreased.”” Therefore, as the pH decreases,
the electrostatic repulsion between the positive charges on the
QMCS surface and the cations of methyl orange weakens the
adsorption effect. As the solution pH increases, the protonation
of amino groups decreases gradually, and simultaneously, OH ™
competes with MO for adsorption sites on MCS through ion
exchange. Consequently, with the increase of the pH value, the
adsorption performance of MCS for methyl orange gradually
decreases.

Quaternization modification introduces positively charged
-N(CH;);" groups on the surface of chitosan through the intro-
duction of quaternary ammonium. This modification resulted
in chitosan microspheres retaining more surface positive
charges at higher pH values than their unmodified counter-
parts. Consequently, the quaternization modification enhanced
the adsorption capacity of chitosan microspheres for anionic
dyes at higher pH values.*® Furthermore, with the decrease in
pH, the adsorption capacity of QMCS for MO also increased,
indicating the presence of unmodified amide groups on QMCS.
Under acidic conditions, these groups undergo protonation,
enhancing the electrostatic adsorption capability of QMCS for
MO. QMCS exhibits excellent adsorption performance under all
test conditions, indicating its significant potential for applica-
tion in capturing anionic dyes in aqueous solutions.

3.2.2 Effect of adsorbent dosage. To understand the inter-
action between MO in the solution and the adsorption sites of
QMCS, it is necessary to determine the optimal dosage of the
adsorbent.”” The effect of the QMCS dosage on the MO's
adsorption capacity and removal rate is illustrated in Fig. 6. It
was evident that, with an increase in dosage, there was
a substantial improvement in the removal efficiency of MO.
With the increase of QMCS dosage from 0.125 g L' to 0.375 g
L', the removal efficiency for MO was significantly enhanced.
Subsequently, when the QMCS dosage increased from 0.375 to

RSC Adv, 2025, 15, 21121-21132 | 21125


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra02862k

Open Access Article. Published on 23 June 2025. Downloaded on 10/31/2025 11:03:32 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

450 110
%\ ___b——1) {100
400 | '}\ /
! 490
T 80 g
—~ | T 9
2L 350 - * =
) =
g 0 B
S =2
E
0
300 2| 460 &
150
—s— Adsorption capacity
250 —o—Removal rate 40
4 40
L L L L
0.1 0.2 0.3 0.4 0.5

Dosage of adsorbent(g/L)

Fig. 6 Effect of the dosage of QMCS on the adsorption of MO.

0.5 g L™, the removal efficiency reached a plateau. However, as
the adsorbent dosage increases, the adsorption capacity of
QMCS decreases. This is because as the dosage of adsorbent
increases, the available adsorption sites also increase, leading
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Fig. 7
kinetic model, and (d) particle diffusion model.
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to an improvement in removal efficiency. As the adsorbent
absorbs all the methyl orange, the number of unoccupied active
adsorption sites will increase. As a result, the adsorption
capacity decreases gradually with an increase in the adsorbent
dosage.*®

3.3 Adsorption kinetic models

Fig. 7(a) illustrates the adsorption kinetics of QMCS for MO at
different concentrations. With the increase of adsorption time,
the adsorption capacity of QMCS continuously rises. During the
initial 30 minutes, QMCS exhibited a relatively fast adsorption
rate for MO. As the adsorption time increased, the adsorption
rate gradually slowed down. As the adsorption time increased
from 30 to 120 minutes, the adsorption rate of QMCS towards
MO gradually decreased, while the adsorption capacity slowly
increased. When the adsorption time exceeds 120 minutes, the
QMCS exhibits minimal variation in the adsorption rate of MO,
suggesting that the system has attained adsorption equilibrium
and the adsorption capacity has stabilized. The results sug-
gested that during the initial stages of adsorption, the surface of
QMCS microspheres presented a substantial number of active
adsorption sites that effectively bound with methyl orange.
However, with the extension of the adsorption time, these
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(a) Adsorption kinetics curve of MO by QMCS at different concentrations, (b) pseudo-first-order kinetic model, (c) pseudo-second-order
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adsorption sites gradually became saturated, resulting in
a gradual decrease in the adsorption rate. After 120 minutes of
adsorption, the equilibrium state was reached. The equilibrium
adsorption capacity of QMCS in MO solutions with concentra-
tions of 50, 100, and 150 mg L ™" was 200.63 mg g~ ', 386.48 mg
¢!, and 455.34 mg g~ !, respectively.

The kinetic data were analyzed using a quasi-first-order
kinetic model, a quasi-second-order kinetic model, and an
intraparticle diffusion kinetic model to provide an interpreta-
tion. The fitting results are shown in Fig. 7 (b-d) and Tables S1
and S2.1 The analysis results indicate that the quasi-second-
order kinetic equation is more suitable for the adsorption
process of methyl orange by QMCS. In addition, the adsorption
capacity obtained from adsorption experiments is closely
related to the equilibrium adsorption capacity calculated
through fitting. This indicates that the adsorption of QMCS for
methyl orange followed a chemical adsorption process, sug-
gesting the existence of interactions such as ion exchange and
chelation reactions between QMCS and methyl orange.*

Based on the analysis of Fig. 7(d) and Table S2,} it can be
observed that the fitting line of the particle diffusion model for
the adsorption kinetics data exhibits a two-stage division. This
suggests that the adsorption process followed multiple stages
and was not solely influenced by the adsorption rate. The fitting

View Article Online

RSC Advances

lines for both the first and second stages were linear and did not
pass through the origin, suggesting that the adsorption of MO
on QMCS, in addition to intra-particle diffusion, was also
influenced by the boundary layer effect. This suggests that with
the increase in the initial concentration of MO, the diffusion
performance within the particles is enhanced. Furthermore, as
the initial concentration of MO increased and the diffusion
boundary layer concentration also increased, it indicated that
the boundary layer effect strengthened gradually with the rising
dye concentration.*® As most adsorption sites for MO on QMCS
were occupied, the MO already adsorbed on QMCS hindered the
diffusion of the remaining MO, making it difficult to further
adsorb substances with higher concentrations.

3.4 Adsorption equilibrium isotherm

Fig. 8(a) represents the isothermal adsorption curves of QMCS
at 288 K, 298 K, and 308 K. As the concentration of MO
increased from 50 mg L' to 120 mg L', the adsorption
capacity of QMCS for MO gradually increased. When the MO
concentration reached 130 mg L™, the adsorption capacity of
the adsorbent approached saturation. Additionally, as the
concentration increases from 130 mg L™" to 200 mg L™, the
adsorption capacity does not show significant changes. QMCS
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Fig. 8
and (d) Temkin isotherm model fitting curve.
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(a) Isothermal adsorption curve of MO by QMCS, (b) Freundlich isotherm model fitting curve, (c) Langmuir isotherm model fitting curve,
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exhibited enhanced adsorption performance for MO as the
temperature rose from 288 K to 298 K. This is due to the
acceleration of molecular motion under higher temperatures,
thereby enhancing the adsorption capacity of QMCS. However,
with a further increase in temperature from 298 K to 308 K,
a decline in the adsorption performance was observed. This
suggests that as temperature increases, the desorption rate of
MO from QMCS exceeds the adsorption rate, resulting in
a decline in adsorption efficiency.

The isothermal adsorption data were fitted to the Freundlich
isotherm model, the Langmuir isotherm model, and the Tem-
kin isotherm model. The fitting curves and detailed data are
presented in Fig. 8 (b-d) and Table S3.1 The R® value of the
Langmuir isotherm model is higher than that of the Freundlich
and Temkin isotherm models. This indicates that the adsorp-
tion of MO by QMCS can be better explained by the Langmuir
isotherm model, suggesting that the adsorption process for MO
by QMCS is primarily monolayer adsorption.”* Through calcu-
lations, the maximum adsorption capacities of QMCS for MO at
288 K, 298 K, and 308 K were 392.16 mg g ', 440.53 mg g ', and
352.11 mg g ', respectively.

3.5 Mechanism of adsorption

From the FT-IR spectrum of QMCS adsorbing MO, the absorp-
tion peak of the quaternary ammonium groups at 1488 ¢cm ™"
exhibited a significant decrease. The absorption peaks corre-
sponding to the N=N and S=O0 bonds within the MO molecule
appeared at 1605 cm™ " and 1025 cm ™, respectively. It indicates
that during the adsorption process, quaternary ammonium
groups participate in the adsorption reaction. XPS full-spectrum
analysis reveals that the CI peak of QMCS at 198.1 eV shows
a significant decrease after conducting MO adsorption experi-
ments. Moreover, an S peak is observed at 186.1 eV, indicating
an ion exchange reaction between Cl~ in the quaternary
ammonium salt and -SO;~ in MO during the adsorption
process. In the N 1s energy spectrum of QMCS and QMCS-MO,
the binding energy peak of N(CH;);" in QMCS-MO is observed
to shift from its original position of 402.8 eV to 402.5 eV. This
indicates that the quaternary ammonium group has a signifi-
cant effect on the adsorption of MO, suggesting its involvement
in the adsorption reaction.

In the adsorption experiments with varying pH, the adsorp-
tion performance of QMCS on MO initially exhibited an
increasing trend, followed by a decrease as the pH increased.
This indicates the presence of unreacted amide groups on
QMCS microspheres, which undergo ammonium protonation
in acidic conditions, thereby enhancing the adsorption capacity
of QMCS for MO. By analyzing the adsorption kinetic curves at
different MO concentrations, it was observed that the adsorp-
tion of QMCS on MO conforms more closely to a pseudo-
second-order kinetic model. This suggests that the interaction
between QMCS and MO involves a chemical adsorption process.

Based on the preceding analysis, the adsorption mechanism
of QMCS on MO is illustrated in Fig. 9. In aqueous solution, MO
dissociates into Na® ions and molecules with -SO;". In the

aqueous environment, quaternary ammonium = groups
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Fig. 9 Adsorption mechanism.

(‘N(CH3);') on QMCS and some protonated amide groups
(-NH;") play a crucial role in capturing MO through electrostatic
interactions and ion exchange.***

3.6 Regeneration

The regenerative performance of the materials is an important
factor in determining their actual applicability. The regenera-
tion process of QMCS for MO was carried out using 0.1M NaOH
as the eluent. Fig. 10 shows the removal efficiency of QMCS
throughout 5 cycles. With the increase of the cycle number, the
adsorption capacity of QMCS to MO gradually decreases. This
was attributed to the utilization of NaOH solution, which dis-
placed MO adsorbed on QMCS via an ion exchange mechanism
involving OH™. However, MO remained on QMCS through van
der Waals forces and hydrogen bonding.” When adsorbed
samples are regenerated using NaOH, a fraction of MO mole-
cules may remain adsorbed due to stronger interactions, occu-
pying active sites on the QMCS surface. With repeated cycling,
the cumulative occupation of these adsorption sites results in
a progressive reduction in removal efficiency. After 5 cycles, the
removal efficiency of QMCS for MO was 67.46%, indicating that
QMCS has good stability and regeneration performance.
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Removal efficiency (%)

20

Fig. 10 Removal efficiency of QMCS in 5 cycles.
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Table 1 The maximum adsorption capacities of different adsorbents for MO

Maximum adsorption

Adsorbent Dosage pH capacity (mg g7) References
Chitosan bead-like materials 70 mg per 100 mL 5-6 14.29 53
Chitosan-modified biochar 200 mg per 50 mL 3 38.75 54
Chitosan graft poly(acrylic acid)/graphite oxide/attapulgite 20 mg per 10 mL 3 186.5 55
Chemically crosslinked chitosan microspheres 30 mg per 60 mL 7 207 56
Guanidinium chitosan containing dicyclohexyl groups 50 mg 3 274 57
Chitosan/p-cyclodextrin 10 mg per 50 mL 5 392 58
Quaternized magnetic chitosan(QMCS) 20 mg per 80 mL 4 486.13 This work
The maximum adsorption capacity for MO is also compared ACknOWledgementS

with other reported adsorbents as summarized in Table 1. The
QMCS exhibited excellent adsorption capacity (486.13 mg g~ )
even with a low adsorbent loading (20 mg per 80 mL).

4 Conclusion

Using emulsion cross-linking, quaternary ammonium salt
modification resulted in quaternized magnetic chitosan
microspheres. Compared to the unmodified adsorbent, the
modified chitosan microspheres exhibited significantly
enhanced adsorption capacity for MO. Adsorption kinetics and
isotherm studies revealed that the adsorption of MO onto the
modified chitosan followed a homogeneous monolayer chem-
ical adsorption mechanism. In the adsorption experiment of
MO on QMCS, electrostatic interaction and ion exchange play
a significant role. These results demonstrate that the modified
chitosan is an excellent adsorbent with outstanding adsorption
performance for anionic dyes even under higher pH conditions
and efficient reusability, providing a strong basis for practical
applications.
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