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In recent years, the demand for improved health management has become increasingly higher; however,
the existing medical resources have made it difficult to meet this demand. The field of health
management is in urgent need for self-help monitoring equipment, intelligent identification technology
and personalized medical services. This article reviews the application of flexible materials in health
management, particularly the application of flexible wearable sensing devices combined with machine
learning technology in various medical scenarios, and classifies them into several types of applications
such as health monitoring and prevention, disease diagnosis and treatment, rehabilitation treatment and
assistance. Flexible materials can be used to fabricate or integrate various types of high-sensitivity
sensors with the characteristics of high flexibility and self-adhesion, resulting in a wealth of health
monitoring equipment. These devices can self-monitor various physiological indicators in various parts
of the human body. The integration of machine learning (ML) makes it possible to analyze and identify
subtle, massive, multi-channel and multi-modal sensor data, accelerating the intelligent process of
health management and personalized medicine. This paper not only elaborates on various flexible
materials and ML algorithms commonly used in the field of health management, but also focuses on
discussing the application of ML-assisted flexible materials in different stages of health management, and
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1 Introduction

Currently, amidst the advancements in social productivity and
medical standards, individuals have placed increasing
emphasis on physical health, fostering an urgent demand for
health management. Traditional manual monitoring, diag-
nosis, and auxiliary methods have fallen short in meeting this
escalating need. Consequently, the construction of an autono-
mous and intelligent health management system has become
imperative. The harmonious integration of flexible materials
and sensing technologies has spawned a myriad of intelligent
home health monitoring devices, such as smart blood pressure
monitors and glucometers capable of remote connectivity and
surveillance as well as smart bracelets and watches that
continuously track vital physiological indicators such as the
heart rate and blood oxygen saturation."™ Wearable health
monitoring devices, characterized by their real-time capabilities
and comfort, are highly practical for the general population,
particularly the elderly, ensuring effective disease management
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major changes in the field of health management.

while enhancing their overall well-being.® Furthermore, the
continuous advancements in microprocessor technology, wire-
less communication, and artificial intelligence have facilitated
the integration of wearable devices with ML techniques, thereby
broadening the horizons of health management research and
offering new avenues for scientific inquiry.*”

In recent years, wearable health monitoring systems
primarily composed of flexible materials such as gels, textiles,
and plastics have garnered significant attention.*** Traditional
rigid materials based on metals are often dense and heavy,
limiting their applicability in fields requiring lightweight
designs.” Their high stiffness also compromises comfort and
fails to establish seamless contact with the skin, leading to air
gaps that introduce motion artifacts that can distort or disrupt
the accurate capture of physiological or biological signals.
Conversely, flexible materials typically exhibit superior stretch-
ability and mechanical strength, which enable them to conform
to human skin and accommodate movement.*** Through
judicious material selection or design, these devices can further
enhance sensing capabilities or drug delivery functions, cater-
ing to diverse scenarios like daily exercise and adjuvant therapy,
embodying multifunctionality and integration.”””** Addition-
ally, flexible materials facilitate ease of processing, satisfying
the portability requirements of home health monitoring devices

© 2025 The Author(s). Published by the Royal Society of Chemistry
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while offering users a more comfortable and convenient
experience.

The application of ML algorithms in healthcare has attracted
considerable interest. ML algorithms can leverage physiological
parameters and behavioral data collected by wearable devices to
predict individuals' health status and disease risks, thereby
assisting physicians in devising personalized treatment plans.
This approach not only empowers individuals to self-manage
their health but also provides doctors with more precise and
comprehensive diagnostic insights.>*** ML algorithm helps
identify data collected by wearable devices, and it greatly
improves the recognition accuracy of motion states.”” This
includes steps, duration and intensity, as well as specific
activities such as running, swimming, cycling, and even indi-
vidual exercise patterns, which significantly improve the intel-
ligence of family health monitoring.”*** Above all, ML
algorithms enable the maximization of the use of flexible
sensors in people's daily lives, thereby further propelling the
advancement and application of flexible sensing technologies
in a scholarly and technological context.

However, the current relevant reviews mainly focused on
a single monitoring project or lacked systematic discussions on
the combination of machine learning techniques and applica-
tions. This study aims to provide a comprehensive review of the
application of ML-assisted flexible material devices in health
management. To summarize the current progress in this field,
we first categorize and introduce existing flexible materials.
Subsequently, we investigated the mechanisms of various ML
algorithms employed for signal data processing, thereby high-
lighting the strengths, limitations, and suitable scenarios of
different models. Lastly, we focus on classifying and discussing
relevant research on the application of ML-assisted flexible
sensors in health management, encompassing daily healthcare,
disease treatment, nursing rehabilitation, and assistance for
individuals with disabilities. In summary, this paper offers
a clear overview of the technological innovations and theoretical
frameworks of flexible materials assisted by ML in the current
health management landscape, providing a forward-looking
perspective and reference for intelligent development trends
in health management.

2 Flexible materials

Flexible materials are characterized by high extensibility,
sensitivity, and self-adhesiveness and play a critical role in
wearable electronics and electronic skin. Owing to their diver-
sity, these materials exhibit distinct properties and are suitable
for application However, achieving
a comprehensive yet non-redundant classification of such
complex and versatile materials poses significant challenges.
Based on extensive research and the integration of ML tech-
niques in intelligent health management, we categorized flex-
ible materials into four main types: gel-based materials, textile-
based materials, plastic-based materials, and others.

various scenarios.
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2.1 Gel material

The gel material is a three-dimensional porous polymer
network formed by physical or chemical crosslinking of
hydrophilic polymer molecules with immiscible polymer
molecules and solvents.*** It can be divided into hydrogels,
organogels, ionic liquid gels and eutectogels according to the
different solvents.

Gel materials containing different solvents have completely
different properties. Hydrogel materials with unique three-
dimensional mesh structures have high water content and
similar structures to natural soft tissues, which has an advan-
tage in the biomedical field,*® Moreover, a large number of
hydrophilic groups enable them to show good biocompati-
bility,>*** and thus be widely used in the field of intelligent
medical treatment. However, hydrophilic groups can also cause
certain limitations in hydrogel materials. For example, hydro-
gels cannot resist water loss and freezing at low temperatures.*
To increase the scope of application of the gel material, the
researchers found that a new gel material can be formed by
adding a certain amount of binary solvent to the hydrogel, that
is, the organogel with organic liquid as the main solvent.*” Due
to the addition of binary solvents, the cross-linking density of
hydrogen bonds between organic compounds and water mole-
cules increases, which effectively hinders the formation of ice
crystals and reduces the evaporation of water to a certain extent
to achieve the effect of low-temperature anti-freezing.’® Never-
theless, the use of organic solvents also has drawbacks, such as
poor biocompatibility and the same problems with ionic liquid
gels.** An ionic liquid gel is a gel material with a designable
structure that is confined to a three-dimensional crosslinked
network by chemical or physical means.*” Because it is mainly
composed of two parts of ionic liquid and polymer, it also has
the advantages of high chemical and thermal stability of ionic
liquid.** In addition, ionic liquid gels have good mechanical
strength and self-healing properties,*>** which can be widely
used in the field of flexible sensing. However, ionic liquids have
a series of problems such as expensive, poor biocompatibility
and complicated follow-up treatment.** Therefore, eutectogels
containing green deep eutectic solvents composed of HBD and
HBA have become the focus of researchers recently.***¢ This
device not only combines the advantages of the high conduc-
tivity of an ionic liquid and a wide electrochemical operation
window but also has the advantages of non-toxic, low cost and
easy to operate. This effectively compensates for the limitations
of hydrogels and ionic liquid gels.*” With the progress of
biomaterial technology, an increasing number of gel species
have been discovered and applied in intelligent detection
combined with ML (Fig. 1A).**-*

2.2 Textile materials

Textile materials include filaments, fibers, and yarns, which can
be made into a series of textiles by weaving, felting, bonding,
tufting and other methods. According to different sources,
textile materials can be divided into natural textile materials
and synthetic textile materials, which are important parts of
flexible materials.
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Fig. 1 Sensing devices based on different flexible materials are applied in the field of health management combined with ML. (A) Gel-based
gesture recognition system. This figure has been reproduced from ref. 51 with permission from ACS publication, copyright 2023; (B) textile-based
human monitoring and identification systems. This figure has been reproduced from ref. 52 with permission from Elsevier publication, copyright
2024; (C) TPU-based sensor for monitoring the full range of human motion. This figure has been reproduced from ref. 53 with permission from
ACS publication, copyright 2021. (D) Metal-doped graphene sensors for lung cancer diagnosis. This figure has been reproduced from ref. 54 with

permission from Elsevier publication, copyright 2024.

Textile materials have the general properties of flexible
materials such as stretchability. Wearable sensing devices made
of textile materials can be woven into gloves and antennas of
various shapes with porous structures (nonwoven fabrics),>
which have good air permeability.>® To realize flexible elec-
tronics better, people usually use electrospinning, chemical
vapor deposition, and solution methods to prepare textile
materials with the expected properties. For example, PVDF can
be transformed into conductive nanofibers with high piezo-
electric properties through electrospinning technology.®” At the
same time, to expand the application range of wearable textile-
sensing equipment, the prepared textiles are generally multi-
layered structures to ensure high performance and functional
diversification. For example, SWCNTs powder, isopropyl
alcohol, and water mixed solution sprayed on cotton fabric
made of triboelectric layer, super hydrophobic textile material
made of waterproof layer and other prepared multi-layer
structure textiles have high sensitivity, high electrical conduc-
tivity, excellent waterproof and sweat resistance.”® With the
support of ML, wearable textile-sensing devices made of textile
materials are often used in the field of human-machine inter-
faces, such as health monitoring and human identification
(Fig. 1B).*

2.3 Plastic materials

Plastic materials are organic polymer materials synthesized
with resin as their main component. They can be divided into
thermosetting plastics and thermoplastic plastics based on the

22388 | RSC Adv, 2025, 15, 22386-22410

different heat changes of the resin. Various plastic materials,
including TPU, PLA, PI, and PVC are widely used in the field of
flexible electronics.

As a common flexible substrate, TPU exhibits good flexibility,
chemical stability, and high electrical conductivity which can be
obtained by doping with conductive fillers such as carbon or
NMC.” PLA is a polyester synthesized from lactic acid as a raw
material.®® The properties of PLA can be combined with wear-
able technology, biocompatibility and biodegradability. PLA
films prepared by low-temperature solvent dissolution spin-
coating technology also exhibit good stability.®* PI exhibits
good flexibility and mechanical properties, and high thermal
conductivity can be obtained when mixed with 1D or 2D fillers
(AgNW and BN).** PVC is a widely used polymer with low cost,
good recyclability, and good electrical and corrosion resis-
tance.® By modifying PVC through a series of reactions such as
nucleophilic substitution, it can be made more flexible and
diversified based on its unchanged inherent properties.®* There
are many examples of plastic materials, which have the general
properties of flexible materials, such as flexibility and vari-
ability, present outstanding advantages in a certain perfor-
mance (such as electrical conductivity, and thermal
conductivity), and have rich research value. Wearable sensing
devices based on flexible plastics combined with ML can be
widely used in the field of intelligent monitoring of human
movements, such as blinking, smiling, and joint bending
(Fig. 1C).*

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.4 Others

In addition to the aforementioned three typical flexible mate-
rials, we further elaborate on other flexible materials to
complement the discussion. Widely used in intelligent health
management, these additional materials encompass carbon-
based flexible materials, inorganic semiconductor materials,
printable materials, and certain composite materials with
unique characteristics.

The most common carbon-based flexible materials are CNT
and GN, both of which are ideal materials for making soft
electronics. CNTs are 1D quantum materials, often prepared by
dry or solution methods. CNT is often combined with NMC,
silicone and other materials, showing excellent mechanical and
electrical properties and high sensitivity.**®” GN is a single-
atom-thick material arranged in a 2D hexagonal lattice,*
prepared by “top-down” or “bottom-up” methods. GO has rich
functional groups, adjustable structures and properties and can
achieve simultaneous multimodal detection.®® Inorganic semi-
conductor material is a kind of material with special electronic
properties. Different inorganic semiconductor materials have
unique properties. For example, ZnO and ZnS have high
piezoelectric properties, resulting in wearable sensing devices
and electrodes with high sensitivity.””* Ag,S-based flexible
materials have good flexibility, and wearable sensing devices
can withstand various shape changes.” Printable materials are
defined as those capable of being processed and shaped via
advanced printing technologies, such as 3D printing, inkjet
printing, and screen printing.”»”* These materials, including
resins, metals, ceramics, and others, demonstrate superior
stretchability and processability. Wearable sensing devices
fabricated from printable materials can collect health-related
data in real time; when integrated with ML, these devices
enable early disease detection and personalized health
management strategies.”” Composite functional materials
exhibit diverse properties derived from multiple material types,
offering broader applications in health management. For
example, polydimethylsiloxane (PDMS) combines the process-
ability of plastics with the elasticity of gels, allowing for the
creation of complex structures suitable for wearable health
monitoring through specialized manufacturing techniques.”
Thermoplastic elastomers (TPE) integrate the plasticity of
plastics, the flexibility of gels, and excellent biocompatibility.
When combined with ML, TPE-based materials can be used to
develop smart bracelets, health-monitoring patches, and other
innovative devices, further advancing their application in
health management.”

There are many kinds of flexible materials with properties
such as flexibility, conductivity and variability. Various wearable
sensing devices, such as electronic textiles,”® gloves™ and
wristbands® are prepared based on flexible materials to collect
sensor data, such as pulse and gesture signals and perform data
analysis combined with ML technology to realize efficient
prediction, early warning, diagnosis and assistance in the field
of health management (Fig. 1D).*”7>® These flexible materials
were fused with different components to fabricate health

© 2025 The Author(s). Published by the Royal Society of Chemistry
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monitoring equipment. The applications of ML algorithms in
the field of health management are summarized in Table 1.

3 Mechanism and evaluation of ML
models

ML is an artificial intelligence technology that enables
computers to automatically improve their performance by
learning from data without the need for explicit programming
instructions. By building and training models, ML algorithms
can discover patterns and rules in the data, which allows them
to make predictions and classifications on new data. This
technology is widely applied across various fields, including
image recognition, speech recognition, natural language pro-
cessing, recommendation systems, medical diagnosis, and
financial analysis, where it enhances efficiency and accuracy,
addresses complex problems, and provides personalized
solutions.">'*3

Traditional disease prediction and diagnosis rely on doctors’
experience and limited data, whereas ML improves accuracy by
uncovering complex patterns in vast medical data. ML models
can analyze sensor data, medical imaging, and pathological
information to predict disease risk and assist in accurate
diagnoses, reducing misdiagnosis. For example, IBM Watson
and Google DeepMind have successfully used ML for detecting
conditions like glomerulosclerosis, diabetic retinopathy, and
age-related macular degeneration, highlighting its significant
applications in health management."***** Commonly used ML
algorithms and model evaluation indicators in the field of
health management are summarized below.

3.1 ML algorithms

3.1.1 Regression class model. Linear regression predicts
the value of the dependent variable by fitting a straight line (or
hyperplane) to minimize the difference between predicted and
actual values. Logistic regression is a widely used classification
algorithm that is primarily designed for classification tasks,
especially binary classification. It works by establishing
a logistic function (typically a sigmoid function or other simple
linear functions) to map the output of a linear regression model
to the (0,1) interval, thereby providing a probability for classi-
fication. In simple terms, data points are distributed across two
distinct regions, representing two categories of outcomes.
Logistic regression fits a curve to separate these data points,
allowing it to predict which category new data belongs to.

In the medical and health domains, both linear and logistic
regression models are frequently used to validate correlations
between two or more features. For instance, Agier et al. used
linear regression to explore how various social and environ-
mental exposure factors impact health."* Linear regression
solves the model parameters using the least squares method,
which involves finding a set of parameters that minimizes the
loss function. Linear regression assumes a linear relationship
between independent and dependent variables. If the actual
relationship is nonlinear, the predictive performance of linear
regression may be compromised. In health-related fields,

RSC Adv, 2025, 15, 22386-22410 | 22389
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Table 1 Components, monitoring signals, ML algorithms and applications of various flexible materials
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Material Component Signal (monitoring site) ML algorithm Application field
Gel NaCl/PVA Pressure (neck) CNN Driving fatigue, safety and health
materials monitoring®"
PVA/PEI/CaCl, Pulse wave signal (wrist) LDA Disease diagnosis™®
PDMS/PR/PAAmM pH (body) Linear Disease diagnosis®
regression
Catechol/Chitosan/ Tremor (hand) SVM/KNN Disease diagnosis®?
Diatom
Ecoflex/Silicone Sound (chest/back) CNN Disease diagnosis®
HACC-PAM pH (wound) CNN Disease treatment®”
2el@PANI/Cu,O NPs Voltage (wound) ANN Disease treatment®®
PAM/SA/TG Deformation (finger flexion signals) CNN Finger rehabilitation training®*
NaCl/TA/PAM EMG and FMG (arm) MNN Finger rehabilitation training®”
MXene/HA-PBA/TA  EMG (right arm) CNN Sign language recognition®®
PAM/DAS/Gly Deformation (five fingers) ANN Sign language recognition®
P(AA-co-AM)/ Deformation (five fingers and wrist) ANN Sign language recognition®
MXene@PDADMAC
Textile ~ PTFE/PA TES (back) Logistic Sitting posture recognition and
materials regression/DT/ early warning®'
RF
EPE/EVA Pressure (hip) KNN; SVM; DT Sitting posture recognition and
early warning®”
TPU/WPU/DMF/ Pressure and temperature (hip) LDA Prevention and rehabilitation of
[Bmim][BE,] pres-sure injuries”?
Nitrile/Silicone Pressure (feet) CNN Disease diagnosis®*
rubber/Polyester
copper
Ecoflex/Ag Pressure (finger) Linear Finger rehabilitation training®
regression
PVDF/PPy/ Pressure (finger, elbow, knee and arterial pulse) SVM Disease diagnosis®”
Cs,AgBiBrg
PDMS/FEP/CNTs/Al  Pressure (wrist) FFNN Blood pressure monitoring®®
Ag/PE Pressure (elbows and knees) SVM Gait recognition and
rehabilitation®
TPU/PES/Ni/Ecoflex Pressure (heel and toe) ANN Gait recognition®®
Plastic ~ PET/GS ECG (chest), GSR (palm) DT Fatigue monitoring®”
materials PI/Cu/Polystyrene/  ECG (chest) CNN Disease diagnosis®®
Ecoflex
PDMS/PI EMG (human body) “ Disease diagnosis®®
PI/MPN/PI Pressure (wrist) “ Disease diagnosis'®
Ecoflex/PDMS/PI/Cu ECG/SCG/PPG (sternum) FFNN/CNN/  Disease diagnosis'®*
KNN/SVM/
TCNN
Ecoflex/PI Sound (sternum) CNN Disease diagnosis'*>
PMMA/PI/AgNPs EOG/VOG (eye) KNN/SVM Disease treatment'®®
Others  Ecoflex/silbione gel ECG (chest) CNN Health monitoring and movement
recognition'®*
PES Pressure (hip) RF Sitting posture recognition and
early warning'®
GO/SA/Au Pressure (wrist; hand) PCA Pulse monitoring®
PVDF/ZnO/PDMS/Cu Pressure (wrist; throat) “ Pulse and vocal cord vibration
detect-ion”*
CNT/Silicone/BA Pressure (lung; heart) Linear Disease diagnosis®”
regression
CB/PDMS Pressure (hand) KNN/SVM/ Disease treatment%°
LSTM/DT
PVA/DHBS Temperature/pH/trimethylamine/uric acid/moisture (wound) NN Disease treatment'®”
AuNP/SWCNT Electrical signal LDA Drug identification®®
Au-ZnS NPs Electrical signal Linear Drug identification”®
regression
Ag,S Pressure (finger) “ Gesture recognition””
BTO/SU-8 Pressure (feet) CNN Gait recognition'®®
PDMS Pressure (left/right biceps brachii, left/right triceps brachii, PCA/DT/KNN/ Detection and recognition of muscle

left/right tibialis anterior and left/right gastrocnemius)

22390 | RSC Adv, 2025, 15, 22386-22410

Gaussian NB

force in rehabilitation training®
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Material Component Signal (monitoring site)

ML algorithm Application field

MoS,/HEC/PU Pressure (neck)
CNT/PDMS Pressure (sensor array)
LIG/PDMS/FEP Pressure (robot finger)

SVM Silent speech recognition'®®
SVM Braille reading recognition'°
CNN Braille reading recognition"’

¢ Indicates that the name of the specific ML algorithm is not mentioned in the cited reference.

primary applications include disease screening when clear
patterns exist.

Logistic regression, due to its simplicity and strong inter-
pretability, is widely used in disease risk assessment. By
analyzing clinical data, lifestyle habits, and other patient
information, logistic regression can be used to build disease
risk assessment models, assisting doctors in evaluating
a patient's risk of developing a disease.'*****

3.1.2 DT and RF. DT can be simply explained as follows:
imagine a tree where each branch represents a question or
decision point, such as “Is this feature value greater than
a certain number?” Based on the answer, the data is split into
different paths, eventually reaching the tree's leaf nodes, where
a classification or prediction is made (Fig. 2A). An RF, on the
other hand, is a collection of many DTs. Each tree indepen-
dently makes predictions, and the RF combines these predic-
tions by “voting” or averaging the results to produce the final
prediction. The proposed method is more robust than a single
decision tree because it can better handle complex and diverse
data (Fig. 2B).

Mechanistically, a DT structure mimics human thought
processes by making decisions through a series of “if-then”
rules. An RF is an ensemble of multiple trees where errors made
by individual trees do not significantly impact the overall
prediction, making it highly effective for dealing with noisy
data. This robustness shows that RF is well-suited for handling
data with many dimensions and features because it does not
rely on a single sample set and exhibits excellent noise resis-
tance. For example, Song et al. leveraged these characteristics to
develop an intelligent surface ML gesture recognition system for
health management,"*” and Zhang et al. utilized the RF's strong
noise resistance to create a health monitoring system based on
blood pressure data.'*

3.1.3 SVM. In a two-dimensional coordinate system, the
goal of SVM is to find an optimal separating hyperplane that
clearly distinguishes between two classes of data points. Unlike
conventional classification methods, SVM not only seeks
a boundary that separates the data but also maximizes the
margin between this boundary and the nearest data points,
known as support vectors to enhance the model's generalization
capability (Fig. 2C). This margin maximization process allows
SVM to perform exceptionally well in handling high-
dimensional data, particularly in classification tasks where
robustness is crucial, This makes it one of the most commonly
used classification methods in ML.

© 2025 The Author(s). Published by the Royal Society of Chemistry

SVM has been widely applied to disease classification and
diagnosis. By learning from the clinical biomarkers and
imaging data, the proposed SVM can construct effective classi-
fication models that can assist doctors in diagnosing diseases.
For example, in cancer diagnosis, SVM can analyze gene
expression data and imaging features of patients to achieve
accurate classification and early diagnosis of various cancer
types. In addition, SVM can be used for the prediction and risk
assessment of chronic diseases, such as cardiovascular diseases
and diabetes. For example, Shen et al. used an improved SVM
(OFSSVM) to improve genome-based cancer prediction by
balancing interpretability and accuracy,"™* whereas Wang et al.
used an extended SVM (WT-SVM) to advance eye movement
signal classification and healthcare applications.'® The
improved PSVM method proposed by K. Drosou et al. effectively
addresses the challenge of imbalanced medical datasets. These
advancements highlight the adaptability of SVM for managing
imbalanced data and its significance in medical classification
tasks.™*

3.1.4 KNN and K-means. The KNN makes predictions
based on information about the K “neighbors” closest to the test
sample in the training set. In the classification task, the cate-
gory mark that appears most among the K “neighbors” is often
selected as the prediction result, and in the regression task, the
average value of the K “neighbors” is generally used as the
prediction result. The KNN model is a lazy learner, meaning it
does not create a model in advance; rather, it makes decisions
based on the data at the moment. It works well for smaller
datasets and is simple to understand; however, it can be slow
with large datasets because it requires comparing each new data
point to all existing ones (Fig. 2D)."*

K-Means, on the other hand, is like organizing a party in
which guests are grouped into different circles based on simi-
larities. The proposed method divides data into K distinct
clusters and minimizes variance in each cluster. The K-means
model is an eager learner, meaning that it actively creates
a model (clusters) by iteratively refining the cluster centers. It is
efficient on large datasets but may struggle to find the optimal
number of clusters or handle irregularly shaped clusters. This
kind of algorithm is often used to classify existing data with or
without labels which is suitable for the classification and
identification of health and sub-health status in the field of
health management.**®

3.1.5 ANN, CNN, RNN and LSTM models. The algorithm
based on neural networks has a very important application in
the field of health management. The ANN can be visualized as

RSC Adv, 2025, 15, 22386-22410 | 22391


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra02594j

Open Access Article. Published on 30 June 2025. Downloaded on 1/20/2026 9:37:02 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

>1

'Y .

<X) 5X)

4

Feature 2@ @ A AO“'P‘“
v
O ANIAN

Feature 1

r

Decision Boundary Nonlinear
with Margins Separable Data
' N > ,&;:‘x"

r—=—=——"""7""""7"%7Q

T

Hidden Layers

—

/ & 4 \ 7

Inputrl;ayers Oulpﬂ Laycrs

—— e —
v

S e W Mg o

View Article Online

Review

L Input_

p 1
[ Treel } [ Tree2 | [[Tree3 |

|

|

|

| L

I goe goe €00
|

|

|

eJele! YeXe! oY Yolole

-1
|
I
|
|
|
|
|
|
|
|
I
I
I
|
|
|

|
: I
I I
I |
I ! \ I
. €2 b
I '.‘ v\\ . \!/A ('r ’: :
I ‘\\ \ R ! l/’ I
1 e K A 1
[ ~._ A " K n
| K A |
i |
F Py Pl I
: Saygr ) \ OO / \ Ol ) ‘«‘Oi v, |
e | <~
1 ¢ ] I
1§ &0 -0)-A)-@) |
| '§ — I x X I
1 1L 1L
I =0 T=I T=1 |

Fig. 2 ML algorithm mechanism diagram. (A) Schematic of DT. (B) Schematic of RF. (C) SVM model diagram including linear and nonlinear
models. (D) Schematic of KNN; (E) schematic of an ANN. (F) Schematic of RNN.

a multilayer connection graph, where each node represents
a neuron and each line represents the connections between
neurons. Each node represents a specific output function called
an activation function and the connections between each node
represent a weight. The input data are transmitted through
these connections, processed at each node and finally reach the
output layer to generate prediction or classification results.
Typically, the input layer neurons receive the external input, and
the hidden and output layer neurons process the signal. The
final result is the output by the output layer neurons (Fig. 2E).
This structure, similar to the nervous system of the human
brain, enables learning and memory by adjusting the “weights”
of these connections.

DL can be considered a more complex and deeper neural
network with no less than 2 hidden layers. Each layer acts as
a feature extractor, progressively extracting simple patterns
(such as edges or colors) into more complex patterns (like
objects or scenes). Through deep layer-by-layer calculation, DL
models can automatically discover and learn complex struc-
tures in data, thereby demonstrating powerful learning and
recognition capabilities. CNN, RNN and LSTM are DL

22392 | RSC Adv, 2025, 15, 22386-22410

algorithms commonly used in data analysis in the field of
health management.

A CNN is a type of DL model specifically designed for image
processing. Each layer in the CNN is like a filter (convolutional
kernel) that scans the input image to extract local features. Each
filter focuses on different image details (such as edges, corners,
or textures), and these details are gradually aggregated to form
an understanding of the entire image. The structure of a CNN
makes it particularly strong and efficient for handling visual
data. A CNN is commonly used for further data processing in
health management, especially in medical imaging and signal
processing. Complex sensor identification problems such as
biometrics, baby care, and wound status detection can be easily
solved by such algorithms."”*%°

For applications in which data exhibit temporal dependen-
cies, both RNN and LSTM offer significant potential. RNN can
be visualized as a cyclic chain, where each node acts as a link in
the chain. The input data flows through this chain like a signal,
with each node not only receiving the current input but also
passing on the “memory” from the previous node. This memory
is propagated through the network via cyclic connections,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Advantages, drawbacks and applications of common algorithms
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Algorithm

Advantage

Drawback

Health management applications

Linear regression

Logistic regression

DT

RF

SVM

KNN

K-Means

ANN

CNN

RNN

LSTM

Simple and easy to implement,
suitable for scenarios where there is
a linear relationship between data
features

Strong interpretability, suitable for
binary classification problems,
widely used in disease risk
assessment

Easy to understand and interpret,
simulating human decision-making
processes, suitable for handling
noisy data

By integrating multiple DTs, it
enhances the ability to handle
complex and noisy data

Performs well in high-dimensional
spaces, suitable for classification
tasks, especially in disease
classification and diagnosis

KNN algorithm is highly intuitive,
performing classification or
regression prediction by finding the
K nearest neighbors to the test
sample

K-Means is a suitable algorithm for
large datasets, simple and easy to
understand and implement,
improving clustering efficiency
through iterative optimization of
cluster centers

Capable of automatically
discovering complex structures in
data, with strong learning and
recognition capabilities
Particularly adept at handling
spatial data such as images, capable
of extracting local features, widely
applicable

Can capture temporal dependencies
in sequential data, suitable for
handling time series tasks

Effectively retains information over
long sequences, suitable for
handling long-term dependency
data

Unable to handle nonlinear data; if
the actual relationship is nonlinear,
the predictive performance may be

limited

Performs poorly in scenarios where
features are non-linearly separable

Prone to overfitting with a single
decision tree, leading to poor
generalization performance

The computational cost is relatively
high, and the training time is
lengthy, especially when the
number of decision trees is large
High computational complexity for
large datasets, and sensitive to noise

As the dataset grows, KNN requires
calculating the distance between
each new sample and all training
samples, leading to rapidly
increasing computational and
storage demands, resulting in low
efficiency

K-means requires specifying the
number of clusters (K) in advance,
but determining the optimal K value
is often difficult in practical
applications. The choice of initial
cluster centers can affect the final
clustering result, potentially leading
to a local optimum

It requires a large amount of data
for training with high
computational costs and is difficult
to interpret

Complex, high time and resource
consumption, the generalization
ability decreases when the training
data is small, with weak
performance on non-spatial data
sets

As sequence length increases, early
input information is easily forgotten

More complex in structure
compared to traditional RNNs, with
higher computational demands

© 2025 The Author(s). Published by the Royal Society of Chemistry

Disease diagnosis®”*>

Finger rehabilitation training®
Drug identification”®

Sitting posture recognition and
early warning®*
Precise drug delivery"*®

Fatigue monitoring®”

Sitting posture recognition and
early warning®"%*

Recognition of muscle force®
Disease diagnosis'®®

Sitting posture recognition and
early warning®"'*

Precise drug delivery'?*'*°

Gait recognition®>'*!

Sitting posture recognition and
early warning®”

Silent speech recognition%’
Braille reading recognition*®
Disease diagnosis®”%%*%!
Disease treatment
Sitting posture recognition and
early warning®”

Recognition of muscle force®
Disease diagnosis®*'°!

Disease treatment

103,106

103,106

Health and sub-health state
prediction*®

Sign language recognition®°°

Gait recognition®®
Disease treatment®®

Driving fatigue, safety and health
monitoring®

Gait recognition'%®

Health monitoring and movement
recognition'®*

Finger rehabilitation training®
Sign language recognition®®
Braille reading recognition'!
Disease diagrlosis84,94,98,10l,1()2
Disease treatment®

Fall prediction in the elderly
Speech pathology detection'**
Electronic medical record
recognition®**13

Electronic medical record
information extraction"*®
Prediction of athlete health
status™’

Disease diagnosis
Disease treatment
Dementia prevalence prediction'*®
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which allows the RNN to capture temporal correlations in
sequential data. However, as the chain length increases, the
information from earlier inputs tends to become blurred or
forgotten (Fig. 2F). RNNS can be used for fall prediction in the
elderly,"* speech pathology detection," electronic medical
record recognition****** and information extraction.

STM can be considered a short-chain within the RNN,
capable of retaining information over a short period. LSTM can
be viewed as an enhanced version of the RNN chain, where each
node is equipped with “memory cells” and “control gates”.
These memory cells store important information, whereas
control gates (gate mechanisms) determine which information
should be retained or discarded. The memory cells in each node
are regulated by these gates and can maintain critical long-term
dependency information. As a result, even when the chain
length is long, LSTM can effectively transmit information from
earlier inputs. The proposed architecture allows LSTM to
handle more complex and extended sequential data tasks.
LSTM has the advantage of processing time series; thus, it can
be used to predict the prevalence of dementia,’*® diabetes,"”
cardiovascular health trajectory,’*® and athlete health status'®
based on previous health record data and regional statistical
data.

135
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The above ML algorithms have various range of applications
in data analysis in the field of health management. The
advantages and disadvantages of these algorithms in use and
the application scenarios are presented in Table 2.

3.2 Model evaluation

The model evaluation is a critical step to ensure that the ML
model performs well. Below are detailed explanations of some
commonly used evaluation metrics in the classification task,
which apply to different types of ML models.

3.2.1 Accuracy. Accuracy (formula (1)) is the most intuitive
performance metric, measuring the proportion of correctly
predicted samples to the total number of samples. While
accuracy is a quick way to assess model performance, it may not
be a good indicator when dealing with imbalanced data. In
cases in which the model predicts only the majority class, it may
still exhibit high accuracy.

TP + TN

Al =
CCUTASY = TP F TN + FP + FN

(1)

TP (True Positive): positive samples correctly predicted by the
model. TN (True Negative): negative samples correctly predicted
by the model. FP (False Positive): negative samples incorrectly
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Fig.3 Healthcare management of the flexible materials in different scenes. (A) Motion recognition. This figure has been reproduced from ref. 143
with permission from ACS publication, copyright 2017; (B) sitting position recognition. This figure has been reproduced from ref. 105 with
permission from Elsevier publication, copyright 2021; (C) gait recognition. This figure has been reproduced from ref. 108 with permission from
Elsevier publication, copyright 2023; (D) fatigue identification and early warning. This figure has been reproduced from ref. 81 with permission

from Elsevier publication, copyright 2023.
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predicted as positive. FN (False Negative): positive samples
incorrectly predicted as negative.

3.2.2 Recall. Recall (formula (2)) measures the proportion
of actual positive samples that the model correctly identifies as
positive. It is particularly important in applications sensitive to
missed detections, such as medical diagnosis and fraud detec-
tion, where missing a true positive case can have serious
consequences.

TP

Recall = —
= TPFEN

(2)

3.2.3 Precision. Precision (formula (3)) measures the
proportion of correctly predicted positive samples out of all
samples predicted as positive by the model. It is crucial in
scenarios where false positives carry significant costs, such as
when falsely diagnosing a person with a disease can lead to
expensive or harmful medical interventions.

TP
Precisi = —
recision = 5 TEP (3)

3.2.4 F, score. The F; score (formula (4)) is the harmonic
mean of precision and recall. This metric considers both
precision and recall and is useful in situations where both need
to be balanced, especially when one cannot afford to prioritize
the other.

Fo_ 2 x Precision x Recall )
"™ " Precision + Recall

3.2.5 AUC-ROC curve. AUC (Area Under the Curve) repre-
sents the area under the ROC (Receiver Operating Character-
istic) curve. The ROC curve is a graphical tool used to illustrate
the performance of a model for different threshold settings. The
X-axis represents the False Positive Rate (FPR), which is calcu-
lated as FP/(FP + TN), while the Y-axis represents the True
Positive Rate (TPR), which is the same as Recall. A higher AUC
value generally indicates better model performance, and this
metric is widely used to evaluate binary classification models.

3.2.6 Model-specific evaluation methods. For models like
Support Vector Machines (SVM), the choice of kernel functions
and parameter tuning are crucial for evaluating performance.
Different kernel functions can significantly affect the classifi-
cation boundaries, and tuning hyperparameters (such as C and
gamma) directly affect the model's complexity and tendency to
overfit.

For DL models (such as CNN, RNN, and LSTM), monitoring
the loss function is essential because it reflects the model's
performance during training. Observing overfitting and
comparing the validation loss to the training loss provides key
insights into the need to adjust the model architecture and
parameters. The following substances describe the application
of ML-assisted flexible materials in the intelligent process of
health management.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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4 Applications

Flexible materials have been widely used as highly ductile
substrates. Researchers have designed or modified these
materials to give them favorable properties, such as good
biocompatibility and high adhesion, enabling their application
in the fabrication of wearable sensing devices for health
management. The integration of ML technology has further
facilitated the intelligentization of health management
processes, including personal healthcare, medical treatment,
and rehabilitation nursing. This section categorizes and
discusses these processes in detail.

4.1 Healthcare management, physiological status
monitoring and early warning system

4.1.1 Healthcare management. Healthcare involves effec-
tive measures aimed at maintaining and enhancing individual
physical and mental well-being. Healthcare management
employs a range of methods and technologies to preserve and
elevate an individual's overall health status and significantly
improve their quality of life. The continuous advancement and
synergy between flexible materials and ML technologies have
revolutionized the monitoring and evaluation of daily exercise
routines, fostering intelligent and personalized healthcare
management. On the one hand, owing to their flexible charac-
teristics, they can conform seamlessly to detection sites, greatly
enhancing the comfort and adaptability of wearable devices. On
the other hand, through big data analysis and algorithm opti-
mization, ML can tailor training plans to an individual's phys-
ical conditions, exercise habits, and health goals.***

Wearable sensors based on flexible materials enable real-
time monitoring of various exercise types and intensities,
helping users in assessing their health status. As shown in
Fig. 3A, these sensors can be incorporated into textiles, artificial
skin, and other wearable devices to monitor ongoing activities
like jumping, push-ups, squatting, walking and running.'** The
sensors detect body movements, such as knee and elbow joint
bending, through changes in resistance or optical loss caused
by strain, thereby achieving human motion tracking.'*?23143-148
Additionally, with the improvement of the sensitivity of the
flexible sensor, some of the subtle data indirectly related to
movement, such as pulse rate and mouth and abdominal
breathing patterns, can be accurately detected, which not only
helps fine-tune movement monitoring but also assists in the
monitoring of patients with diseases such as heart disease and
asthma.*'*® In summary, these real-time feedback mecha-
nisms enable individuals to adjust their exercise pace and
intensity promptly, ensuring safe and effective workouts, and
thereby achieving the goals of healthcare management.

Furthermore, research has extended the applicability of
flexible materials to underwater motion monitoring. The core
lies in the incorporation of hydrophobic materials like PDMS'*
and stearic acid-modified polydopamine/reduced GO."® For
instance, Ren et al. developed an underwater strain sensor
based on ionically conductive hydrogels using [2-(meth-
acryloyloxy) ethyl]dimethyl-(3-sulfopropyl) ammonium
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hydroxide, which not only boasts excellent sensing properties
for identifying underwater activities like breaststroke but also
exhibits robust anti-swelling and self-recovery properties suit-
able for long-term underwater monitoring. Such studies hold
immense potential for identifying potentially dangerous situa-
tions like improper underwater postures or drowning.***-*>*

Moreover, ML technology enables the classification of
multiple exercise types in real time and the efficient processing
of vast amounts of motion data.’®® For example, N. Rodeheaver
et al. leveraged an ML technology algorithm based on residual
CNN in a soft bioelectronic system to mitigate motion artifacts
and achieve real-time activity recognition and classification
with an overall accuracy of up to 99.3% and promptly uploaded
valid exercise data to smartphones for health status assess-
ment.'* In conclusion, sensors based on flexible materials can
recognize motion in most scenarios, providing users with rele-
vant exercise data for healthcare management. Integration with
ML technologies significantly enhances the usability of motion
recognition technology, which promotes its application in
healthcare management.

4.1.2 Physiological status monitoring and early warning
system. Physiological status monitoring and early warning
represent a systematic approach that comprehensively assesses
and provides early alerts for an individual's health condition.
The core of this approach lies in the continuous monitoring of
physiological states and the early detection of potential health
risks, such as low back pain arising from prolonged improper

-
i F
E Intelligent Disease ,j :
Diagnosis System
: } “’))Transmlssmn A

H — (3 M. | @Pulse

: () Diagnosis @ Algorlthmlc " signals

Evaluation of
atures ) sgorithm /|, patient’s condition

Time (s) 10

Fig. 4

View Article Online

Review
sitting postures'® or the likelihood of falls. The integration of
ML technologies enables intelligent, timely interventions and
prevention, thereby providing individuals with more precise
and personalized health management strategies.

In contemporary times, the ubiquitous use of smart devices
like computers and mobile phones, along with online work and
study lifestyles, has fostered sedentary habits among most
people. Incorrect sitting postures or extended sedentary periods
can readily lead to sub-optimal health conditions, including
obesity, musculoskeletal disorders, and metabolic health
risks.’*® To address these risks, Zhang et al. used thermoplastic
polyurethane  and  1-butyl-3-methylimidazolium  tetra-
fluoroborate ionic liquid as raw materials for wet spinning to
fabricate a smart cushion with dual-modality sensing capabil-
ities for temperature and strain. Furthermore, they developed
an IMS that visualizes pressure and temperature distribution
images, coupled with an LDA prediction model, achieving
a recognition accuracy of 99.65% for five different sitting
postures.”> Numerous similar studies have harnessed various
ML models, including KNN, RF, LR, and NB, to enable sensors
to identify sitting postures with high accuracy, promptly issuing
prompts or alerts.”'**"%® As depicted in Fig. 3B, Ran et al
designed a portable sitting posture monitoring system based on
a flexible polyester substrate, utilizing an RF algorithm with an
11 x 13 sensor array, achieving a classification accuracy of
96.26% for sitting postures and reminding users to correct their
posture through vibration feedback.'*
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Intelligent diagnosis and treatment of diseases in different contexts. (A) Intelligent pulse diagnostic system. This figure has been

reproduced from ref. 100 with permission from ACS publication, copyright 2023. (B) Tremor sensor assessment of Parkinson's disease. This figure
has been reproduced from ref. 83 with permission from Elsevier publication copyright 2021. (C) Walking pattern recognition of patients with
Parkinson's disease. This figure has been reproduced from ref. 166 with permission from ACS publication, copyright 2019. (D) Individualized
management of wounds. This figure has been reproduced from ref. 85 with permission from Elsevier publication, copyright 2022. (E) Wound
identification at different stages. This figure has been reproduced from ref. 86 with permission from ACS publication, copyright 2022. (F) Pre-
dicted structure and optimized hydrogel properties. This figure has been reproduced from ref. 167 with permission from ACS publication,
copyright 2020.
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Walking is a ubiquitous daily activity, and gait recognition
research can contribute to the prevention of abnormal gait
patterns, such as splayfoot and flatfoot."*® As shown in Fig. 3C,
Beigh et al. employed a self-powered pressure sensor based on
a flexible hybrid transduction BTO/SU-8 nanocomposite and
integrated it into sensor insoles for gait recognition. Combined
with CNN, they developed a hindfoot deformity recognition
system with an accuracy rate exceeding 98%, indicating signif-
icant potential for assisting athletes, the elderly, and others in
the early detection of knee and ankle abnormalities.'® In
addition, abnormal gait patterns can be precursors to falls in
children and the elderly.”* The current research primarily
focused on capturing real-time data on normal walking and
identifying falls through abnormal signals.®* ML algorithms like
SVM can classify walking states (e.g., slow/fast walking, turning,
and reversing) to predict potential falls based on the wearer's
movement patterns.*®®

Fatigue can significantly reduce work efficiency, impair
health, and even threaten life safety, particularly for professions
requiring prolonged, intense concentration and mental exer-
tion, such as drivers and surgeons. Researchers have designed
flexible sensors in the form of neckbands to recognize neck
movements, combined with ECG, respiratory rate, and GSR
signals, ML models were used to predict mental fatigue levels.*”
Luo et al. created an intelligent neckband primarily composed
of NaCl/PVA hydrogel, leveraging its flexibility, stretchability,
self-healing properties, and NaCl's strong conductivity and
sensing sensitivity for long-term wear and fine motion recog-
nition. As shown in Fig. 3D, when a driver (wearer) engages in
distracting activities like chatting, the ML model analyzes the
electrical signal data to make judgments and alerts the wearer
with different colored lights.®*

In physiological status monitoring and early warning
systems, the combination of flexible sensors and ML technol-
ogies can be tailored to specific professions and domains,
including pressure injury rehabilitation for wheelchair users
and real-time monitoring for excavator operators, catering to
the needs of unique groups in real-life scenarios.”>** Currently,
the integration of flexible sensors and ML technologies into
comprehensive health assessment systems is highly demanded
and essential, promising significant development prospects.

4.2 Disease diagnosis and treatment

Disease diagnosis, treatment and drug development and design
are the core of monitoring the health status of patients, devel-
oping reasonable medical plans and improving quality of life.
Most current technologies rely on large equipment and doctors,
which may cause radiation threats or damage the impact on the
human body. The risks associated with continuous medical
treatment and off-target drug use are all difficulties we are
facing now. The technology integrating ML algorithm and
flexible materials can effectively improve these conditions and
realize targeted quantitative, scientific and non-invasive intel-
ligent diagnosis and medical treatment.

4.2.1 Disease diagnosis. Diseases of the nervous system,
circulatory system,'®® respiratory system'®® and other systemic
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diseases affect the organs and systems of the human body and
pose a serious threat to people's physical and mental health.
Many of these diseases have been studied and sensors made of
flexible materials enable real-time monitoring. Using ML tech-
niques to analyze data, the accuracy of PD, CVD, and COPD
diagnosis can be improved.

CVD is a kind of circulatory system disease related to the
cardiovascular system, including hypertension and coronary
heart disease, and has become one of the main diseases
endangering human health.'* The traditional diagnosis of CVD
is often a combination of imaging techniques and blood
biochemical tests, which can cause discomfort to patients and
cannot be monitored for a long time. Combining flexible
wearable sensing devices with ML algorithms to solve these
problems can also remotely monitor and diagnose CVD, such as
AF.* Pulse detection is a clinically validated detection method
for CVD. Researchers often attach the sensor to the skin surface
to receive the change signal of the sensor resistance caused by
the deformation of the skin with the blood vessel and then
convert it into a pulse wave after processing, such as filtering
and denoising (Fig. 4A).** The classification by MiniRocket and
RF algorithm can be used for the diagnosis of ASD, AF and other
diseases.’®'®* The patient's monitoring ECG can also be
collected by a wearable sensor, and the collected waveform can
be accurately analyzed for their heart rate and respiratory rate,
and then combined with ML algorithms for diagnosing CVD.*®

PD is a degenerative neurological disorder that causes hand
and foot tremors, and muscle stiffness, and severely affects
daily movement.**® Traditional PD diagnosis methods rely on
medical observation and clinical examination and are easily
affected by subjectivity, leading to misclassification or symptom
neglect, which further affects the diagnosis of PD.'* TENG
based on flexible materials are often made into sensors to
realize self-powered wearable devices, extract characteristic
peaks by detecting voltage signals or gait signals generated by
tremors, and diagnose PD with KNN, linear SVM and other
algorithms (Fig. 4B).*> Kim et al. synthesized a CCDHG-TENG
and prepared a tremor sensor. The KNN and linear SVM algo-
rithms were used to classify the frequency characteristics of the
signals. The linear SVM distinguished normal, mild and severe
tremors with 100% accuracy, which was more accurate than
KNN. FOG is a state of walking intention, but the pace suddenly
stops or decreases, which is a major risk factor for falls and
injuries in patients undergoing PD."”° Patients usually experi-
ence stride loss before FOG. Researchers have created a low-
cost, portable and comfortable tribon-electric smart sock. At
the same time, it is used as a wearable sensor to collect gait
information and uses an ML algorithm to judge the three
conditions of normal walking, stride loss and FOG with high
accuracy (Fig. 4C).*** A walk recognition system can provide
energy and electricity by itself.**

COPD and OSA are respiratory diseases that can aggravate
sleep-breathing disorders.'®® Flexible instruments, combined
with algorithms such as CNN and SVM, can capture lung sound
waves and seismocardiogram data to identify lung abnormali-
ties, such as burst sounds, wheezing and rales, or apnea and
respiratory insufficiency. It can be used for the early diagnosis
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of COPD or OSA and also for monitoring cardiac activity caused
by it.®*'** Flexible sensors with integrated ML algorithms track
cough frequency and intensity and can be used to classify
patients with COVID-19 (ref. 171) and healthy controls.**

In addition to the aforementioned diseases, other diseases
can also be monitored and diagnosed using flexible sensors and
ML, such as severe skin acne, intestinal obstruction, and
muscle atrophy. Due to radiation limitation'”> and the incon-
venience of operation, the traditional intestinal detection
method cannot obtain the true intestinal status. The integrated
device based on a 3D-printed elastomer resonator and flexible
electronic device can be attached to the abdomen, and the
BPNN algorithm can be used to evaluate intestinal sounds
during digestion. For example, in Wang's work, the average
recognition rate is 76.89%, which is expected to be used for the
evaluation of digestive function and auxiliary diagnosis of
intestinal diseases, but there is still a lot of room for improve-
ment."” In the detection and diagnosis of inflammatory skin
diseases such as acne, pH-responsive hydration and ML tech-
nology can be used to quantify pH levels promptly according to
their color and then diagnose early signs of skin diseases such
as acne, which has the advantage of being instantaneous and
reusable.®” The integration of ML algorithms with non-invasive
flexible surface EMG sensors can be used to assist in the diag-
nosis of muscle atrophy due to fracture and to distinguish
between muscle atrophy due to nerve damage or limb fixation,
enabling non-invasive and comfortable cause assessment.”®

Flexible sensors combined with ML algorithms are widely
used for disease diagnosis. Compared with traditional disease
detection technology, it has the following characteristics:
accuracy, high sensitivity and real-time monitoring. It can be
used to track and decode pulse, blood pressure, gait and other
signals, which can realize remote condition monitoring of
patients and intelligent and efficient diagnosis and provide
a new idea for realizing fast, non-invasive, remote, economical,
accurate and intelligent diagnosis.

4.2.2 Disease treatment. Flexible wearable sensing tech-
nology can be used in the fields of auxiliary surgery,"””**”* wound
dressing,"”*'”” eye treatment,"”® etc. Combined with ML algo-
rithms, it can intelligently identify and classify the hand
movements of surgeons during surgery, the severity and healing
status of wounds during treatment, and eye movements
(convergence and dispersion) with high efficiency and accuracy.

A piezoresistive flexible tactile sensor with high sensitivity
and reliable linear response characteristics is fixed on the
human body or the robot system,'”® and the ML model can be
used to monitor and classify the resistance change value of the
hand movement during surgery. Al-Handarish et al. inserted
a carbon black evenly distributed porous sugar/PDMS sponge
flexible sensor into the robot operating system, combined with
LSTM and five traditional ML algorithms to recognize surgeons’
gestures on the main interface of the robot system during
endovascular catheter insertion, among which LSTM had the
highest overall recognition accuracy of 87.38%. The robotic
system, which acts as an interface between the physician and
the tool, demonstrates the potential of piezoresistive tactile
sensors for force sensing in surgical robots.’®® In addition,

22398 | RSC Adv, 2025, 15, 22386-22410

View Article Online

Review

similar flexible sensor technologies demonstrate broad appli-
cation prospects in fields such as human-machine interaction
and smart wearable devices. For instance, the self-powered
flexible sensor array based on TENG developed by Dong et al.
has achieved the monitoring of human gestures in different
parts of the human body, such as elbows, necks, and wrists,
through LSTM, with an accuracy of up to 90%, and has been
successfully applied to control the movement of two-wheeled
robots;'*® TENG flexible sensors were fabricated for the design
of robot electronic skin for non-contact and contact pressure
measurement. During the robot grasping process, the neural
network algorithm was adopted to fully utilize the dual-channel
sensing data of the sensor to identify different materials and
different hardness values, and the recognition rates were
93.49% and 92.22%, respectively.'®* This self-powered flexible
sensor not only can detect deformation during the complex
movement of the human body but can work continuously
without external circuits, providing a new solution for flexible
wearable devices and portable health monitoring systems.

Wound healing proceeds in four stages: hemostasis,
inflammation, proliferation, and remodeling. Traditional
wound dressings cannot monitor the wound healing status over
time, and frequent dressing changes can cause wound infec-
tion. Wound dressings made of flexible materials and sensors
are flexible and can be used for in situ wound sensing without
removal, and they can have hemostatic, antibacterial and other
effects (Fig. 4D).* Through the detection of temperature, pH,
uric acid and other biomarkers related to wound inflammation
and infection, combined with the ML algorithm, it can be used
for the diagnosis of wound type or skin healing stage, and even
the assessment and classification of wound healing status can
be carried out on the smartphone to accelerate the wound
healing process.'”” The intelligent wearable sensor integrated
with the ANN algorithm by Kalasin et al. can diagnose the
healing stage of inflammation, proliferation and remodeling
through pH and predict the wound recombination of skin
disease subjects with an accuracy rate of 94.6% (Fig. 4E), real-
izing real-time monitoring and management of personalized
wounds and clinical use.*®

Factors such as electronic devices and genetics have an
increasing influence on human eye diseases, with CI and stra-
bismus being two types of troublesome eye diseases. Current
treatment techniques, including OBVT' and pencil push-
ups,' have a lower success rate in-home therapy and require
ongoing outpatient visits. Therefore, flexible sensors combined
with VR technology and ML algorithms can be used as an
alternative method for treating eye diseases and tracking
convergence and divergence. The detection of eye convergence
and divergence is also expected to be useful in the diagnosis of
neurodegenerative diseases and children with learning
disabilities. Mishra et al. created a “virtual therapy” in which
wearable soft electronics combined with a virtual reality envi-
ronment detect convergence and divergence, achieving a clas-
sification accuracy of 91% when combined with ML algorithms.
Three subjects showed improved convergence and divergence
after continuous use of the VR program, demonstrating that the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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applications. This figure has been reproduced from ref. 194 with permission from Elsevier publication, copyright 2022. (D) Silent speech
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system can be used for the office treatment of CI and
strabismus.*

Flexible sensors with wireless monitoring and comfortable
and flexible features combined with ML algorithms have been
used for disease treatment. Its application in the fields of
auxiliary surgery and wound dressing ensures the safety of
doctors and patients and realizes intelligent, quantitative, non-
contact, rapid and accurate personalized treatment, which has
great application potential in the field of disease treatment.

4.2.3 Drug development and design. With a deep under-
standing of the pathogenesis of diseases and the rapid devel-
opment of biotechnology, targeted therapy has become a new
strategy for treating specific diseases, that is accurate drug
delivery to specific target tissues and cells in the body for fixed-
point release and continuous drug administration. Precision
treatment with high efficacy, specificity and good safety has
become the focus of disease treatment."®* Reducing the risk of
off-target effects has become the focus of attention. The unique
three-dimensional hydrophilic network structure of hydrogels
and the property of effectively regulating drug release make
them widely used as carriers to assist drug release.'® For
example, Nieto et al. prepared gellan-supported redox reactive
implantable hydrogels with varying degrees of crosslinking to
serve as paclitaxel vectors for the treatment of HER2-positive
breast cancer.'® However, determining the optimal hydrogel
formulation has become a huge challenge.

To solve this problem with more specificity and accuracy, the
researchers found that integrating ML into the development of

© 2025 The Author(s). Published by the Royal Society of Chemistry

materials can effectively gain insights from description-
prediction-specification strategies, which can quickly achieve
the development of the most efficient biological materials.'®
ML can predict and optimize materials design, effectively
avoiding several repeated experiments and greatly reducing
experimental costs.'®® For example, the use of RF and LR can
effectively predict the self-assembly of hydrogels."** Xu et al. also
incorporated ML into the development of hydrogel drug
delivery systems. They used PLS and DRM to predict the struc-
ture of the hydrogel and then realized a precision drug delivery
system for eye protein drugs through numerical optimization to
ensure efficient drug release and high transparency of the
carrier (Fig. 4F).*”

In addition, ML can be used not only for drug delivery but
also for drug penetration testing. For example, to determine the
number of therapeutic agents, such as small molecule
compounds, peptides, mRNA, proteins, and cellular extracel-
lular vesicles, that enter the human body, Yuan et al. adopted
the MLR model in the ML method to link the drug permeability
with the physicochemical properties of the materials used in the
preparation. The method was used to simulate the penetration
process of drugs through the skin to predict the penetration of
drugs through the skin.™® It can be seen that ML plays an
important role in drug development and design and has several
application prospects.
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4.3 Rehabilitation and assistance

4.3.1 Rehabilitation training. Rehabilitation training is an
extremely important link for treating diseases or injuries.
Neuromuscular and skeletal diseases, traumatic events, stroke
and other diseases often leave sequelae of motor dysfunction
after treatment, which requires long-term and repeated reha-
bilitation training to improve. Rehabilitation training can
promote functional recovery, reduce complications and
sequelae, and prevent re-injury, all of which are of great
significance to the comprehensive rehabilitation of patients.
Traditional manual rehabilitation training resources are
limited, expensive and lack personalized; therefore, it is urgent
to introduce an accurate, cheap and personalized self-help
rehabilitation training system.

The continuous breakthrough in the preparation process of
flexible materials makes them not only comfortable and wear-
able but also have a wide range of adjustable mechanical
properties, creating conditions for the design of precision
rehabilitation training equipment.’ The continuous improve-
ment of wearable monitoring devices based on flexible mate-
rials provides a guarantee for the real-time tracking of the whole
process of self-help rehabilitation training. The development of
various sensors with wide detection limits and high sensitivity
has been continuously conducted. They can be seamlessly
integrated with flexible materials such as gels, textiles and
PDMS and made into wearable devices such as wristbands,
belts, insoles, and clothing for monitoring exercise posture and
muscle force status during physical rehabilitation
training.>¢#791% Sensing equipment based on flexible mate-
rials produces extrusion, stretching and other deformations due
to motion contact, resulting in electrical signals such as charge
transfer and resistance changes.*>**°*** These real-time elec-
trical signals are transmitted through wireless transmission
devices to mobile phones, computers and other devices. The
multi-directional accurate monitoring of self-help rehabilita-
tion training was realized, which greatly reduced the cost of
human monitoring.

ML technology is rapidly developing and can be integrated
into the monitoring data analysis of flexible wearable devices.
ML can perform dimensionality reduction, classification and
regression processing of multi-channel and multi-modal
sensing data, to realize efficient and accurate identification of
gestures, gait and force degree in the process of self-help
rehabilitation training,”****'** which assists the construction
of intelligent medical systems. For example, ML assists the
system in determining whether the rehabilitation training goal
is achieved according to the data of frequency and amplitude.”
As shown in Fig. 5A, based on the gait information recorded by
the smart insole, ML realizes patient identification and auto-
matically matches the set training plan to the patient via IoT
remote Settings.’® At the same time, ML technology helps build
various HMI systems to make rehabilitation training personal-
ized, intelligent and interesting. For example, EMG and FMG
signals were analyzed by ML algorithm to identify the move-
ment intention of patients and control commercial pneumatic
robot gloves to assist complete the training action.®” As depicted
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in Fig. 5B, according to the result of gesture recognition, PC
instructions are triggered to encourage patients to perform
finger function rehabilitation training, and the engaging
training experience can improve patients' enthusiasm.** In
addition, the signals collected by the HMI can be uploaded to
the cloud to assist doctors in remote diagnosis. It not only saves
medical resources but also avoids the risk of exposure to
infection during the COVID-19 pandemic.’” In brief, HMI
expands the interactive ways of rehabilitation training.

In short, the combination of flexible materials and ML
technology enables accurate and inexpensive monitoring,
promoting autonomous and intelligent processes. HMI
improves the privacy of rehabilitation training systems and
enhances the rehabilitation training experience.

4.3.2 Care and assistance. High-quality nursing resources
are very necessary for the sick, the elderly and the young, but in
the high-pressure rhythm and highly aging social environment,
nursing resources are scarce and expensive, resulting in these
groups having difficulty accepting all-day meticulous manual
care, so new nursing methods and ideas are urgently needed.

Non-invasive flexible sensors are not only comfortable to
wear but also have excellent sensitivity and responsiveness.
They can monitor the body and the surrounding environment
in a timely and accurate manner, greatly reducing the burden of
monitoring. Wireless transmission networks and ML tech-
nology help transmit and identify signals in real-time to help
detect early health risks, including the severity of blood leaks,***
the vulnerable status of the elderly,*****” and infant fall risk.**®
Alerts can be sent to nurses' stations or infant guardians
promptly, providing an example of creating a new care system in
the Internet age.

Assistance is particularly necessary for persons with physical
disabilities. Sign language is the primary means by which deaf
and mute people communicate with the outside world;
however, it is incomprehensible to people without professional
training. Therefore, mobile hand language sensing equipment
and accurate and efficient decoding technology will greatly
contribute to communication. With excellent adhesion, sensi-
tivity and stability, the hydrogel sensor can be attached to the
arm or, finger or made into a smart glove for collecting voltage,
resistance or EMG signals during sign language expression
(Fig. 5C).®***'** CNN, ANN and other ML algorithms can easily
achieve the high-precision classification of multi-channel data,
so as to achieve efficient decoding of sign language.®**° With
the Chinese character display system, real-time interpretation
of sign language can be completed,” which brings great
convenience to the lives of deaf and mute people. Compared
with sign language, which requires professional learning, silent
speech provides an alternative way for people with aphasia.
Although people with laryngeal diseases cannot produce sound
through vocal cord vibration, the expression of silent speech
requires the participation of the throat and facial muscles.
Flexible pressure sensors with excellent sensitivity, wide detec-
tion limits and fast response, and tattoo electrodes with robust
electrical properties that perfectly fit the skin epidermis, have
been developed to sense throat muscle movements or facial
EMG signals, providing accurate current or high-fidelity EMG
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signals. SVM, LDA and other ML algorithms are used to achieve
highly accurate recognition of silent speech (more than 92%)
(Fig. 5D).**>**° The realization of silent speech provides a guar-
antee and new idea for communicating with patients with
aphasia in dark and noisy environments.

Braille is an important channel through which the blind can
acquire and transmit information. It is composed of several
raised dots and mainly relies on tactile perception for recogni-
tion. Flexible materials are widely used in tactile sensors
because of their shape-shifting properties and are integrated
into robotic fingers or made into grid-like flexible sensor arrays,
which can press, tap, and slide to reach braille bumps.****** In
particular, the electrical isolation unit of the grid can effectively
eliminate the crosstalk effect of the current and help collect
high-quality current signals.'*” Combined with an ML algorithm
to classify electrical signals, the proposed algorithm can achieve
efficient decoding and effectively recognize Braille letters and
numbers. In particular, the ML algorithm can not only recog-
nize signals but can also be reverse-applied to the hardware
design of the flexible tactile sensor by fusion of statistical
learning criteria to help select the best manufacturing param-
eters of the sensor.""!

In short, with the assistance of flexible materials and ML
technology, care and assistance is constantly moving toward
algorithms that can achieve efficient decoding and effectively
recognize Braille letters a new intelligent pattern.

5 Conclusions and prospects

ML-assisted flexible materials have been widely used in the field
of health management, mainly in the following aspects: first,
flexible materials are used in health monitoring equipment
because of their conformability to the body, high flexibility,
sensitivity, and the accuracy of data collected in the face of
complex human movement. Secondly, ML technology can effi-
ciently process massive, multi-dimensional and multi-channel
sensing data, identify hidden patterns and rules, make imme-
diate and accurate predictions of health monitoring status, and
realize rapid response and intelligence. Third, the integration of
ML technology and flexible sensing devices has promoted the
rapid development of HMI in the field of health management,
helped build an intelligent medical environment, realized
personalized health management, improved user experience,
and paid attention to security and privacy protection.
Although flexible materials have made great progress in the
research field in the past few years, they are easy to be damaged
during repeated bending and are more sensitive to changes in
environmental factors. In addition, their lack of reliability and
stability limits their application, and they still need to be further
improved in terms of material or structural systems. ML also
faces many problems in application: insufficient quantity and
quality of health data deteriorate ML algorithm performance.
The complex model based on neural networks has high accu-
racy, but its complex internal mechanism makes the model lack
explanation and difficult to obtain a decision-making basis,
making it difficult to assist doctors in making targeted treat-
ment plans in clinical practice. It is necessary to improve the
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transparency of models or develop a tool to explain complex
models. For huge datasets, it is faced with the problem of high
time and high consumption, and imperfect security measures
may lead to privacy disclosure, which requires the synchronous
improvement of the computer hardware level and the develop-
ment of more efficient and secure algorithms to reduce the
burden of data processing and protect user privacy.

New flexible materials are being developed in the following
directions in the field of health monitoring. (1) Multi-functional
integration. By adding various functional components and
structural designs, new flexible materials can monitor different
categories of signals (temperature, humidity, strain, physio-
logical signals, etc.) and different intensity signals (joint
movement, breathing, heart rate, etc.). Flexible materials that
integrate printing technology, thermal therapy and other func-
tions will effectively promote the realization of non-sensory
monitoring and the integration of monitoring and treatment.
(2) Biocompatibility enhancement. Non-toxic, biodegradable
natural biomaterials have become the research hotspot for new
flexible materials due to their biocompatible properties. (3)
Environmental adaptability. New flexible materials are designed
to adapt to extreme environments (high temperature, low
temperature, etc.), which will greatly expand their application
scope in the field of health monitoring. (4) Passive energy
supply and lightweight design. The development of self-
powered flexible sensors through technological innovation in
material design and preparation provides a solution to the
power dependence and lightweight design of health monitoring
devices. In the future, the application of ML-assisted flexible
materials in the field of health management is expected to
achieve breakthroughs in the following aspects: first, it is
necessary to make full use of the advantages of ML data analysis
to assist in material design and efficiency prediction, save costs
and improve efficiency. Second, using the advantages of big
data, the ML algorithm is constantly optimized to include more
types of health data (such as mental health data, and environ-
mental data) into the analysis scope to further improve the
accuracy of health state prediction and diagnosis. Third, ML
technology vigorously promotes the analysis of genomic data
and the popularization of HMI, further promoting the devel-
opment of personalized medicine. Fourth, data encryption,
anonymization technology and ML algorithms work together to
explore integration ways and ideas to ensure user health data
security.

Abbreviation

1D one-dimensional

2D two-dimensional

AA acrylic acid

AF atrial fibrillation

AM acrylamide

ANN artificial neural network
ASD atrial septal defect
AuNP gold nanoparticle

Au-ZnS NPs ZnS and gold nanoparticles
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BA
BN
BPNN
BTO
CB
CCDHG-
TENG
CI
CNN
CNT
COPD
CVD
DAS
DHBS
DL
DMF
DRM
DT
ECG
EMG
EPE
EVA
FEP
FMG
FOG
Gly
GN
GO
GS
GSR
HACC-PAM
HBA

HBD
HEC
HMI
IMS
KNN
LDA
LIG
LR
LSTM
MiniRocket
ML

MLR
MNN
MosS,
MSE
NB
NMC
NPs
OBVT
OFSSVM
OSA
PA
PAAM
PANI
PCA

butyl acetate

boron nitride

back propagation neural network

barium titanate

carbon black

catechol-chitosan-diatom hydrogel triboelectric

nanogenerator

convergence insufficiency
convolutional neural network
carbon nanotube

chronic obstructive pulmonary disease
cardiovascular disease
dialdehyde starch

sodium 3,5-dichloro-2-hydroxybenzenesulfonate
deep learning
N,N-dimethylformamide
dynamic regression model
decision tree
electrocardiogram
electromyogram

expandable polyethylene
ethylene-vinyl acetate
fluorinated ethylene propylene
force myography

gait freezing

glycerol

graphene

graphene oxide

graphite sheets

galvanic skin response
polyacrylamide and chitosan quaternary
ammonium salt

hydrogen bond acceptor
hydrogen bond donor
hydroxyethyl cellulose
human-machine interface
intelligent monitoring system
k-nearest neighbor

linear discriminant analysis
laser-induced graphene
logistic regression

long short-term memory

a very fast (almost) deterministic transform for
time series classification
machine learning

multiple linear regression
multilabel neural network
molybdenum disulfide
minimize the loss function
naive Bayes

metal nanoparticles

in-office vision therapy
oriented feature selection support vector machine
obstructive sleep apnea
polyamide

polyacrylamide

polyaniline

principal component analysis
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PD
PDA
PDADMAC
PDMS
PE

PEI
PES
PET

PI

PLA
PLS
PMMA
PPy
PR
PSVM
PTFE
PU
PVA
PVC
PVDF
RF
RNN
SA

SC
STM
SVM
SWCNTs
TA
TENG
TG
TPE
TPU
VR
WPU
WT-SVM
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Parkinson's disease
polydopamine
poly(diallyldimethylammonium chloride)
polydimethylsiloxane
polyethylene

poly(ethylene imine)

polyester
poly(ethyleneterephthalate)
polyimide

polylactic acid

partial least squares regression
polymethyl methacrylate
polypyrrole

phenol red

proximal support vector machine
polytetrafluoroethylene
poly(vinyl alcohol)

polyvinyl chloride

polyvinylidene fluoride
polyurethane

random forest

recurrent neural network
sodium alginate

sodium casein

short-term memory

support vector machine
single-arm carbon nanotube
tannic acid

triboelectric nanogenerators
tannic acid-reduced graphene oxide
thermoplastic elastomer
thermoplastic polyurethane
virtual reality

waterborne polyurethane

wavelet transform-support vector machine
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