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ed on silver nanoprisms for the
determination of ethanol content and resolution of
water–ethanol mixtures

Masoud Shariati-Rad *ab and Mahya Hosseinpouria

Determination of the authenticity of a drink as well as the existence or amount of its ethanol content is very

important. Herein, silver nanoprisms were successfully used for the discrimination of different water–

ethanol mixtures. The nanoparticles were characterized via transmission electron microscopy (TEM) and

UV-vis spectrophotometry. Moreover, using the color profile of the array, a reliable relationship was

established for the determination of ethanol content in water–ethanol mixtures. Silver nanoprisms were

prepared via a green procedure using extracts of walnut peel, onion and red berry in the presence and

absence of sodium citrate. The color variation of the prepared silver nanoprisms was used for

discrimination. The RGB color indices of the sensor array were organized in matrices and processed via

principal component analysis (PCA) for discrimination and clustering.
1. Introduction

Ethanol is a colorless, clear, volatile, ammable liquid that
mixes with water in any proportion and has a pungent odor. The
detection and quantication of alcohols with high sensitivity,
selectivity and accuracy are crucial in many different areas.
Accurate and rapid measurement of ethanol is important in
clinical and forensic analyses to analyze human body uids,
e.g., blood, serum, saliva, urine, breath and sweat. The food,
beverage (wine, beer and spirits) and pulp industries require
simple, fast and economic analytical methods to control
fermentation processes and the quality of the obtained
products.

Ethanol content is one of the most important elements in
food items and is used to ensure their authenticity; ethanol in
higher doses can alter or damage the central neural system.1,2

The most common form of adulteration concerning ethyl
alcohol is the addition of water. This is because ethanol can be
easily mixed with water, and it is difficult to detect this adul-
teration visually.

Many analytical methods have been developed during for
determination of ethanol and other aliphatic alcohols, such as
methanol. These include the use of chemical methods, such as
redox titrations, colorimetric methods, specic gravity and
refractive index measurements, chromatographic and spectro-
scopic methods.3

In 2015, Zhang et al. reported a full evaporation headspace
gas chromatographic method for simultaneously determining
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the ethanol and methanol content in wines.4 In 2005, Nordon
et al. reported a non-invasive NIR and Raman spectrometric
methods for determination of ethanol content.5 In 2019,
Michałowska-Kaczmarczyk reported a redox titration method
for determination of ethanol content in beverages. However,
a prior separation of ethanol by distillation of the sample is
necessary.6 In 2011, Pinyou and Youngvises reported a colori-
metric method for determination of ethanol content based on
the reaction of ethanol with ceric ion in acidic medium to
produce a red colored product having maximum absorption at
415 nm.7 In 2009, Alemea and Costa reported a specic gravity
measurement method for determination of ethanol content as
a routine assay to evaluate the quality of gasoline with multi-
variate PLS calibration method.8

Although these methods are precise and reliable, they are
complex and time consuming and require prior separation
processes (distillation and pervaporation) and expensive
instrumentation. Conversely, colorimetric methods are simple
and inexpensive and can be used without complicated instru-
ments. The current colorimetric methods are commonly based
on sample imaging by cameras.

In the last decade, rapid advances in microelectronics have
resulted in the ready availability of digital and video cameras,
mobile phones, and scanners with continually enhanced spec-
ications at a very modest cost. Thus, digital images obtained
by commercial devices, such as digital cameras, webcams,
smartphone cameras, scanners, and tablets, are currently
implemented in many different scientic and technical elds.
The most common way to extract the information from digital
images is their decomposition to color indices such as red (R),
green (G) and blue (B). The RGB system is an additive system,
which uses the combination of the colors R, G, and B to form
RSC Adv., 2025, 15, 24247–24255 | 24247
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Table 1 Different ethanol–water mixtures prepared for the analysis

Number (class) Percent of ethanol (v/v)

1 0.0
2 10.0
3 20.0
4 30.0
5 40.0
6 50.0
7 60.0
8 70.0
9 80.0
10 90.0
11 100.0
12 Unknown
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a wide variety of color tones.1 In colorimetric sensor arrays, such
devices and procedures are commonly employed to extract
signals, which are then analyzed by multivariate chemometrics
methods. Colorimetric sensor arrays constructed from diverse
chemo-responsive colorants have been successfully used to
discriminate different volatile organic compounds in breath,
which were related to lung cancer,9,10 and in beers.11 A series of
common so drinks were discriminated by a colorimetric
sensor array composed of different dyes.12

Sensor arrays based on nanoparticles have been constructed
for the detection of different volatile or organic species.13,14 A
colorimetric solvatochromic molecule-based sensor was
designed that can discriminate between some solvents and
some water–tetrahydrofuran mixtures.15 For specic ethanol
detection, a sensor array was constructed by dyes.16

Amongst the nanoparticles, silver nanoparticles (AgNPs)
have been widely used to develop various sensors, including
uorimetric,17,18 UV-vis spectrophotometric and colori-
metric,19,20 and electrochemical sensors.21,22 Herein, using silver
nanoprisms (AgNPrs), a colorimetric sensor array is introduced
for the analysis of mixtures of ethanol and water. This is the rst
time AgNPs have been used for the discrimination of different
ethanol–water mixtures. Moreover, principal component anal-
ysis (PCA) and hierarchical cluster analysis (HCA) were used to
analyze the color indices of the sensor array to cluster the
samples.23–26
2. Experimental
2.1. Materials and solutions

Ethanol (99.9%, w/w), ammonia (25%, w/w), silver nitrate
(99.0%) and sodium citrate (99.9%) were all obtained from
Merck (Darmstadt, Germany). For preparation of all solutions,
deionized water was employed.

Ammonia (10%), silver nitrate solution (0.01 mol L−1), and
sodium citrate solution (0.01 mol L−1) were used in the prepa-
ration of the silver nanoparticles (AgNPs). Different AgNPs were
prepared with extracts of walnut peel, onion and red berry in the
presence and absence of sodium citrate. Six different AgNPs
were obtained.

Different mixtures of ethanol–water were prepared by mixing
volumes (0.0–10.0 mL) of ethanol with doubly distilled water.
The mixtures have total volumes of 10.0 mL and different
percent ethanol contents (Table 1).
2.2. Synthesis of AgNPs

Six different AgNPs were prepared using walnut peel extract
without and with sodium citrate (A and B), onion extract
without and with sodium citrate (C and D) and berry extract
without and with sodium citrate (E and F).

The method was that used by Jin et al.27 with minor modi-
cations. To 300 mL boiling distilled water, separately, 1.5 mL
of extracts of walnut peel, onion and red berry were added. Aer
about 25 min, 4 mL of ammonia (10%, w/w) and 1.0 mL of
sodium citrate (0.01 mol L−1) were added, followed by the
addition of silver nitrate solution (5.0 mL, 20 mmol L−1) while
24248 | RSC Adv., 2025, 15, 24247–24255
stirring for 2 min. The yellow AgNPs formed aer 50 min. Note
that, for preparing AgNPs without citrate as a capping agent,
sodium citrate was not added.

2.3. Instruments and soware

Transmission electron microscopy (TEM) was performed using
a Zeiss EM900 transmission electronmicroscope. UV-vis spectra
of AgNPs in the presence of different ethanol–water mixtures
were recorded on an Agilent 8453 UV-vis spectrophotometer
with a diode array detector equipped with 1 cm path-length
quartz cells. Digital images of the colorimetric sensor were
recorded with the camera (50 megapixel) of a SAMSUNG Galaxy
smartphone. To extract red (R), green (G) and blue (B) color
indices as the analytical signal and for extraction of the prole
of the constructed sensor array, ImageJ version 1.54h was
employed. PCA toolbox for MATLAB version 1.5 was used to
perform principal component analysis (PCA) and hierarchical
cluster analysis (HCA).28

2.4. Principal component analysis (PCA) and hierarchical
cluster analysis (HCA)

Principal component analysis (PCA) is a statistical method used
for dimension reduction of data, feature extraction, and data
visualization. It transforms a dataset of possibly correlated
variables into a set of linearly uncorrelated variables called
principal components (PCs), ordered by their ability to explain
variance in the data. In PCA, orthogonal directions (principal
components) in the data that maximize variance are identied.
The rst PC captures the most variance, the second PC
(orthogonal to the rst) captures the next most, and so on. This
allows dimensionality reduction while preserving as much
information as possible.29

Hierarchical cluster analysis (HCA) is an unsupervised
machine learning method used to build a hierarchy of clusters,
enabling the exploration of data grouping at multiple scales.
Unlike at clustering methods (e.g., k-means), HCA does not
require predening the number of clusters and provides a tree-
like structure (dendrogram) to visualize relationships between
data points.30,31 In HCA, similar data points are grouped into
nested clusters based on pairwise distances.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra02537k


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/4
/2

02
5 

3:
36

:2
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
3. Results and discussion
3.1. Characterization of the synthesized AgNPs

The AgNPs prepared and the codes used for them in this work
are reported in Table 2.

To investigate the morphology and size of the synthesized
AgNPs, TEM analysis was carried out. The TEMmicrographs are
shown in Fig. 1. Analysis of the TEM micrographs showed
a distribution with a mean particle size of 22.1 ± 4.9 nm. It is
evident from the images that the shape of the synthesized
AgNPs is as prism and its cross section is hexagonal. So, from
this point, the synthesized AgNPs are referred to as Ag nano-
prisms (AgNPrs).
Table 2 Different AgNPrs prepared for construction of the sensor
array

Coded silver nanoprisms
(AgNPrs)

Condition for preparation of
silver nanoparticle

A With walnut peel extract without
citrate

B With walnut peel extract with citrate
C With onion extract without citrate
D With onion extract with citrate
E With red berry extract without citrate
F With red berry extract with citrate

Fig. 1 TEM micrographs of the AgNPs synthesized in the presence of
citrate using walnut peel extract.

Fig. 2 UV-vis spectra of the six AgNPs prepared using walnut peel
extract with (A) and without (B) sodium citrate, onion extract with (C)
and without (D) sodium citrate and berry extract with (E) and without
(F) sodium citrate.

© 2025 The Author(s). Published by the Royal Society of Chemistry
In Fig. 2, the UV-vis spectra of the prepared AgNPs are
shown. It can be seen that their maximum absorption peaks are
located at 410–420 nm. This peak is a characteristic surface
plasmon absorption band that indicates the presence of nano-
silver in the solution.32

The differences in the full width at half maximum (FWHM)
and maximum absorption wavelengths of the prepared AgNPs,
as can be observed in Fig. 2, can be related to the different sizes
of the AgNPs.33–36 This is the result of the different reducing
agents used to prepare them.33–36
3.2. Construction of the sensor array

In order to introduce a method based on a sensor array for the
determination of percent of ethanol in mixtures with water, six
different AgNPrs were used (Table 2). The AgNPrs were prepared
based on the procedure explained in Section 2.2.27

The sensor array was constructed in such a way that to each
row of the 72 well plate, 100 mL of one of the AgNPrs was added.
Then, to each column of the plate, 50 mL of one of the ethanol–
water mixtures was added andmixed well with the AgNPrs. Aer
5 min, an image of the plate was taken and used for analysis.
This procedure was repeated three times. The images of the
sensor array can be seen in Fig. 3. Because of the use of 6 AgNPrs
and 12 mixtures, in total, 72 wells of the plate were lled.

Eleven differentmixtures of water and ethanol were prepared
(Table 1). To each mixture, a class was assigned. In addition,
a mixture was used as an unknown mixture. Therefore, in total,
12 different classes can be analyzed.

The color change of the AgNPrs in the presence of different
ethanol–water mixtures is clearly seen (Fig. 3). The color of the
AgNPrs is the result of the surface plasmon phenomenon.37 This
phenomenon is affected by the medium and the size and the
cap of the corresponding AgNPrs.37 Any physicochemical vari-
ations in Ag nanostructure can alter its surface plasmon;
RSC Adv., 2025, 15, 24247–24255 | 24249
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Fig. 3 Image of three replicates of the constructed sensor array. Each row in the array corresponds to AgNPrs reported in Table 2 and each
column corresponds to the mixtures reported in Table 1.
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simply, it is the base of a chemical sensor.38 The polarities of
water and ethanol are different. Moreover, ethanol possesses an
organic moiety which interacts with AgNPs in a different
manner. The capping of AgNPrs with citrate can change their
color and interaction with the medium.

Ethanol molecules can adsorb onto AgNP surfaces via
hydrogen bonding between the hydroxyl (–OH) group of ethanol
and oxygen-containing surface groups (e.g., citrate or oxide
layers).39 In ethanol–water mixtures, the stability of AgNPs can
be modulated by altering the solvent's polarity. Ethanol reduces
the polarity of aqueous solutions, destabilizing AgNPs by
24250 | RSC Adv., 2025, 15, 24247–24255
compressing the electrical double layer, which promotes
aggregation. In these conditions, the presence of capping
agents like citrate can result in different aggregation behaviors
of AgNPs with and without citrate.40
3.3. Prole of the colors

To obtain an overview of variation of the color with the ethanol
content of the mixtures, using ImageJ version 1.54h, the overall
image of the plate with lled wells was selected and its prole
was plotted. The prole plots the variation in gray value of the
selected part with pixels in the horizontal direction. The
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Profile plots of the plate showing the variation in gray value with
pixel (a), variation in gray value in minima with ethanol content (b) and
variation in gray value with logarithm of ethanol content (c). Values on
the curve (a) indicate the ethanol contents of the mixtures.

Fig. 5 Score plots obtained by analysis of the RGB data from the
image of the sensor array (Fig. 3) via PCA without preprocessing (a),
after mean centering (b) and after auto-scaling (c).
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resulting prole can be seen in Fig. 4a. The maxima of the curve
belong to the boundaries between the wells. The important
parts of the plot are the minima. As can be seen, there exists
a gradual, relatively linear change in the intensities in the
minima with the ethanol contents of the mixtures. In order to
build a relation between the ethanol content and the calculated
gray values, the values in the minima were selected as signal
and were plotted against the ethanol contents of the samples.
By excluding the sample with 0.0% ethanol content, an excellent
logarithmic relation can be obtained (Fig. 4c). The coefficient of
determination for the linear semi-log relation is 0.9946 and the
F-statistic is 930. These statistics prove an excellent linear
relationship with high prediction ability. Using this calibration,
the ethanol content of the unknown sample was estimated to be
© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 24247–24255 | 24251
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67.7%. The true ethanol content of the unknown sample is
75.0%, which shows a 9.7% difference.
3.4. Principal component analysis

In order to quantify the signal, which is initially in the form of
color, different segments of the images (Fig. 3) corresponding to
each well were cropped and transferred to ImageJ version 1.54h.
Each mixture response is represented as the red (R), green (G)
and blue (B) values of each of the 6 AgNPs, i.e., an 18 dimen-
sional row vector. These vectors for 3 replicates of 12 analyzed
samples (Table 2) can be arranged row-wise to produce a matrix
with 36 × 18 dimensions.

The matrix constructed was used for analysis by PCA. PCA is
a chemometrics method which abstracts the initial data and
lowers its dimensions to more limited new dimensions (vari-
ables) named scores. In fact, scores are the coordinates in the
new axes. It must be mentioned that, during this transfer, the
information in the original data is retained.

The scores calculated by PCA for the analyzed data can be
seen in Fig. 5a. The rst score (PC1) explained 99.77% of the
variation in the analyzed data. In this analysis, the data were not
preprocessed. As can be seen from Fig. 5a, a distinct clustering
of the mixtures was obtained for most of the mixtures. However,
overlaps of class 7 with class 10 and class 9 with class 11 can be
observed. Class 12, which is the unknown mixture is located
between classes 10, 11, 6 and 7. This result demonstrates that
the unknown mixture probably contains 70–80% ethanol. In
Fig. 6 Loading plot obtained by PCA for the constructed sensor array a

24252 | RSC Adv., 2025, 15, 24247–24255
reality, the unknown mixture is a 75% ethanol sample. There-
fore, the analysis based on the sensor array is conrmed to work
satisfactorily in its expected function.

Analysis of the data was also performed by preprocessing. By
mean centering and subsequently applying PCA, the scores
shown in Fig. 5b resulted. The gure shows that different
mixtures are distinctly clustered. In this case, the unknown
sample is located between classes 6, 7, 9, 10 and 11. Therefore,
its ethanol content can be estimated to be in the range of 70–
80%.

By auto-scaling the data as a preprocessing method and
subsequent PCA analysis, the scores shown in Fig. 5c were
calculated. Different mixtures are clustered distinctly. However,
an overlap between classes 5 and 6 can be seen. Here, the
unknownmixture can be observed between classes 5, 6, 7, 9 and
11. Therefore, an ethanol content of 65–70% can be attributed
to this mixture.

In PCA, for calculation of the scores, coefficients are
required. These coefficients are named loadings. For each
original variable, a loading is calculated. In the current work,
the variables are the R, G and B indices of different AgNPrs. In
fact, the magnitude of each loading reects the signicance of
the corresponding variable. Therefore, using loading plots, it is
possible to observe which original variable is important. In
order to eliminate the effect of the magnitude of the variables
on the loadings, the loadings for the case where the data have
been preprocessed by auto-scaling were studied (Fig. 6).
fter preprocessing of the data with auto-scaling.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Dendrogram obtained by HCA processing of the data of the constructed sensor array. For HCA, data were auto-scaled and Euclidean
distances were calculated for complete points.
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Because of the higher variability of the data explained by
PC1, detection of the more signicant variables was focused on
PC1. A variable is signicant and effective in clustering when it
has a higher loading. It can be seen that AgNPrs with codes A
(v1, v2, v3), D (v10, v11, v12) and E (v13, v14) have a large role in
the clustering. These AgNPrs are those prepared respectively by
walnut skin without citrate, onion extract with citrate and berry
extract with citrate. Therefore, the capping of AgNPs with citrate
with organic characteristics facilitates the interaction of ethanol
with it.

Another clustering method, HCA, was also used. In this case,
the data were auto-scaled, and clustering was performed based
on the Euclidean distance calculated for complete data. In
Fig. 7, the resulting dendrogram is shown. The dendrogram
shows that, in most cases, the clustering was performed
correctly. However, one of the replicates in each of classes 5
(sample 13) and 6 (sample 18) has been displaced. The
unknown mixture with replicate numbers 34, 35 and 36 can be
seen in a major cluster with classes 9 (samples 25, 26 and 27)
and 11 (samples 31, 32 and 33). Therefore, an ethanol content of
about 90% can be predicted for it. Altogether, for the unknown
sample, an ethanol content in the range of 70–90% is predicted
by the applied clustering methods.

The method introduced can be used to predict the ethanol
content of an water–ethanol mixture. The method, needing no
instrument, can successfully be used for this purpose.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4. Conclusions

Using AgNPrs in a sensor array, it was possible to differentiate
between ethanol–water mixtures. Differentiating and detecting
fraud in such mixtures and many foodstuffs is of great impor-
tance. Due to the success of the designed sensor array in the
current work, it is recommended to be applied for such
a procedure. The method can be utilized as an alternative to
sophisticated instrumental methods.
Data availability
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and non-enzymatic biosensor with nanoarchitectonics of
Lepidium meyenii-silver nanoparticles and cotton fabric:
real-time monitoring of milk freshness, Appl. Phys. A:Mater.
Sci. Process., 2022, 128(5), 390.

21 Q. K. Vu, T. H. Nguyen, A. T. Le, N. P. Vu, X. D. Ngo,
T. K. Nguyen, T. T. Nguyen, C. Van Pham, T. L. Nguyen,
T. L. T. Dang and M. Tonezze, Enhancing electron transfer
and stability of screen-printed carbon electrodes modied
with AgNP-reduced graphene oxide nanocomposite, J.
Electron. Mater., 2022, 51(3), 1004–1012.

22 J. Liu, R. Siavash Moakhar, A. Sudalaiyadum Perumal,
H. N. Roman, S. Mahshid and S. Wachsmann-Hogiu, An
AgNP-deposited commercial electrochemistry test strip as
a platform for urea detection, Sci. Rep., 2020, 10(1), 9527.

23 M. A. Farag, M. M. Elmassry and S. H. El-Ahmady, The
characterization of avored hookahs aroma prole and in
response to heating as analyzed via headspace solid-phase
microextraction (SPME) and chemometrics, Sci. Rep., 2018,
8(1), 17028.

24 A. Serag, A. Zayed, A. Mediani and M. A. Farag, Integrated
comparative metabolite proling via NMR and GC–MS
analyses for tongkat ali (Eurycoma longifolia)
ngerprinting and quality control analysis, Sci. Rep., 2023,
13(1), 2533.

25 N. Hegazi, A. R. Khattab, H. H. Saad, B. Abib andM. A. Farag,
A multiplex metabolomic approach for quality control of
Spirulina supplement and its allied microalgae (Amphora
& Chlorella) assisted by chemometrics and molecular
networking, Sci. Rep., 2024, 14(1), 2809.

26 Y. Wang, D. Huo, H. Wu, J. Li, Q. Zhang, B. Deng, J. Zhou,
M. Yang and C. Hou, A visual sensor array based on an
indicator displacement assay for the detection of
carboxylic acids, Microchim. Acta, 2019, 186, 1–12.

27 J. C. Jin, Z. Q. Xu, P. Dong, L. Lai, J. Y. Lan, F. L. Jiang and
Y. Liu, One-step synthesis of silver nanoparticles using
carbon dots as reducing and stabilizing agents and their
antibacterial mechanisms, Carbon, 2015, 94, 129–141.

28 D. Ballabio, A MATLAB toolbox for Principal Component
Analysis and unsupervised exploration of data structure,
Chemom. Intell. Lab. Syst., 2015, 149, 1–9.

29 C. M. Bishop and N. M. Nasrabadi, Pattern Recognition And
Machine Learning, Springer, 2006, vol. 4, 4, p. 738.

30 T. Hastie, R. Tibshirani and J. Friedman, The Elements Of
Statistical Learning, 2009.

31 L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an
Introduction to Cluster Analysis, John Wiley & Sons, 2009.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra02537k


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/4
/2

02
5 

3:
36

:2
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
32 P. S. Kumar, S. Abhilash, K. Manzoor, S. V. Nair, H. Tamura
and R. Jayakumar, Preparation and characterization of novel
b-chitin/nanosilver composite scaffolds for wound dressing
applications, Carbohydr. Polym., 2010, 80(3), 761–767.

33 K. Varghese Alex, P. Tamil Pavai, R. Rugmini, M. Shiva
Prasad, K. Kamakshi and K. C. Sekhar, Green synthesized
Ag nanoparticles for bio-sensing and photocatalytic
applications, ACS Omega, 2020, 5(22), 13123–13129.

34 D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley and
D. G. Fernig, A rapid method to estimate the concentration
of citrate capped silver nanoparticles from UV-visible light
spectra, Analyst, 2014, 139(19), 4855–4861.

35 T. E. Agustina, W. Handayani and C. Imawan, June. The UV-
VIS spectrum analysis from silver nanoparticles synthesized
using Diospyros maritima blume, Leaves extract, in 3rd KOBI
Congress, International and National Conferences (KOBICINC
2020), Atlantis Press, 2021, pp. 411–419.

36 J. F. B. Rodrigues, E. P. S. Junior, K. S. Oliveira,
M. R. R. Wellen, S. S. Simões and M. V. L. Fook,
Multivariate Model Based on UV-Vis Spectroscopy and
Regression in Partial Least Squares for Determination of
© 2025 The Author(s). Published by the Royal Society of Chemistry
Diameter and Polydispersity of Silver Nanoparticles in
Colloidal Suspensions, J. Nanomater., 2020, 1279862.

37 M. Zayats, A. B. Kharitonov, S. P. Pogorelova,
O. Lioubashevski, E. Katz and I. Willner, Probing
photoelectrochemical processes in au− cds nanoparticle
arrays by surface plasmon resonance: application for the
detection of acetylcholine esterase inhibitors, J. Am. Chem.
Soc., 2003, 125(51), 16006–16014.

38 A. Amirjani and D. F. Haghshenas, Ag nanostructures as the
surface plasmon resonance (SPR)- based sensors:
a mechanistic study with an emphasis on heavy metallic
ions detection, Sens. Actuators, B, 2018, 273, 1768–1779.

39 H. Zhu, E. Prince, P. Narayanan, K. Liu, Z. Nie and
E. Kumacheva, Colloidal stability of nanoparticles
stabilized with mixed ligands in solvents with varying
polarity, Chem. Commun., 2020, 56(58), 8131–8134.

40 M. Yoosean and N. Etminan, The role of solvent polarity in
the electronic properties, stability and reactivity trend of
a tryptophane/Pd doped SWCNT novel nanobiosensor from
polar protic to non-polar solvents, RSC Adv., 2016, 6(69),
64818–64825.
RSC Adv., 2025, 15, 24247–24255 | 24255

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra02537k

	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures

	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures

	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures
	Sensor array based on silver nanoprisms for the determination of ethanol content and resolution of watertnqh_x2013ethanol mixtures


