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olution of a 1,10-biazulene
analogue of BINOL†

Anthony P. Gee, ‡a Tiberiu-M. Gianga, §a Gabriele Kociok-Köhn, b

G. Dan Pantoş a and Simon E. Lewis *ac

Biaryls exhibiting axial chirality have been extensively exploited in fields such as asymmetric catalysis, but the

biaryl linkage typically consists of benzenoid aromatic rings, with non-benzenoid biaryls being scarce. Here

we report the first preparation of a (non-benzenoid) 1,10-biazulene-2,20-diol (“1,10-BAzOL”) in enantiopure

form and determine its barrier to racemisation. Furthermore we transformed a 1,10-biazulene-2,20-diol into
the corresponding 2,20-bis(phosphonate), thereby demonstrating functional group interconversion through

cross coupling and highlighting the potential for diversification.
Introduction

Azulene 1 is a non-benzenoid 10p bicyclic aromatic compound,
known for its blue colour,1 large dipole2 and anomalous uo-
rescence.3 Each of these properties differ from those of the
corresponding benzenoid isomer naphthalene 2 (Fig. 1a).4

Azulene derivatives have been used in multiple applications,
including in uorescence imaging,5 colorimetric sensing,6 solar
cells,7 photothermal therapy,8 dyestuffs,9 organic eld-effect
transistors (OFETs),10 and other optoelectronics.11

Biazulenes are a group of biaryls for which 15 different
positional isomers can be envisaged (Fig. 1b) whose structural
and electronic properties can vary signicantly depending on
the position of the biaryl linkage as well as the substituents.12

The rst examples of biazulene synthesis, reported in 1968,13

were of 1,10- and 2,20-biazulenes formed by (multistep) dimer-
isation of the natural product guaiazulene (this can also
undergo direct oxidative dimerisation to give 1,10-,14,15 1,20-15,16

and 1,50-16 biazulenes). Another early report describes the
synthesis of 1,10- and 2,20-biazulenes by Ullmann coupling of
the corresponding haloazulene monomers17 (1,20- and 2,60-bia-
zulenes were also isolated from mixtures arising from coupling
of two different monomers). As of now, 2,4-, 4,50- and 5,60-bia-
zulenes remain unknown to the best of our knowledge, but
examples of all other positional isomers have been reported.
Most extensively studied are the 1,10-biazulenes, which have
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been synthesised by approaches including reductive coupling,18

oxidative dimerisation either electrochemically19 or using
FeCl3,20,21 MnO2,22 (NH4)2S2O8,23 CuBr/O2,24 DDQ25 or electro-
philic halide sources,26 as well as by photochemical methods,27

sulde/sulfoxide activation,28 C–H activation,29 Suzuki
coupling30 and aromatisation of a partially saturated
precursor.31 Less common are the 1,20-,32 1,40-,33 1,50-16 and
1,60-34,35 biazulenes. The “linear” biazulenes (i.e. the 2,20-,36
Fig. 1 Naphthalene, azulene and biazulene isomers.
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2,60-34,37 and 6,60-38 isomers) have found diverse applications in
organic functional materials, e.g. in surface modiers,39

OFETs,40,41 supercapacitors,42 molecular rectiers,43 hole-
transport materials for perovskite solar cells,44 enhancers of
p-p stacking45 and memristors.46 The remaining known biazu-
lene isomers (2,50-,47 4,40-,12c,33,48 4,60-,12c,49 and 5,5-50) have been
reported only rarely.

Axial chirality is a form of stereoisomerism which arises in
molecules comprising two pairs of (inequivalent) substituents
oriented in a non-planar manner about a chiral axis. Atro-
pisomers exhibit axial chirality arising from restricted rotation
around a s-bond, with the most well-known examples being
biaryl systems where the presence of substituents ortho to the
biaryl bond imposes a steric barrier to racemisation. In partic-
ular binaphthyl is a privileged motif in asymmetric catalysis,
with the archetypal BINOL (3)51 and BINAP (4)52 chiral ligands
and their derivatives53 imparting high levels of enantiose-
lectivity in diverse transition metal-catalysed reactions (Fig. 2a).
Chiral Brønsted acid organocatalysts based on the BINOL
scaffold are also well developed.54

In contrast to binaphthyl, axial chirality in biazulenyl
systems has been much less studied. Whereas any biazulene
positional isomer could potentially exhibit atropisomerism if
appropriately substituted, the few published reports mostly
concern 1,10-biazulenes. In 1983 Tajiri was the rst to disclose
the resolution of a biazulene, using preparative chiral stationary
phase HPLC to separate the enantiomers of 2,20-dimethyl-1,10-
Fig. 2 Known binaphthyls (a) and biazulenes (b); design for 1,10-BAzOL
(c).

14882 | RSC Adv., 2025, 15, 14881–14892
biazulene 6 and 2,20-dimethoxy-1,10-biazulene 7 (Fig. 2b);55 6
was reported have greater congurational stability than 7.
Subsequently Daub studied chiral annulated 1,10-biazulene
quinones 11 as electron-transfer mediators, resolving their
enantiomers by HPLC56 as well as using a chiral auxiliary to
attempt diastereoselective azulene dimerisation, giving the 1,10-
biazulene product in moderate diastereoisomeric excess.57

Chen described the synthesis of a 2,20-diamino-1,10-biazulene
12, resolution of the racemate by HPLC and attempted enan-
tioselective oxidative dimerisation of the 2-aminoazulene
precursor, employing various chiral ligands and achieving
modest enantiomeric excess.21 Ito, Itami and co-workers re-
ported p-extended 1,10-biazulenes (8 and its cyclised derivative)
which they resolved by HPLC.58 Tsuchiya, Mazaki and co-
workers reported 2,20-diphenyl-1,10-biazulene 9 and 2,20-bis(4-
pyridyl)-1,10-biazulene 10 and their resolution through crystal
picking.59 Tani, Murafuji and co-workers reported 4,40-biazu-
lene 5 and its resolution by HPLC.60 Most recently the Clever
group reported 2,20-diamino-3,30-bis(3-pyridyl)-1,10-biazulene 13
and 2,20-diamino-3,30-bis(6-quinolinyl)-1,10-biazulene 14, their
resolution by HPLC and their chiral self-sorting phenomena in
Pd2L4 coordination cages.61 Biazulenes exhibiting helical
chirality have also been reported.62

Here we report the design, synthesis, resolution and char-
acterisation of a biazulene analogue of BINOL, i.e. a 1,10-bia-
zulene-2,20-diol, which we have termed “1,10-BAzOL” (Fig. 2c).
Whereas Tajiri had reported 2,20-dimethoxy-1,10-biazulene 7, we
specically targeted the free hydroxyl groups to facilitate
potential applications of 1,10-BAzOL, e.g. as a chiral ligand or in
chiral Brønsted acid catalysis. Our design incorporated two
further motifs with specic functions. Firstly, we introduced
“anking” groups at the 8- and 80-positions, intended to
increase the barrier to racemisation. Secondly, we appended
ester groups at the 3- and 30-positions, anticipating that these
would enhance the chemical stability of 1,10-BAzOL. 2-Hydrox-
yazulene is only moderately stable in solution since the
substituent renders the azulene core sufficiently electron-rich
that it may undergo oxidative degradation. Furthermore,
depending on the solvent, 2-hydroxyazulene can tautomerise to
the corresponding keto-form to an appreciable degree.63 This
may then undergo aldol-type self-condensation reactions, ulti-
mately leading to decomposition, and we were mindful that this
decomposition pathway might also be operative for a 1,10-bia-
zulene-2,20-diol. However, 2-hydroxyazulenes bearing an
electron-withdrawing ester group at the adjacent position are
less electron-rich and generally stable, with the tautomeric
equilibrium seemingly favouring the enol form to a much
greater degree. We therefore sought to introduce ester groups at
the BAzOL 3- and 30-positions, in the hope this would suppress
decomposition via the keto tautomer. The realisation of our
BAzOL design concept is reported in this paper. Of note, a 1,10-
biazulene-2,20-diol has never been isolated in enantiopure form.
Chen and co-workers prepared a 1,10-biazulene-2,20-diol by
electrochemical oxidative dimerisation, but chirality was not
considered.64 Yang, Nozoe and co-workers prepared a 1,10-bia-
zulene crown ether, in which the chirality of the system was
recognised, but resolution was not attempted.65
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Synthesis of rac-1,10-BAzOL 20.

Scheme 2 Resolution of 1,10-BAzOL 20 by formation of bis(menthyl
carbonate) derivatives, separation and ethanolysis. aIsolated yield of
pure material with respect to the theoretical maximum of that
diastereoisomer.

Fig. 3 Overlaid 1H-NMR Spectra (in CDCl3) of the separated diastereoiso
isomer (green).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Results and discussion

The synthesis of 1,10-BAzOL began with commercially available
tropolone 15, which was tosylated to give 16, then reacted with
ethyl cyanoacetate to give bicyclic hydroxylactone 17, as
described previously (Scheme 1).66 Heating of 17 with triethyl
orthoacetate in a sealed tube gave bis(ethoxy)azulene 18. The
reaction proceeds by in situ generation of a ketene acetal which
undergoes an [8 + 2] cycloaddition with 17, followed by extru-
sion of CO2 to give 18.67 Deethylation with boron tribromide
proceeded entirely regioselectively to give 19, which was of
sufficient purity to be used in the next step without purication.
The 8-ethoxy group was inert under these reaction conditions
since this ether oxygen is less Lewis basic, being attached to the
more electron-poor position on azulene 18. Then, oxidative
dimerisation of 19 was effected using [Cu(OH)(TMEDA)]2Cl2
under air, which has previously been reported to be an effective
catalyst system for dimerisation of 2-naphthols to BINOLs.68 In
this case, the reaction gave rac-1,10-BAzOL 20 in 62% yield (5
step synthesis from tropolone, 29% overall yield).

To isolate 1,10-BAzOL 20 in enantiopure form, we attempted
to develop an enantioselective variant of the dimerisation of 19.
A procedure reported for enantioselective dimerisation of 2-
naphthols using Cu-BINAM complexes69 was adapted for reac-
tion of 19, but 1,10-BAzOL 20 was obtained in only low e.e., and
in low yield, with various copper sources. We therefore sought
to resolve rac-1,10-BAzOL 20 instead, through derivatisation with
a chiral pool-derived auxiliary and separation of the resultant
diastereoisomers. Commercially-available (−)-menthyl chlor-
oformate 21 has previously been used successfully for the
derivatisation and separation of enantiomers of BINOL and
related chiral diols,70 and we applied this approach to 1,10-
BAzOL (Scheme 2). Thus, reaction of an excess of 21 with rac-
1,10-BAzOL 20 in a biphasic dichloromethane–water medium, in
the presence of TBAB (tetra-n-butylammonium bromide) as
phase-transfer catalyst and NaOH as base gave bis(menthyl
carbonate) 22 as a 1 : 1 mixture of diastereoisomers. In the
original reports on the resolution of BINOL by this method,
fractional crystallisation of the diastereoisomeric mixture
afforded one diastereoisomer (100% d.e.) in pure crystalline
form, whereas the motherliquor contained the other diaste-
reoisomer inz90% d.e., that could be further puried to higher
d.e. through subsequent operations. In the case of 1,10-BAzOL,
mers of BAzOL-bis(menthyl carbonate) 22: (Ra) isomer (purple) and (Sa)

RSC Adv., 2025, 15, 14881–14892 | 14883
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Fig. 4 ORTEP representations of the X-ray structure of (Ra,1R,2S,5R)-
22. Ellipsoids are shown at 30% probability. A molecule of ethanol has
been omitted for clarity. Only hydrogens on stereogenic centres are
shown (as spheres of arbitrary radius). CCDC #2421193.

Fig. 5 ORTEP representations of the X-ray structure of (Sa,1R,2S,5R)-
22. Ellipsoids are shown at 30% probability. Disorder in the ethyl esters
and menthyl isopropyl group has been omitted for clarity. Only
hydrogens on stereogenic centres are shown (as spheres of arbitrary
radius). CCDC #2421194.

Table 1 Selected bond lengths and angles

Structure
C1-C10

biaryl bond length (Å)
C2-C1-C10-C20

dihedral angle (°)

(Ra,1R,2S,5R)-22 1.476(2) 71.4(2)
(Sa,1R,2S,5R)-22 1.450(8) 99.0(8)
1,10-BAzOL (Ra)-20 1.460(7) 111.8(6)

Fig. 7 Circular dichroism plots of (Ra)-20 (black) and (Sa)-20 (red),
recorded as 0.01 mM solutions in CHCl3.
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the bis(carbonate) 22 derived from (Ra)-1,10-BAzOL 20 could
indeed be isolated as a single diastereoisomer through careful
crystallisation, albeit in more moderate yield. The motherliquor
was concentrated and then underwent further recrystallisations
from a different solvent, giving the bis(carbonate) 22 derived
from (Sa)-1,10-BAzOL 20 as a single diastereoisomer, in low yield.
(Subsequent chromatography and recrystallisation provided
additional material; see ESI† for details) Both of the diastereo-
isomers of 22 isolated in this way were then separately subjected
to ethanolysis to cleave the menthol auxiliary and regenerate
1,1-BAzOL 20. As shown in Scheme 2, this was achieved in the
same high yield for both diastereoisomers of 22, thus allowing
the isolation of both enantiomers of 1,10-BAzOL 20 in enantio-
pure form.
Fig. 6 ORTEP representations of the X-ray structure of 1,10-BAzOL
(Ra)-20. Ellipsoids are shown at 50% probability. Hydrogens are shown
as spheres of arbitrary radius. CCDC #2421195.

14884 | RSC Adv., 2025, 15, 14881–14892
The 1H-NMR spectra for the two diastereoisomers of 22 are
very similar in the aromatic region, but exhibit signicant
chemical shi differences in the upeld region (Fig. 3). Thus,
the methyl groups of the menthyl auxiliary are clearly discern-
ible as three doublets between 0 and 1 ppm (since each iso-
propyl group comprises two inequivalent methyl groups). We
ascribe the chemical shi differences between the two isomers
for these signals to differing degrees of anisotropic shielding by
the azulene seven-membered rings. Further structural infor-
mation for the diastereoisomers of 22 was obtained through X-
ray crystallography, with the structures so acquired shown in
Fig. 4 (for the (Ra) diastereoisomer) and Fig. 5 (for the (Sa) dia-
stereoisomer). Additionally, an X-ray crystal structure for (Ra)-
Fig. 8 Circular dichroism plots of (Sa)-20, recorded as 0.01 mM
solutions in 1,1,2,2-tetrachloroethane. Spectra recorded at 5 minutes
intervals (left) at 60 °C; (right) at 80 °C.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Key thermodynamic parameters for racemisation of 1,10-BAzOL 20

Ea/kJ mol−1 DH‡/kJ mol−1 DS‡/J mol−1 K−1 DG‡
293.15 K/kJ mol−1 t1/2 293.15 K/h

84.90 82.06 −96.06 110.2 1389
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1,10-BAzOL 20 itself was also acquired (Fig. 6). Selected crystal-
lographic parameters are shown in Table 1.

Circular dichroism spectra for the enantiomers of 1,10-
BAzOL 20 were acquired and are shown in Fig. 7. The super-
imposable mirror image spectra indicate that 1,10-BAzOL 20 is
congurationally stable at room temperature and conrm the
enantiopurity. The congurational stability was then investi-
gated at elevated temperatures. As shown in Fig. 8, partial rac-
emisation was observed when a solution of (Sa)-1,10-BAzOL 20
was maintained at 60 °C for 14 h, whereas near-complete rac-
emisation was observed at 80 °C for the same period. Using data
acquired at these and other temperatures, the barrier to race-
misation was calculated (see ESI† for details). The key param-
eters are summarised in Table 2.

Table 3 presents a comparison of the barrier to race-
misation determined for 1,10-BAzOL 20 with all other biazu-
lenes for which data on racemisation have been reported. The
measured Ea value for 1,10-BAzOL 20 is similar to that for 4,40-
biazulene 5. The value for 2,20-dimethoxy-1,10-biazulene 7 is
appreciably lower than for 20, which may be due to the fact
that 7 lacks the anking groups in the 8,80-positions. On the
other hand, the values for 9 and 10 are appreciably higher
than the value we have measured for 20, implying that
a sufficiently bulky group at C2 can hinder rotation around
the biaryl axis regardless of the presence or absence of
anking groups on the seven-membered rings. The Ea value
Table 3 Barriers to racemisation for various biaryls

Biaryl Ea/kJ mol−1

71 (ref. 55)

108.9a (ref. 59)

106.6a (ref. 59)

a These values are not reported directly in the references cited. Rather, we
sources.

© 2025 The Author(s). Published by the Royal Society of Chemistry
for the racemisation of 1,10-binaphthyl 23 has also been
included for comparison; it is higher than for 20 but lower
than for 9 and 10.

We next sought to apply the biazulene synthesis we had
developed to produce a 1,10-biazulene bearing different func-
tional groups, through derivatisation of the diol. To this end,
lactone 17 was reacted with trimethyl orthoacetate to give
dimethoxyazulene 24 (Scheme 3), this reaction proceeding in
higher yield (79%) than for the diethoxy homologue 18 (66%,
see Scheme 1). Dealkylation was again selective for the 2-posi-
tion, giving hydroxyazulene 25, which underwent oxidative
dimerisation to give rac-26. At this point, we sought to convert
this biazulene diol into the corresponding bis(triate) in order
to be able to derivatise it by cross-coupling approaches. In the
event, the potential cross-coupling partner 27 was formed in
moderate yield upon use of excess triic anhydride. At this point
we considered the necessity of 3,30-diester substituents in the
present synthesis. As explained above, they were considered
essential in the 1,10-BAzOL design strategy in order to impart
stability by suppressing keto–enol tautomerism and also to
block over-oxidation/oligomerisation in the dimerisation of 19
to 1,10-BAzOL 20. However, in 27 the triate groups are non-
enolisable (and less electron-rich), so we reasoned the ester
functionalities could be considered to have served their purpose
at this point in the synthetic sequence. As such, we aimed to
demonstrate their removal upon treatment with phosphoric
Biaryl Ea/kJ mol−1

87.9a (ref. 60)

84.9 (this work)

94.1 (ref. 71)

have calculated these values using the data presented in these literature

RSC Adv., 2025, 15, 14881–14892 | 14885
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Scheme 3 Synthesis of bis(phosphonate) rac-30.
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acid, which is oen employed for hydrolysis/decarboxylation of
esters at the azulene 1- and 3-positions.23,72 In this case, treat-
ment of 27 with H3PO4/P2O5 gave expected bis(triate) 28 only
in low yield. Much more satisfactory was reversing the order of
events, with acid-mediated ester removal from 26 giving 29,
which if used immediately (and without purication) could be
doubly sulfonylated to give 28 in a greatly improved 52% yield
over two steps. Then a representative twofold cross-coupling
was demonstrated for 28, with the synthesis of 2,20-
bis(phosphonate)-1,10-biazulene 30 according to the method of
Stawinski et al.73 (Subsequently, an attempt to couple 27 under
the same conditions gave only the mono-coupled product).
Conclusions

We have prepared an axially chiral 1,10-biazulenyl-2,20-diol in
enantiopure form and determined the barrier to its race-
misation. The synthetic access to 1,10-BAzOL 20 is concise (5
steps from commercial materials to the racemate; 7 steps to the
single enantiomers) and there is scope for diversication of the
substituents. We have demonstrated this by carrying out an
exemplary cross-coupling using a variant of 20 – transformation
to bis(triate) 28 gave a suitable electrophilic coupling partner,
which underwent a double cross-coupling to give 2,20-
bis(phosphonate) 30. Analogous cross-couplings to introduce
many other substituents or functional groups at the 2-positions
may be envisaged. In addition, functionalisation at the 3-posi-
tions should be possible either by functional group
14886 | RSC Adv., 2025, 15, 14881–14892
interconversions of the esters, or by their removal (as per the
transformation of 27 to 28) followed by electrophilic aromatic
substitution (since the unsubstituted 3-position may be antici-
pated to be the most reactive for SEAr). For these reasons we
anticipate that the BAzOL synthesis described here may nd
varied applications in synthesis and catalysis.
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C. L. McMullin, F. Pradaux-Caggiano, C. L. Lyall,
G. Kociok-Köhn, J. Wenk, S. D. Bull, J. Yoon, H. M. Kim,
T. D. James and S. E. Lewis, Azulene-derived uorescent
probe for bioimaging: detection of reactive oxygen and
nitrogen species by two-photon microscopy, J. Am. Chem.
Soc., 2019, 141, 19389–19396; (e) Y. Zhou, Y. Zhuang, X. Li,
H. Ågren, L. Yu, J. Ding and L. Zhu, Selective dual-channel
imaging on cyanostyryl-modied azulene systems with
unimolecularly tunable visible–near infrared luminescence,
Chem.–Eur. J., 2017, 23, 7642–7647.
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