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Upconversion nanoparticles (UCNPs) exhibit unique photophysical properties that are ideal for bioimaging,
photovoltaics, and optoelectronics. This study systematically investigates how synthesis temperature (305 °
C vs. 320 °C) and reaction time (20—30 min) influence the structural and optical properties of Yb>*/Er®*-
doped NaYF,; core-shell UCNPs. By employing an optimized precursor dissolution protocol, we
achieved precise control over nanoparticle size, crystallinity, and upconversion luminescence (UCL).
High-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), luminescence
spectroscopy, and power-dependent emission analyses revealed that both temperature and reaction
time significantly regulate particle growth and UCL properties. Pure hexagonal B-NaYF, structures with
enhanced crystallinity were confirmed by sharper, more intense XRD peaks under optimized conditions.
Morphological transitions from small spherical nanoparticles (9.75 nm) to larger anisotropic structures
(13.3-19.1 nm) were accompanied by tunable emission and controllable red-to-green (R/G) emission
ratios. Power-dependent analyses further confirmed the effectiveness of two-photon upconversion

mechanisms, providing insights into the underlying energy transfer dynamics involved. Remarkably,

iig:g;%g;tﬁgﬂlnzeosgﬁ compared to the conventional method, the optimized protocol reduced reaction duration by 50%,
consistently yielding highly uniform and crystalline UCNPs with significantly improved upconversion

DO 10.1039/d5ra02389% efficiency. These findings underscore the critical role of synthesis temperature and reaction duration in
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1 Introduction

Upconversion nanoparticles (UCNPs) are a transformative class
of optical nanomaterials capable of converting low-energy
photons into higher-energy emissions through non-linear
optical processes.'® These unique properties arise from
energy transfer between sensitizer (e.g., Yb>") and activator (e.g.,
Er*", Tm*") ions embedded in host matrices such as B-NaYF,.”
Known for their high chemical stability, low phonon energy,
and transparency in the near-infrared (NIR) region,*® B-NaYF,-
based UCNPs exhibit emissions ranging from UV to NIR. This
versatility makes them suitable for applications in bioimag-
ing,"" theranostics, anti-counterfeiting,"”> microlasers,*
sensors,** and advanced photonic devices.*>*® Their deep-tissue
penetration, high photostability, and resistance to photo-
bleaching further distinguish them from traditional fluores-
cence probes.

Despite their potential, UCNPs face significant challenges in
biomedical,"”*® and photonic applications. Issues such as large
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precisely tailoring UCNP properties for advanced bioimaging and photonic applications.

particle size (>10 nm), low luminescence quantum yields
(UCQYs), and surface quenching'®*** hinder their widespread
adoption. Precise control over emission properties, particularly
the red-to-green (R/G) ratio, is critical for optimizing perfor-
mance in deep-tissue imaging and energy-efficient photonics.
Recent advancements, including dopant tuning, host lattice
modifications, and core-shell architectures, have improved
luminescence efficiency by mitigate surface quenching.
However, achieving precise control over core-shell structure,
particle size, and emission characteristics demands a deeper
understanding of synthesis parameters.*>?

UCNP synthesis typically involves high-temperature co-
precipitation or thermal decomposition methods, employing
lanthanide precursors dissolved in organic solvents like oleic
acid (OA), oleylamine (OM), and 1-octadecene (ODE).>*?>*

These solvents function simultaneously as reaction media
and surfactants, influencing particle crystallinity, size, and
morphology. Fig. 1 illustrates a schematic overview of the
synthesis protocol, emphasizing key parameters that determine
the final characteristics of UCNPs. Even minor adjustments in
synthesis conditions and precursor selection can significantly
alter the size, shape, and emission properties of UCNPs (Tables
S1 and S2%). Parameters such as dopant ratios and solvent
composition have been extensively studied.*** For instance,
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Fig. 1 Schematic representation of the synthesis protocol for NaYF4:Yb, Er core UCNPs: Step 1: Dissolution of lanthanide salts to form
a homogeneous solution. Step 2: The addition of precursors to facilitate nanoparticle formation. Step 3: Synthesis under controlled conditions,

followed by purification to isolate the desired UCNPs.

higher OA content often results in rod-shaped UCNPs,**
whereas sodium-to-fluoride mixing conditions influence
particle size,® and the Y*":F~ ratio critically determines the
crystalline phase.”” Although UCNP synthesis has been thor-
oughly investigated,*>*?%*%*® with precise control, demonstrated
over core-shell configurations,**?* the effects of reaction
temperature and time remain less explored. While particle size
typically increases with higher reaction temperature and pro-
longed duration,*** detailed studies on particle growth mecha-
nisms and associated luminescent behaviors are still necessary
to fully optimize UCNP performance for practical applications.
Moreover, systematic control over the red-to-green (R/G) emis-
sion ratio during synthesis is largely unexamined. Variations in
ligand-to-metal ratios or solvent composition during the initial
dissolution phase influence anisotropic growth and lumines-
cence efficiency. Additionally, recent advances in surface
passivation, such as ultra-thin inert shells, have shown the
potential to enhance UCL by minimizing non-radiative decay
pathways.

To address these gaps, we systematically investigated how
synthesis temperature and time influence the structural and
optical properties of Yb*'/Er**-doped B-NaYF, core-shell
UCNPs. Initial optimization studies were briefly conducted to
select suitable precursor dissolution conditions, details of
which are provided in the ESLf The optimized synthesis
protocol was then employed in detailed temperature-dependent
(305 °C vs. 320 °C) and time-dependent (20-30 min) investiga-
tions. A detailed summary of all synthesis conditions (including
temperatures and reaction times for core and core-shell
UCNPs) is provided in Table S3 in the ESL} Using HR-TEM,
luminescence spectroscopy, and power-dependent analyses,
we examined the impacts of reaction temperature, time, and
protective shell formation on UCNP morphology and emission
characteristics. Optimizing these synthesis conditions allowed
precise control over nanoparticle size and fine-tuning of the R/G
emission ratio. Furthermore, this approach reduced the reac-
tion time by up to 50%, producing uniform UCNPs with
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significantly enhanced upconversion efficiency. This study thus
advances the fundamental understanding of UCNP synthesis
and provides a scalable strategy for designing next-generation
nanoparticles tailored specifically for bioimaging, photonics,
and energy applications.

2 Results and discussion

The dissolution of precursors plays an important role in
synthesizing nanoparticles, because it significantly influences
nucleation kinetics, particle uniformity, and dopant distribu-
tion.>** Inadequate dissolution can lead to uneven nucleation
and uncontrolled particle growth, negatively affecting crystal-
linity and optical properties. To avoid these issues, precursor
dissolution conditions were initially screened to determine an
optimal synthesis protocol (details provided in ESIf). The
optimal condition identified from this preliminary study was
then employed to systematically examine the effects of synthesis
temperature and reaction time on nanoparticle growth and
luminescence properties.

2.1. Temperature-dependent core and core-shell
upconversion nanoparticles

Core NaYF,:Yb*" (0.2 mol%) Er*" (0.02 mol%) UCNPs were
synthesized at two growth temperatures: 305 °C and 320 °C. A
modified thermal decomposition method, adapted from previ-
ously published reports,**” was employed. The doping concen-
trations of Yb®>" (20%) and Er*" (2%) were selected based on
previously established optimal ratios that effectively balance
efficient energy absorption by Yb®" ions and minimize
concentration-quenching  effects associated with Er’*
ions.*>***72%3¢ To reduce surface quenching, an inert NaYF, shell
was applied to the core UCNPs.** TEM images (Fig. 2a and b)
display highly uniform, crystalline spherical particles in both
core and core-shell UCNPs. The size distribution histograms
(Fig. 2c¢) confirm a narrow particle size distribution, high-
lighting the uniformity of the synthesis process. The core

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) and (b) TEM images and HR-TEM images of core and core—shell UCNPs synthesized at 305 °C and 320 °C (scale bars: 50 nm and 5 nm,

respectively). (c) Size distribution histograms of the cores at 305 °C and 320 °C, along with those of their core—shell UCNPs. (d) XRD patterns (10—
60°) of core—shell UCNPs. (e) Magnified diffraction patterns at 15-19°, 28-32°, and 51-55°.

UCNPs synthesized at 305 °C, and their core-shell counterparts
measured 7.80 nm and 9.75 nm, respectively, while the core
UCNPs synthesized at 320 °C exhibited a slightly smaller size of
7.56 nm,*® with their core-shell size at 9.11 nm.>?

However, the size of UCNPs increased (~3 nm) as the
temperature rose from 310 to 320 °C during synthesis with

© 2025 The Author(s). Published by the Royal Society of Chemistry

sodium oleate.”” HR-TEM images (Fig. 2a and b) reveal distinct
lattice fringes, confirming the crystallinity of core and core-
shell UCNPs. The core UCNPs exhibit fringes corresponding to
the (200) and (201) planes (Fig. S1t), with d-spacings of
0.273 nm and 0.209 nm, respectively.’” In contrast, the core-
shell UCNPs show fringes corresponding to the (101) plane,
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with a d-spacing value of 0.289 nm. The UCNPs synthesized at
320 °C exhibited additional lattice spacing of 0.290 nm and
0.193 nm for the (101) and (210) planes in the core and 0.516 nm
and 0.289 nm for the (100) and (101) planes in the core-shell
structure, indicating well-defined crystallinity in the hexagonal
B-phase of NaYF, structure."*?¢>*

XRD patterns (Fig. 2d) confirm the crystalline nature of the
core-shell UCNPs synthesized at 305 °C and 320 °C. The
observed diffraction peaks correspond to the hexagonal phase
of NaYF,, indexed by the JCPDS card (28-1192),***** validating
phase purity. As shown in Fig. S2,7 the core UCNPs synthesized
at 280 °C exhibit diffraction peaks corresponding to the cubic a-
phase, while those synthesized at 320 °C show sharp peaks
matching the hexagonal B-NaYF, structure, confirming that
elevated temperatures above 300 °C are required to drive the
cubic-to-hexagonal phase transformation.”*** Fig. S31 further
confirms that all core UCNP samples synthesized at 320 °C
exhibit pure hexagonal B-phase diffraction patterns. The
progressive sharpening of peaks with increasing reaction time
indicates enhanced crystallinity and reduced structural
disorder, consistent with Ostwald ripening and thermally
driven recrystallization. A slight shift in peak positions (Fig. 2e)
indicates thermal effects on lattice parameters, while the
sharper peaks in the 320 °C sample confirm enhanced crystal-
linity compared to the 305 °C sample. The observed improve-
ment in crystallinity at higher temperature is attributed to
Ostwald ripening, dissolution-recrystallization, and secondary
nucleation, collectively reducing internal defects and stabilizing
nanoparticles growth. Ostwald ripening involves the dissolution
of smaller particles and redeposition onto larger nuclei,
a process particularly enhanced at elevated temperatures due to
increased thermal energy. This increased thermal energy
strengthens the driving force for crystallization, favoring the
formation of well-ordered nanoparticles. Additionally, thermal
energy facilitates lattice strain relaxation, resulting in nano-
particles with reduced structural disorder and enhanced
crystallinity.>>3¢4

The UCL spectra (Fig. 3a) for core and core-shell UCNPs
synthesized at both temperatures revealed sharp, intense peaks
at 525 and 540 nm (green emission) and relatively high-intensity
peaks at 654 nm (red emission). These emissions correspond to
the transitions of Er** ions (*Hy1, — “Lissa, Sz = “Lisp, and
*Fg, — *1;55), which are highly efficient for photon upconver-
sion.”* The UCL intensity is significantly influenced by the
surface quenching effect.”**> The core-shell UCNPs enhanced
threefold and two-and-a-half-fold in UCL intensity compared to
the core UCNPs, confirming that the NaYF, acts as an inert
isolation layer, consistent with past studies.>***** This
enhancement confirms the role of the shell in suppressing
surface quenching. The core UCNPs at 320 °C exhibited
stronger UCL (Fig. S4f) than those at 305 °C, attributed to
improved crystallinity at higher growth temperatures.>**

To further investigate the role of shell thickness in lumi-
nescence enhancement, we systematically varied the shell
thickness from ~7 nm to 10 nm (Fig. S57). A clear increase in
upconversion emission intensity was observed with increasing
shell thickness, attributed to the progressive suppression of
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surface quenching. Notably, the 28 nm core-shell UCNPs (with
a 10.2 nm shell) exhibited the highest emission, showing more
than a fourfold enhancement compared to the core-only
sample. These findings align well with previous reports and
highlight the importance of shell engineering in optimizing
UCL efficiency.>**

The R/G ratio (Fig. S61) was higher in core UCNPs than in
core-shell UCNPs at both temperatures, indicating stronger red
and weaker green emissions for the core particles. The shell
effectively reduced surface quenching, particularly in red
emissions, which are more susceptible to quenching due to
their proximity to the band edge of the host. The shell also
facilitated energy transfer,® enhancing green emissions via
a multi-photon process, resulting in an decreased R/G ratio in
the core-shell UCNPs. As shown in Table S4,1 the R/G emission
ratio for core UCNPs decreases with increasing synthesis
temperature (from 1.40 at 305 °C to 1.28 at 320 °C), suggesting
a stronger quenching effect on the red-emitting *Fo, level. This
is attributed to the smaller energy gap of the *Fo;, — *Ii55
transition, which is more susceptible to non-radiative multi-
phonon relaxation at elevated temperatures. In contrast, green-
emitting levels (2H11/2 and 483/2) are relatively less affected. For
core-shell UCNPs, a slight increase in the R/G ratio from 1.15 to
1.20 suggests that the inert shell helps mitigate thermal
quenching effects, preserving red emission.

For power-dependent measurement, the laser power was
varied between 4.14 W cm™? and 19.67 W cm™>. The relation-
ship between UC emission intensity (I) and excitation pump
power (P) for upconversion processes is described by the power-
law equation:®**¢

Ly < P" (1)
(where I, represents the UC emission intensity, P is the exci-
tation pump power, and n indicates the number of photons
involved in the UC mechanism). The value of ‘n’ can be deter-
mined from the slope of the In(I) versus In(P) plot using linear
fitting.*** The red and green emissions of Er*" ions typically
require approximately two photons to complete the energy
transfer process.*® This indicates that both emissions follow
a two-photon process in the non-saturated state. Fig. 3b and S77
display the emission spectra at varying laser powers during
a single trapping event, demonstrating that the luminescent
intensity rises in proportion to the laser power.

The logarithmic plots (Fig. 3¢) of intensity (Log I) at 540 nm
and 654 nm versus power density (LogP) revealed distinct
power-law behaviors. At 305 °C, the slopes for green and red
emissions were 1.79 and 2.02, respectively, confirming efficient
two-photon upconversion. At 320 °C, the slopes decreased to
1.58 (green) and 1.86 (red), indicating slight reductions in effi-
ciency due to smaller particle sizes.

The R/G ratio as a function of pump power is shown in
Fig. 3d. At both growth temperatures, 305 °C and 320 °C, the R/
G emission ratio increases nonlinearly with pump power,
reflecting the energy transfer upconversion dynamics between
Er*" ions. The R/G ratio grows gradually at lower pump powers,
but at higher powers, the curve saturates, indicating a limit to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) Emission spectra of core and core—shell UCNPs synthesized at 305 °C and 320 °C, excited by a 980 nm laser. (b) Variation in

upconversion emission spectra for NaYF4:Yb/Er@NaYF4 UCNPs synthesized at 305 °C as the laser power increases from 4.14 W cm ™2 t0 19.67 W

Cm72

UC process in Yb>*/Er®* co-doped NaYF, UCNPs.

further increases in the R/G ratio. The UCNPs synthesized at
320 °C exhibit a steeper R/G ratio increase and earlier saturation
compared to the 305 °C sample, indicating enhanced energy
transfer efficiency and reduced non-radiative losses. In contrast,
the 305 °C sample displays a more gradual increase in the R/G
ratio, suggesting slower excitation dynamics. It is important to
note that previous reports indicate typical UCQYs in the range
of 0.005-0.01% for similarly sized (~10 nm) Yb*'/Er**-doped
NaYF, UCNPs.””*” Core-shell architectures are known to
significantly enhance these values (up to approximately 0.3%),
aligning well with our observed improvements in luminescence
intensity achieved through optimized synthesis conditions.
The energy transfer process from Yb*" to Er** ions occurs via
a multi-phonon mechanism, allowing efficient NIR photon
absorption by Yb** ions and subsequent non-radiative energy
transfer to Er*” ions. This mechanism enhances excitation effi-
ciency, resulting in green (520-560 nm) and red (654 nm)

© 2025 The Author(s). Published by the Royal Society of Chemistry

.(c) Log ! vs. Log P for green and red emissions in core—shell UCNPs. (d) R/G ratio vs. pump power. (e) Energy level diagram illustrating the

luminescence. In this process, Yb*" ions in the *F,, state absorb
NIR photons and transition to the >F5j, state, non-radiatively
transferring energy to Er’* ions. Er*" ions then undergo
multiple energy level transitions through a multi-step energy
transfer upconversion (ETU) process, involving states such as 1,5,
2, “Fojz, and *S; 5, leading to visible emissions. The excitation and
relaxation pathways of Er’" ions are completed in two steps.
Fig. 3e illustrates the initial excitation of Er from *I;5/, (ground
state) to “Iy,,. Yb*" further excites Er** to *Fyy,, while Er** non-
radiatively relaxes from *F5, to *Hyy5, *Ss2, and *Foy,, resulting
in visible emission. Additionally, it is noted that the enhance-
ment of red emission is primarily due to the efficient cross-
relaxation processes in the Er*" ion (*Iiy, + *Fyp = *Fop).*°
The CIE (Commission Internationale de 1'Eclairage) chro-
maticity diagram (Fig. S81) illustates the emission properties of
UCNPs. Core-shell UCNPs synthesized at 305 °C exhibited
chromaticity coordinates favoring green emission (~540 nm),

RSC Adv, 2025, 15, 24905-24916 | 24909
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while UCNPs synthesized at 320 °C shifted toward yellow (~560
nm), confirming an increased population of red-emitting level
(*Foy2) with rising temperature. The higher synthesis tempera-
tures modified the crystal field around Er*" ions,* promoting
non-radiative pathways that enhanced red emissions.

The unexpectedly small particle size obtained at elevated
synthesis temperatures can be rationalized by considering
Ostwald ripening dynamics. As described by van Westen and
Groot,* temperature variations strongly influence particle
dissolution and subsequent growth. According to their deriva-
tion, the change in nanoparticle radius r over time ¢ follows:

&r_p o (3—1) 2)
dt RT¥? \ C.

Here, D is the diffusion coefficient, V,, is the molar volume, v is
the interfacial tension, R is the universal gas contact, T is
absolute temperature, C is the solute concentration at the
particle surface, and C is the bulk solute concentration. This
relationship indicates that elevated synthesis temperatures can
enhance particle dissolution rates, effectively stabilizing
smaller nanoparticles by favoring the dissolution of larger, less
stable nuclei.

2.2. Time-dependent variations in core and core-shell
UCNPs

Fig. 4a and S9f present TEM images of core and core-shell
UCNPs synthesized with reaction durations of 20, 25, and
30 min. No aggregation was observed. The particle-size
distribution histogram in Fig. 4b indicates a narrow size
distribution. UCNPs synthesized at 20 min were smaller (core:
11.4 nm; core-shell: width 13.3 nm, length 19.1 nm), sug-
gesting anisotropic particle growth. With increased synthesis
time, particle size gradually increased, with core UCNPs
reaching 14.3 nm at 25 min and exhibiting a significantly
larger size of 42.2 nm at 30 min. Correspondingly, core-shell
UCNPs also increased in size up to 46.8 nm, adopting larger
polyhedral shapes, confirming progressive structural evolution
over time. HR-TEM analysis (Fig. S107) revealed clear and well-
defined lattice fringes with a spacing of 0.289 nm (101) crystal
plane, confirming the hexagonal f-phase NaYF, struc-
ture.****>* Additional HR-TEM (Fig. 4a) of 30 min UCNPs
showed distinct lattice fringes with the spacing of 0.513 nm,
0.288 nm, 0.259, and 0.193 nm, indicative of a highly crystal-
line structure. The corresponding SAED pattern identifies
(100), (101), (200), and (210) planes, confirming the hexagonal
phase.23,32,44

XRD analysis (Fig. 4¢) confirmed B-phase NaYF, (JCPDS 28-
1192)"***° and demonstrated that increased synthesis duration
improved crystallinity. Specifically, diffraction patterns showed
sharper peaks with increased reaction time (from 20 min to 30
min), reflecting greater crystallite size, enhanced atomic
ordering, and reduced lattice defects.””*® At 20 min, broader
diffraction peaks indicated smaller nanoparticles and structural
defects, while 30 min synthesis provided highly crystalline and
uniform nanoparticles.
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The absence of significant peak shifts confirmed minimal
strain variations. These results demonstrate that prolonged
synthesis enhances structural integrity, yielding well-
crystallized, phase-pure UCNPs with improved optical and
physical properties, corroborated by TEM analysis.

Fig. 4d illustrates the time-dependent growth of UCNPs by
plotting particle size against synthesis duration (20 min, 25
min, and 30 min). Initially, extending the reaction time from
20 min to 25 min led to a moderate particle-size increase
(~25.4%). However, prolonging the synthesis duration by an
additional 5 min (25 min to 30 min) resulted in a significant
particle-size increment (~195.4%). This drastic growth accel-
eration clearly reflects Ostwald ripening dynamics, wherein
smaller nanoparticles preferentially dissolve, releasing ions
that subsequently redeposit onto larger nanoparticles, thus
driving significant particle enlargement and morphological
evolution. This mechanism aligns closely with previous studies
by Rinkel et al., who reported similar particle-growth patterns
associated with the transformation from cubic (a-phase) to
hexagonal (B-phase) NaYF, structures over prolonged synthesis
times.** This further supports the crucial influence of reaction
time in determining the final nanoparticle size and
morphology.

The UCL spectra of time-dependent core and core-shell
UCNPs (Fig. 5a) showed sharp emission peaks at 520 nm,
540 nm, and 654 nm, corresponding to the Er’* transitions
*Hyyp = *Lispy *Ssp = “Lisp, and *Fo;, — “Lys), respectively.
Core-shell structures had stronger UCL due to reduced surface
quenching and improved energy transfer,* confirming an effi-
cient upconversion process in all samples. Variations in shape
and configuration affect the luminescence properties of the
nanoparticles by altering surface area, shell thickness, and
overall geometry.”® The 30 min core also showed the highest
intensity due to increased crystallinity from extended growth
time. Fig. 5b presents the normalized luminescence spectra (at
654 nm) of core-shell UCNPs, revealing notable spectral
changes as green emission intensity decreases as particle size
increases.

Fig. 5c presents the red-to-green (R/G) emission intensity
ratios (Table S47). Time-dependent, the core's R/G ratio initially
decreases from 20 min to 25 min but increases sharply at
30 min. In contrast, the core-shell ratio gradually increases
throughout synthesis, suggesting that the shell stabilizes the
environment around the Er** ions, enhancing red emission over
time.

Additionally, the color coordinates of the UCNPs were
determined using the CIE 1931 color space diagram (Fig. 5d).
These coordinates gradually transition from green to yellow-
green as the synthesis time increases. At 20 min, the UCNP
emission closely matches green (approximately 540 nm), con-
firming the presence of green-emitting energy levels (*Hy4,, and
“S3/,) and optimal energy transfer between Yb** and Er**. At
25 min, the coordinates shift slightly toward yellow, confirming
a higher population level of red (*Fos,). This increase results
from a more developed crystal structure due to extended
synthesis time, which enhances overall crystal growth and
modifies the environment surrounding the Er** ions. At 30 min,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) TEM images of the core synthesized for various durations (20 min, 25 min, and 30 min) alongside their core—shell UCNPs. Scale bar =

50 nm. HR-TEM images and SAED patterns of core and core—shell UCNPs synthesized with a growth time of 30 min. Scale bars in HR-TEM
images = 5 nm. (b) Histograms of size distribution. (c) XRD patterns (10-60°) of core—shell UCNPs. (d) Size of UCNPs as a function of reaction

time.

the color coordinates shift toward a more yellowish region as
the synthesis time extends. This indicates a higher population
of red (*Fyy,) levels compared to the green-emitting levels (*Hy,,
and *S;,), attributed to increased particle size and improved
crystallinity from shell thickening, which reduces non-radiative
green relaxation while favoring red emissions. These observa-
tions demonstrate that synthesis time significantly impacts
UCNP color output. Time-controlled tuning of emissions is vital
for applications requiring specific wavelengths, such as color

© 2025 The Author(s). Published by the Royal Society of Chemistry

displays and multi-modal imaging, where distinct emissions
enhance functionality and contrast.

The power dependence of luminescence intensities for Yb/
Er-doped NaYF, UCNPs synthesized under varying times was
investigated. A slope near 1 indicates a linear relationship
associated with single-photon processes,>**** while values
approaching 2 correspond to two-photon processes.*

In Fig. 5e, over synthesis times of 20 min, 25 min, and
30 min, green emission slopes shifted toward higher-order
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processes, particularly with the maximum slope of 2.09 at
20 min, decreasing with time up to 1.38 at 30 min. This varia-
tion reflects changes in particle size and crystal field environ-
ment affecting the energy transfer dynamics. A slope of 2.09,
slightly above 2, confirms an efficient two-photon process with
minimal multi-photon interactions. A slope of 1.82, close to 2,
indicates a two-photon absorption process, while a sub-linear

24912 | RSC Adv,
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time. (d) CIE chromaticity diagram for different growth durations: 20 min, 25 min, and 30 min. (e) Log / versus Log P for green and red emissions in

slope of 1.38 suggests a complex upconversion mechanism
involving multiple energy transfer steps between Yb** and Er**
ions.”' The red emission followed a similar trend, with
consistently higher slopes than green emission across all
conditions, ranging from 1.86 to 2.23 and decreasing from 2.23
to 1.64 as growth time extended from 20 min to 30 min. As
growth time increased from 20 min to 30 min, power

© 2025 The Author(s). Published by the Royal Society of Chemistry
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dependence slopes decreased for both emissions, indicating
reduced multi-photon upconversion efficiency. Shorter growth
times produced smaller UCNPs with higher surface-to-volume
ratios, affecting surface passivation and quenching effects.*
For green emission, sub-linear slopes (<2) at 30 min confirm
complex energy transfer dynamics within the core-shell
structure.

The R/G ratio plot (Fig. 5f) indicates that increasing the
reaction time from 20 min to 30 min significantly influences the
optical properties of core-shell UCNPs, mainly reflected by the
enhancement of the red-to-green emission (R/G) ratio. At
shorter reaction times (20 min), the relatively low and gradually
increasing R/G ratio with pump power suggests incomplete
shell formation or less-developed ecrystallinity, leading to
prominent non-radiative recombination processes and limited
cross-relaxation efficiency towards red emission.'****>* At the
intermediate synthesis time (25 min), the nanoparticles exhibit
improved crystallinity and effective core-shell interfaces,
resulting in enhanced energy transfer and a noticeable satura-
tion peak at higher pump powers. This saturation behavior
indicates that at elevated excitation powers, the energy transfer
pathway toward red emission becomes increasingly dominant
until it reaches an equilibrium or saturation limit due to
competitive energy-transfer processes.*** Finally, extending the
reaction time to 30 min yields a significantly higher maximum
R/G ratio, suggesting optimal crystallization, reduced surface
defects, and an effectively passivated core-shell interface, all
contributing to highly efficient energy migration and cross-
relaxation pathways favoring red emission.”** The saturation
at higher pump powers in the 30 min sample strongly supports
the conclusion that optimized reaction conditions can improve
upconversion emission characteristics, enabling fine-tuned
optical properties for advanced bioimaging and photonic
applications.

The observed evolution of nanoparticle size, morphological
transitions, and luminescence characteristics in this study can
be effectively explained by established nanoparticle growth
mechanisms, particularly the La Mer model combined with
Ostwald ripening.*® Initially, nanoparticles nucleate rapidly
when precursor concentrations exceed a critical supersatura-
tion threshold, consistent with classical La Mer nucleation
theory. These nucleation events produce small cubic phase
nanoparticles that subsequently grow and undergo a thermo-
dynamically favored transformation into hexagonal B-phase
nanoparticles upon reaching a critical size. Further nano-
particle growth, especially at prolonged reaction times,
primarily occurs via Ostwald ripening, in which smaller nano-
particles preferentially dissolve, releasing ions that subse-
quently redeposit onto larger nanoparticles. This mechanism
significantly increases particle size and enhances crystallinity,
aligning well with the kinetic studies by May et al. and Radunz
et al., which reported similar nucleation, phase transition, and
ripening dynamics in NaYF,-based systems.**** Additionally,
observed variations in the red-to-green (R/G) emission ratio and
nonlinear pump-power-dependent luminescence behavior can
be attributed to size-dependent surface quenching and internal
energy-transfer dynamics. Specifically, smaller nanoparticles

© 2025 The Author(s). Published by the Royal Society of Chemistry
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exhibit pronounced surface quenching, selectively enhancing
the relative red emission intensity compared to green emis-
sion.****>% Conversely, core-shell architectures and optimized
doping significantly reduce surface defects, improving lumi-
nescence efficiency. Collectively, these insights underscore the
importance of precisely controlling synthesis parameters,
particularly temperature and reaction duration, for tailoring
UCNP properties in targeted bioimaging, and
advanced photonic applications.

sensing,

3 Conclusion

This study demonstrates a precise, systematic approach to
synthesizing high-quality Yb**/Er**-doped NaYF, core-shell
UCNPs by carefully tuning the reaction temperature and
synthesis time. In summary, a growth temperature of 320 °C is
optimal for synthesizing sub-10 nm core-shell UCNPs while
preserving their optical properties. Additionally, small-sized
(11.4 nm) UCNPs and highly crystalline larger UCNPs were
successfully synthesized using our optimized methodology.
Furthermore, reaction times about 50% shorter than conven-
tional methods reduced nanoparticle aggregation and surface
quenching effects, enabling precise control of particle size,
morphology, and emission characteristics. Power-dependent
emission analyses provided valuable insights into the efficient
two-photon energy transfer mechanisms governing upconver-
sion luminescence. The ability to reproducibly synthesize high-
quality, ultrasmall UCNPs with controlled emission character-
istics holds great promise for their integration into advanced
biomedical imaging, nanoscale sensing, and photonic devices.
Future investigations into surface engineering and further size
reduction could expand their applicability, particularly in
scenarios demanding minimal nanoparticle dimensions and
high luminescence efficiency. These findings highlight the
important role of reaction duration in nanoparticle engi-
neering, illustrating that controlled synthesis time is crucial for
tailoring UCNPs for specific bioimaging or photonic applica-
tions that require precise particle sizes and adjustable emission
characteristics.
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