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graphene oxide synthesis:
investigation of structure and physicochemical
properties with boosting of oxygen content and
microporous surface area†

Konstantinos N. Maroulas,a Nick Vordos,b Athanasios C. Mitropoulosa

and George Z. Kyzas *a

The present work reports an innovative modification of graphene oxide (GO) using air nanobubbles (NBs). A

comprehensive set of characterizations, including Raman spectroscopy, FTIR, XRD, SEM, porosimetry, and

SAXS, confirmed the improved structural features and functional groups. A notable increase in the specific

surface area to the value of 109.4 m2 (2.5-fold) was achieved through incorporation of the NBs, along with

the introduction of microporosity, which significantly improved ion diffusion kinetics relative to previous

methodologies. FTIR analyses confirmed the rise in oxygenated functional groups, mostly C–O entities,

which improved the surface reactivity of GO@NBs. XRD confirmed the increase in crystallinity as well as

greater crystal size in GO@NBs, while SAXS confirmed the structural integrity as well as material porosity.

Air NBs, therefore, impact the physicochemical properties of GO extensively and reveal significant

opportunities for energy storage, catalysis, and remediation.
Introduction

Graphene oxide (GO), the two-dimensional oxidized derivative
of graphene, comprises a hexagonal lattice of carbon molecules
adorned with functional oxygen groups in the form of hydroxyl,
epoxy, carbonyl, and carboxyl units.1 Such groups destabilize
the sp2 network while endowing hydrophilic character.2

Produced through controlled oxidation of graphite, GO is a an
important functionally versatile material in its own right,
having applications in energy storage, composites, catalysis,
biomedicine, and electronics. The tunable surface chemistry,
high specic surface area, and covalent/non-covalent function-
alization of GO render it a nanotechnology pillar that closes the
gap between the excellent intrinsic properties of graphene and
processability.3 Recent structural models, like the Lerf–Kli-
nowski model, highlight the dynamic interaction of sp3-
oxidized domains and sp2-conjugated regions, governing the
electronic, mechanical, and chemical properties of GO.4 For
example, Guerrero-Contreras and Caballero-Briones demon-
strated that despite maintaining constant stable oxygen-to-
carbon (O/C) ratios (∼0.2), variability in the distribution of
functional groups determined by the synthesis conditions,
istry, Faculty of Sciences, Democritus

ece. E-mail: kyzas@chem.duth.gr

ity of Thrace, 65404 Kavala, Greece

tion (ESI) available. See DOI:

the Royal Society of Chemistry
affects electrical resistance, optical absorption, and exfoliation
efficiency greatly.5 Thereby stressing the need for exacting
structural control. Nevertheless, the non-stoichiometric nature
of GO and susceptibility to synthesis conditions render repro-
ducibility difficult, and advanced precautions need to be taken
to tailor its functionality.

The heterogeneity in structure of GO driven by defect
density, distribution of functional groups, and oxidation level
constitutes a challenge as well as opportunity. Though oxygen
functionalities enhance hydrophilicity and chemical activity,
over-oxidation lowers the p-conjugated network, compromising
electrical conductivity and mechanical strength.6 Performed via
traditional routes such as Brodie's (fuming HNO3/KClO3) and
Hummers' (H2SO4/NaNO3/KMnO4), GO is prone to produce
layers with random defect distributions, residual impurities
(e.g., sulfate esters), and environmental toxicity via the release
of toxic gases through NO2 and ClO2 emissions and acidic
waste.7 Recent advances, however, highlight the employment of
green processes, such as Marcano's modied Hummers'
process, which excludes NaNO3, employs H3PO4/H2SO4 mixture
to enhance interlayer expansion, and reduces structural defects
by intermediate stabilization. This approach not only mini-
mizes environmental footprint but also increases carboxyl
group concentration, optimizing GO for biomedical applica-
tions with edge-selective functionalization. Meanwhile,
research identies that the kinetics of oxidation and the quality
of precursor graphite are inuential factors on uniformity of
functional groups.8 For example, pre-exfoliated graphite
RSC Adv., 2025, 15, 16525–16531 | 16525
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Fig. 1 Synthetic route of GO@NBs.
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precursors, like in Sun–Fugetsu's synthesis, produce near-
quantitative levels with less defect density, where pre-
treatment is a key factor in scalable synthesis.9 Additionally,
solvent selection during synthesis and dispersion, such as
acetone or ethanol, critically impacts GO's morphology and
electrical properties. Zaaba et al. demonstrated that ethanol
promotes agglomeration and higher conductivity due to
enhanced ake contact, while acetone yields well-dispersed GO
with larger interlayer spacing (0.75 nm vs. 0.71 nm), under-
scoring the solvent's role in tailoring GO for specic applica-
tions.10 Despite these developments, the balancing act of
oxidation to preserve sp2 domains for charge transport, along
with the incorporation of functional groups for targeted appli-
cations remains a central challenge.

In the last decade, the synthesis of GO has focused more on
sustainability, scalability, and structural delity. Contemporary
iterations of Hummers' process, as Tour's protocol, utilize
H3PO4 to stabilize intermediates in the production of GO with
high carboxyl content and minimized defects.11 Today's
advances at monitoring oxidation processes in real-time, such
as in situ Raman spectroscopy, and by utilizing environmentally
sustainable synthesis methods, such as electrochemical and
plasma-assisted exfoliation, provide ways for reducing struc-
tural imbalances. Yet, difficulties still exist to obtain uniform
oxygen supply and output maximization without inuencing
quality norms.

Conventional modication processes oen have trade-offs
associated with scalability, yield, and environmental impacts.
Within the last few years, introducing NBs has become one of
the novel processes in the eld of materials science, due to their
unique interfacial behaviors, extended stability, and high
surface reactivity. While the majority of studies achieve porosity
in GO through composite materials (e.g., polymers, nano-
particles) or post-synthesis treatments like chemical activation
or plasma etching, this study suggests the addition of NBs to the
synthesis process. The role of NBs is to create hierarchical
microporous structures within GO sheets. This eliminates the
need for additives and preserves GO's inherent properties while
addressing the absence of control over pore distribution in
conventional methods like Hummers' or Staudenmaier's.12–15

For instance, earlier work using g-irradiation for pore formation
used toxic reagents and was not scalable, whereas nanobubble-
assisted synthesis offers a greener, tunable alternative.16 NBs
are gas bubbles stabilized by interfacial forces whose addition
affects structural defects and hierarchical pore networks.17 The
process utilizes nanobubble collapse or stabilization to create
conductive microporous channels, resulting in GO with
enhanced oxidation uniformity, scalability, and porosity for
energy storage or catalysis.16,18 The process alleviates short-
comings of conventional GO synthesis by combining Marcano's
green protocol with pore engineering using nanobubbles,
opening a new pathway to manipulating GO's physicochemical
properties.

The NBs addition can be explained simply: (i) they could be
employed to increase exfoliation efficiency and modulate
oxidation kinetics;19 (ii) NBs with high surface energy and
cavitation upon collapse, create localized shear forces that are
16526 | RSC Adv., 2025, 15, 16525–16531
employed to separate graphite layers with reduced reliance on
harsh chemical oxidation, reducing structural defects and
carbon lattice integrity;20 Meanwhile, the gas–liquid interfaces
of NBs facilitate oxygen diffusion, leading to homogeneous
oxidation and higher oxygen functional group density (e.g.,
epoxy, hydroxyl groups). The latter (pore formation and
improved chemical oxidation) enhances surface area, porosity,
and uniform structure in GO.21–23 These pores minimize steric
hindrance and offer interconnected channels for ion diffusion,
decreasing resistance to ion transfer. Also, the porous structure
has more oxygen functional groups exposed, enhancing elec-
trostatic interactions with ions.24,25 (iii) this controlled exfolia-
tion enables larger, thinner GO sheets with more uniform
morphology, and (iv) NBs can control oxidation through the
formation of reactive species, optimizing the distribution of
oxygen-containing functional groups on GO's structure for
improved dispersibility, electrical conductivity, or mechanical
strength.26
Materials and reagents

All the materials were used as received. Graphite akes (75%
over 150 mm), sulfuric acid (98%), potassium permanganate
(99%) and hydrogen peroxide (30%) were supplied from Merck
(Darmstadt, Germany). Ultrapure water containing bulk NBs
with air were generated by counterow hydrodynamic cavita-
tion, as reported elsewhere.27
Synthesis of GO@NBs and GO

GO@NBs was synthesized following Marcano et al. method.28

H2SO4 was combined with H3PO4 in a 9 : 1 (v/v) ratio. The
purpose of adding orthophosphoric acid is to assist the injec-
tion of the oxidation solution.11 Then, graphite akes were
placed in the acid mixture, followed by the addition of KMnO4

(1 : 6 wt. ratio) in small portions, causing a temperature shi of
40–50 °C. The mixture was heated to 50 °C in a temperature-
controlled water bath and stirred for 12 hours. As the process
progressed, the mixture transformed into a paste. Aer 12
hours, ultrapure water containing air@NBs was added and the
system was let to stir for 30 minutes. Finally, 30 wt% H2O2 was
poured in the mixture, shiing the color to bright yellow. H2O2
© 2025 The Author(s). Published by the Royal Society of Chemistry
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assisted the reduction of the manganese ion to soluble
manganese sulphate and oxides. The produced GO washed with
200 mL HCl (37%), distilled water until pH ∼ 6 and freeze-dried
for 48 h. The synthetic route is presented in Fig. 1. GO was
synthesized in the same way, using ultrapure water without
NBs.
Fig. 3 XRD patterns of GO, GO@NBs.
Results and discussion

SAXS was used as a structural characterization technique to
analyze the architecture of the samples. As shown in Table S1†
the comparison of radius of gyration (Rg) and fractal dimension
(Df) values, alongside the SAXS intensity proles (Fig. 2), suggest
that the higher of Rg value observed for GO@NB (20.95 nm)
indicate larger, more extended structures, potentially reecting
well-dispersed graphene oxide sheets.29,30 In contrast, the lower
Rg value for GO (15.6 nm) suggest more compact, crumpled
congurations. The fractal dimension values also indicate
structural differences, with higher values (Df ∼ 2.6) for
GO@NBs, suggesting a more complex surface structure or
degree of aggregation, while lower values (Df ∼ 1.8) for GO point
to less complex, more disordered or mass-like structures.31,32

The Kratky analysis supports these ndings by indicating
varying degrees of structural order among the samples. The
Kratky curve of GO@NBs, indicate a more compact, folded
structure, characteristic of well-organized GO sheets. According
to the exponent (a), the higher value of GO@NBs (a = 1.6)
indicates a porous structure, while the lower value of GO (a =

0.3) suggests smoother surfaces.33,34 Overall, the combination of
these analyses paints a picture of varying degrees of sheet
dispersion, surface roughness, and aggregation, depending on
the specic material treatment and composition.

XRD diffractograms of GO and GO@NBs are presented in
Fig. 3. Both materials show the same peak at ∼10.34°, which is
the characteristic peak for GO, corresponding to the (001) lattice
plane.35 The d-spacing was calculated to be 0.86 nm based on
Bragg's law.36 Surprisingly GO@NBs showed much higher
Fig. 2 SAXS profiles of GO, GO@NBs.

© 2025 The Author(s). Published by the Royal Society of Chemistry
intensity (more than double) due to the presence of NBs. This
led to a material with higher crystallinity and larger crystallite
sizes, as shown in Table S2,† with fewer defects. The increment
of crystallinity and crystal size in XRD data of GO@NBs is due to
the structural reorganisation induced by NB. Shear forces
induced by the collapse of NBs disrupt the restacking of gra-
phene layers, creating hierarchical microporous networks while
promoting localized ordering of smaller crystalline domains.
This reduces lattice disorder and strain, leading to sharper XRD
peaks and larger apparent crystal sizes determined by the
Scherrer equation.37–39 Furthermore, the homogeneity of func-
tional group distribution could possibly improve due to the
NBs' gas–liquid interfaces that enable oxygen diffusion upon
oxidation. This reconciles sp3 defect formation with intact sp2

domains, favouring a more ordered yet porous structure.40 The
latter comes in full agreement with SAXS results.

Raman spectroscopy was utilized to examine the crystal
structure, structural disorders, and defect structures in GO
materials. The spectrums of GO and GO@NBs were measured
Fig. 4 Raman spectrum of GO, GO@NBs.

RSC Adv., 2025, 15, 16525–16531 | 16527
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Fig. 6 FTIR spectra of GO, GO@NBs.

Table 1 Ratio of peak intensity of FTIR spectra of different oxygen
groups to C]C

GO GO@NBs

C]O/C]C 0.92 1.12
C–O/C]C 1.05 2.19
C–O–C/C]C 0.90 1.50
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from 200 cm−1 to 2000 cm−1, exhibiting the results presented in
Fig. 4. The Raman G band is caused by the in-plane vibration of
the C–C bond of the sp2 orbital in crystalline graphite, whereas
the D band is commonly referred to as the disordered band or
defect band.41 The latter is caused by the breathing motion of
sp2 atoms on the rings' edge planes, as well as graphite aws.
Both materials present D band at 1347 cm−1, GO@NBs showed
a G band at smaller wavenumbers (1580 cm−1). This shi to
lower values of G band indicates a higher oxidation degree for
GO@NBs. This is in line with ID/IG, where GO@NBs exhibit
a higher value concluding to a more disorder structure due to
increased oxygen units. Both materials present ID/IG ratio ∼1.
The ID/IG ratio value is close to those reported in other papers
with GO synthesis.42,43

The UV-vis spectrum of GO and GO@NBs is presented in
Fig. 5. It shows a prominent peak at around 225–230 nm,
attributable to the p–p* transition of the residual sp2 C]C
bonds and the extensive functionalization with oxygen groups.
Furthermore, the faint shoulder at around 300 nm indicates the
n–p* transition of the C]O bond.44,45 GO@NBs seems to have
a wider shoulder from 300–330 nm, indicating a higher degree
of oxidation.

The improved synthesis with NBs further inuences the
number of functional units as can be seen in Fig. 6. Both
materials exhibit the same peaks, which are commonly seen in
GO. Specically, they show a broad peak between 3500 and 3000
which is attributed to the O–H bond of hydroxyl and carboxyl
units and a small peak at around 2200 which can be owed to
alkyne groups.46 Also, ketone (C]O) and epoxy (C–O) peaks can
be seen in 1720 and 1050 cm−1, respectively.47

In all cases GO@NBs exhibits broader peaks with higher
intensity, leading to an increased number of oxygenated groups,
compared to plain GO. The latter can be conrmed by
comparing the ratio of the oxygenated groups (C]O, C–O, C–O–
C).48,49 As it can be observed in Table 1, GO@NBs have slightly
increased ratio for C]O/C]C achieving a value of 1.12,
compared to 0.92 of GO. However, biggest increase has been
observed for C–O (hydroxyl and ether) and C–O–C (epoxy) units,
Fig. 5 UV-vis spectra of GO, GO@NBs.

16528 | RSC Adv., 2025, 15, 16525–16531
where the values of the corresponding ratios has been almost
doubled to 2.19 and 1.50, respectively. This is indicative of
a higher oxidation degree, due to the incorporation of NBs in
the synthesis steps.

The morphology of the materials can be seen in Fig. 7a for
GO@NBs and Fig. 7b for GO. SEM images show that there are
some morphological differences between the two GO samples.
GO@NBs exhibit thin, crumpled sheet morphology under
microscopy, indicative of exfoliation at the sheet level; however,
SAXS and XRD analyses reveal a more compact and ordered
structure overall, suggesting partial restacking or enhanced
nanoscale ordering likely induced by interactions with NBs.50 In
contrast, GO appears to consist of larger, folded aggregates,
which align with its lower SAXS fractal dimension and lower
XRD crystallinity.51 Also, GO@NBs have more dispersed, frag-
mental sheets compared to the denser interconnected network
created by GO.52 Thus, NBs inherited some structural differ-
ences in layer separation, sheet integrity, and surface homoge-
neity between these two materials.

The presence of NBs has inuenced the physical character-
istics of GO@NBs (Table 2). GO shows low BET surface area
(44.22 m2 g−1) with prevalence of mesopores (4.67 nm pore size)
and very low microporosity (0.003 cm3 g−1), GO@NBs records
very high BET surface area (109.40 m2 g−1) by forming a micro-
porous structure (1.35 nm pore size) with six-fold enhancement
of micropore volume (0.036 cm3 g−1). This enhancement indi-
cates that the synthesis changes effectively incorporated smaller
pores, as attested to by the abrupt decrease in external surface
area (26.09 m2 g−1 compared to GO's 44.22 m2 g−1), verifying
that the higher BET area in GO@NBs is due to freshly developed
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 SEM images of (a) GO@NBs and (b) GO (inset: higher
magnification).

Table 2 Physical properties of GO, GO@NBs

Material GO GO@NBs

BET surface area (m2 g−1) 44.22 109.40
External surface area (m2 g−1) 44.22 26.09
DFT pore size (nm) 4.67 1.35
Cumulative pore volume (cm3 g−1) 0.058 0.066
Micropore volume (cm3 g−1) 0.003 0.036
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micropores. The cumulative pore volume was also elevated
(0.066 compared to 0.058 cm3 g−1), with a balance between
micro- and mesoporosity. Generally, the synthesis enhance-
ment in GO@NBs make it functionally better for the majority of
high-surface-area applications.
Conclusions

In this study, we successfully improved the synthesis of GO by
adding NBs in water. By doing so, we managed to increase
signicantly the specic surface area of GO@NBs by more than
2 times than GO, according to BET results. Also, XRD and SAXS
results revealed that NBs improved the structural properties,
while FTIR and Raman showed that NBs enhanced the oxida-
tion efficiency and endowed more oxygenated groups to the
material. Future research will optimize the GO's synthesis to
further improve its properties.
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A. Velasco, M. Á. Clavero, J. Mart́ınez, A. J. Quejido,
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