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chine learning models for
predicting the antitumor effects of metal and metal
oxide nanomaterials†
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Understanding the toxic behavior of metal and metal oxide nanoparticles (M/MOx NPs) is essential for

effective tumor diagnosis and treatment, yet generalizing findings remains challenging due to limited

data, sampling variability, unreported complexities, low model accuracy, and a lack of interpretability. To

address these issues and minimize extensive experimentation, we combined quantum chemistry

calculations with published toxicity data to develop a machine learning model achieving over 90%

accuracy in cross-validation. Utilizing 39 descriptors extracted from 152 articles, our dataset comprises

2765 instances covering various nanoparticle types, detection methods, and cell types. We enhanced

data representation with the Jaccard similarity coefficient and employed Feature Importance and

Shapley Additive Explanations (SHAP) to identify key factors influencing cytotoxicity, such as

concentration, exposure time, zeta potential, diameter, COSMO area (CA), coating, testing methods, cell

types, metal electronegativity, HOMO energy, and molecular weight. Additionally, we analyzed the

interactions among these features and their influence on predictions, synthesized novel metal oxide

nanoparticles, and assessed their physicochemical properties and anti-tumor toxicity. Cytotoxicity

experiments with newly synthesized nanoparticles further validated the model's accuracy and

generalizability, revealing hidden relationships and enabling predictions for previously unseen samples.

This approach supports preliminary computer-aided screenings, significantly reducing the need for

labor-intensive experimentation.
1 Introduction

Cancer remains a leading cause of death worldwide, with its
incidence continually rising.1,2 Nanotechnology has garnered
increasing research attention for addressing the diagnosis and
treatment of conventional diseases.3–6 In particular, metal and
metal oxide nanomaterials play a signicant role in the diag-
nosis and treatment of tumors.7–10

Nanomaterials' toxic effects are generally inuenced by their
various physicochemical properties, such as size, shape, surface
area, chemical composition, and stability.11 Among the various
biological assays used to evaluate nanomaterial toxicity, in vitro
cytotoxicity assays are one of the most important toxicological
measurement methods.12 These assays use live cells to observe
and detect the toxic effects of nanomaterials and are favored
edicine, School of Medicine, Guangxi
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048
due to their relative simplicity, speed, and cost-effectiveness.
Moreover, since cytotoxicity tests do not use animals, they
avoid ethical issues. Consequently, extensive research has been
published on the cytotoxic effects of nanoparticles.13–17

However, the complexity and heterogeneity of nanomaterials,
differing testing conditions, detection methods, and cell lines
complicate comparisons and analyses across studies. Addi-
tionally, in vitro and in vivo toxicity assessments of metal and
metal oxide nanomaterials can be very time-consuming and
costly.

Computational toxicology, an alternative to in vitro and in
vivo experiments, has been widely applied in toxicology
research. Various in silico methods have been developed and
applied, including pharmacological modeling,18 comparative
molecular eld analysis,19,20 molecular docking,21–23 molecular
dynamics simulations,24,25 network-based algorithms,26–29 and
machine learning methods like quantitative structure activity
relationship (QSAR) modeling,30–40 and deep learning.41,42

Among these, machine learning has recently become one of
the most popular methods for studying the cytotoxicity of
nanomaterials. As a branch of articial intelligence, machine
learning aims to develop computational algorithms to infer
mathematical models from existing data, providing a promising
© 2025 The Author(s). Published by the Royal Society of Chemistry
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tool for accelerating the development of needed nanoparticles.43

When applied to the complex relationships between variables
and unknown outcomes, machine learning can reveal hidden
features in data, offering deeper insights into the characteristics
leading to nanotoxicity. For instance, researchers used partial
least squares (PLS) regression to establish a nano-QSAR model
and found that charge density and surface charge were themain
factors in gold nanoparticle exudation.44 Another study pre-
dicted the bioactivity of gold nanoparticles using several linear
and nonlinear machine learning algorithms based on the
composition of the protein corona, identifying key proteins as
promoters or inhibitors of cellular association.45 A recent study
used decision tree modeling and feature selection algorithms to
nd that cytotoxicity test indicators were signicant determi-
nants of viability outcomes.46

Current research predominantly focuses on the effects of
inorganic nanomaterials on the environment and general cells,
rather than on tumor cells specically.47–62 Furthermore, despite
the presence of some related data in datasets, signicant issues
such as data scarcity, extensive missing critical data, low model
accuracy, and insufficient model interpretability persist.

In this study, as shown in Fig. 1, we collected and organized
data on the toxicity of metal and metal oxide nanomaterials
towards tumor cells and their intrinsic characteristics (chemical
composition, metal electronegativity, number of oxygen atoms,
number of metal atoms, molecular weight, metal cation charge,
coating/functional group, particle size, concentration, zeta
potential, and tumor cell type, source, morphology, and expo-
sure time, detection method, interference check, colloidal
stability, and positive control setting) totaling 2765 groups of
literature data. In addition, in order to better understand the
relationship between structure and activity in nano-QSAR
research, we calculated and introduced 16 quantum chemical
descriptors63 including Heat of formation (HoF), COSMO area
(CA), COSMO volume (CV), ionization potential (IP), Highest
Occupied Molecular Orbital (HOMO), Lowest Unoccupied
Molecular Orbital (LUMO), No. of Filled Levels (NFL), molecular
weight, point group, cluster electronegativity (Tc), molecular
hardness, electrophilicity, bandgap energy (Eg), polarizability
(Pol), soness (S) by PM7 semi-empirical method. We used the
Jaccard similarity coefficient64–66 to supplement missing data
Fig. 1 Experimental flowchart.

© 2025 The Author(s). Published by the Royal Society of Chemistry
and selected nine classical algorithm models for training.
Among them, the LightGBM67 model achieved the highest
prediction accuracy of 90.78% and an area under the curve
(AUC) of 95%. To enhance the interpretability of the model and
identify the optimal decision making process, we use feature
importance, partial dependence plot (PDP), and individual
conditional expectation (ICE).68 To further validate the model's
accuracy and explore its generalization capability, we supple-
mented our dataset with 240 new groups of data involving three
common metals (ZnO, CdO, Cu2O) and three rare earth metals
(CeO2, Er2O3, Nd2O3). The new experimental results conrmed
the reliability and accuracy of our model. These results will
signicantly reduce the time and nancial costs for researchers,
eliminating excessive labor-intensive experiments and enabling
the rapid development of nanomaterials for biomedical
purposes.
2 Materials and methods
2.1 Data sets

2.1.1 Literature search and harmonization. Initially,
a systematic iterative literature search was conducted using
multiple databases, including Google/Google Scholar, PubMed,
and Web of Science, with various combinations of keywords
(e.g., “metal and metal oxide nanoparticles + tumor cytotox-
icity,” “metal and metal oxide nanoparticles + cells + response,”
“metal and metal oxide nanoparticles + survival rate”). This
stage yielded approximately 400 peer-reviewed original research
articles reporting in vitro cytotoxicity assessments of nano-
particles (NPs) with diameters <1000 nm. All studies identied
through this search were evaluated for inclusion in the publi-
cation database for analysis.

Eligibility for inclusion in the meta-analysis was determined
based on the following criteria: NPs were described with respect
to at least the core material, size, and dosage; the specic cell
type and NP exposure duration were specied; and the average
cell survival rate/toxicity ± standard deviation/error was clearly
reported. To limit heterogeneity and ensure meaningful
conclusions, only data points developed using common cell
viability/cytotoxicity assays were selected. These included the
neutral red uptake assay (NR), mitochondrial toxicity assays
using tetrazolium salts (MTT, MTS, XTT, WST-1, WST-8), ATP
bioluminescence assays, lactate dehydrogenase (LDH) re-lease
assays, resazurin (Alamar Blue) cell viability assays, and live/
dead (membrane integrity) assays. Metalloid-based NPs and
loaded NPs were excluded from the scope of this study.

2.1.2 Data extraction and harmonization. Aer organizing
the data into a more relevant list, all publications were thor-
oughly reviewed, and the following physicochemical parameters
of nanoparticles (NPs) were manually extracted: core and
coating materials, particle size, zeta potential, cell type, NP
exposure time, cell viability/cyto-toxicity assays, and the
percentage of cell survival post-NP exposure. It should be noted
that the particle sizes included in the dataset were measured
using different techniques, such as Zetasizer and microscopy. If
multiple particle sizes were reported, the hydrodynamic
RSC Adv., 2025, 15, 17036–17048 | 17037
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Table 1 Contingency table for similarity evaluation
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diameter in solution, which better simulated experimental
conditions, was selected for our analysis.

Additional data extracted included whether NP interference
checks were conducted, colloidal stability checks in the culture
medium, and the use of positive controls. To prepare the data
for machine learning, the units for NP size (nm), zeta potential
(mV), concentration (mM), and exposure time (h) were stan-
dardized. Further descriptive attributes were added for the cells,
including whether the cells were cell lines or primary cells,
whether they were of human or animal origin, cell morphology,
cell age, and organ or tissue origin, as well as detectionmethods
(including reagents and biochemical markers). For more
detailed information, please refer to ESI, Sheet 1.†

To account for variability and potential systematic errors
across different studies, several data cleaning and harmoniza-
tion steps were conducted. First, only studies reporting essen-
tial experimental details (e.g., exposure time, NP concentration,
viability values, and assay method) were included. Data points
showing clear indications of experimental artifacts, such as
nanoparticle agglomeration, instability in culture media, or
known assay interference, were excluded. Furthermore, to
reduce systematic bias, we selected the most comparable
measurement type across studies—specically, hydrodynamic
diameter for size and zeta potential in deionized water rather
than in complex media. Assay types were recorded, and studies
using incompatible or non-standard cytotoxicity protocols were
omitted. Where ranges or inconsistent formats were used,
midpoints or standardized metrics were calculated (e.g., con-
verting ranges to averages or normalizing concentration units).
Despite these efforts, we acknowledge inherent inter-study
variability; however, by using a sufficiently large dataset and
feature-based modeling, the machine learning approach can
account for such noise and still identify robust, generalizable
patterns.

2.1.3 Data supplementation. To address missing values in
the dataset, this study employs an imputation method based on
the Jaccard similarity coefficient, implemented through the
following steps: (i) similarity calculation phase: for each data
sample containing missing values, the Jaccard similarity coef-
cient is computed between its complete features and those of
all other samples; (ii) imputation execution phase: the complete
sample exhibiting the highest Jaccard similarity coefficient with
the decient sample is selected, and its corresponding feature
values are used for imputation. The algorithm used for this
imputation process, along with the complete machine learning
workow, is available in the GitHub repository listed in the Data
availability section.

In this study, similarity between data points was measured
using the Sf coefficient (formula (1)) and the Jaccard similarity
coefficient (formula (2)). The similarity metrics were based on
a contingency table (Table 1).

In Table 1: represents the number of positions where both
variables are 1.

b-represents the number of positions where the rst variable
is 1 and the second variable is 0.

c-represents the number of positions where the rst variable
is 0 and the second variable is 1.
17038 | RSC Adv., 2025, 15, 17036–17048
d-represents the number of positions where both variables
are 0.

S4 ¼ ðad � bcÞ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ bÞðaþ cÞðbþ dÞðcþ dÞ
p

(1)

J = a/(a + b + c) (2)

2.2 Machine learning

2.2.1 Light Gradient Boosting Machine (LightGBM).
LightGBM is an efficient gradient boosting framework that
utilizes histogram-based learning algorithms to handle large-
scale and high-dimensional data effectively. In this study,
a grid search was performed to optimize key parameters such as
learning rate, tree depth, and the number of leaves. The best
parameter combination was selected using cross-validation,
and the optimized LightGBM model was used for model
building and performance evaluation.

2.2.2 Convolutional neural network (CNN). Convolutional
Neural Networks (CNNs) are deep learning models designed for
automatic feature extraction and classication from one-
dimensional data. The architecture consists of two convolu-
tional layers, utilizing 32 and 64 lters, respectively, with
a kernel size of 3. Each convolutional layer is followed by a max
pooling layer (pooling size of 2) to reduce the dimensionality of
the feature maps. Aer the convolution and pooling operations,
the data is attened and processed through two fully connected
layers. The nal output is obtained through a sigmoid activa-
tion function, which facilitates binary classication. This model
is exible and can accommodate varying input dimensions.

2.2.3 Multi-Layer Perceptron (MLP). The Multi-Layer Per-
ceptron (MLP) is a classical feedforward neural network that
learns the nonlinear relationships between input features. The
model comprises three fully connected layers, where the input
features rst pass through a layer with 128 neurons, followed by
a hidden layer containing 64 neurons, and a nal output layer
producing a single prediction. The output layer applies
a sigmoid activation function for binary classication. MLP is
particularly well-suited for processing attened input data and
for capturing complex nonlinear relationships among descrip-
tors to make accurate predictions.

2.2.4 Random Forest (RF). Random Forest is an ensemble
method based on decision trees that is robust and effective for
handling high-dimensional features. In this study, the WEKA
implementation of Random Forest was used, constructing trees
based on the default number and selecting features randomly.
The majority voting (classication) or mean calculation
(regression) of individual trees produces the nal prediction.
This method serves as a baseline model for comparing complex
nonlinear data.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.2.5 Extreme Gradient Boosting (XGBoost). XGBoost is an
efficient implementation of gradient boosting with strong reg-
ularization and parallel computing capabilities. In this study,
XGBoost was used with default parameters, including a xed
learning rate and maximum tree depth, to assess its predictive
power on the dataset.

2.2.6 Support Vector Machine (SVM). The Support Vector
Machine (SVM) leverages kernel functions to map data into
higher-dimensional spaces, optimizing the classication
boundary for maximum margin. A radial basis function (RBF)
kernel was used in this study, with regularization parameters
set to their default values. SVM is employed to model both
linear separability and complex boundaries in descriptor data.

2.2.7 Logistic regression. Logistic regression is a linear
classication method based on the sigmoid function to output
probabilities. In this study, logistic regression was used as
a baseline model without tuning the regularization parameters
to evaluate the linear separability of descriptors.

2.2.8 k-Nearest Neighbors (kNN). k-Nearest neighbors
(kNN) is an instance-based method for prediction, where the
target sample is assigned the majority class (classication) or
mean value (regression) of its k nearest neighbors in the feature
space. The optimal value of k was automatically chosen via cross-
validation, with Euclidean distance as the distance measure.

2.2.9 Naive Bayes. Naive Bayes is a classication method
based on Bayes' theorem, assuming independence between
features. In this study, the model assumes conditional inde-
pendence among descriptors and outputs posterior probabili-
ties for classication.
2.3 Model validation and evaluation

The accuracy of the models was estimated using ve-fold cross-
validation and by predicting the test sets. The test sets were
obtained through cell experiments on a series of synthesized
metal oxide nanoparticles.

To evaluate the performance of the models, the following
metrics were calculated: ROC, AUC, precision, recall, F1 score,
and balanced accuracy. Additionally, confusion matrices were
plotted to assess the classication performance, showing the
number of correctly classied instances as well as the mis-
classied compounds (false positives and false negatives).

The formulas for the calculated parameters are as follows:
Sensitivity (Sn), also known as true positive rate, measures

the proportion of actual positives correctly identied by the
model.

Sn = TP/(TP + FN)

where TP is the number of true positives and FN is the number
of false negatives.

Specicity (Sp), also known as true negative rate, measures
the proportion of actual negatives correctly identied.

Sp = TN/(TN + FP)

where TN is the number of true negatives and FP is the number
of false positives.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Precision (Pr) measures the proportion of positive predic-
tions that are actually correct.

Pr = TP/TP + FP

Recall (R) is equivalent to sensitivity (Sn), as it also measures
the proportion of actual positives that are correctly identied.

Recall = Sn

F1 score is the harmonic mean of precision and recall,
providing a balance between the two.

F1 = 2 × (Pr × recall)/(Pr + recall)

Balanced accuracy (AC) is the average of sensitivity and
specicity, providing a single metric for classication quality
when the class distribution is imbalanced.

AC = 0.5 × (Sn + Sp)

These metrics were calculated using standard Python
libraries, allowing for the comprehensive evaluation of model
performance in the context of nanoparticle toxicity prediction.

2.4 Synthesis experiments

2.4.1 ZnO. Add 98 mL of anhydrous ethanol to a 250 mL
round-bottom ask and heat it to a constant temperature of 80 °
C using an oil bath. Add 0.577 g of SDS to the ask and stir until
completely dissolved. Then, quickly add 2 mL of 0.5 mol L−1

zinc acetate solution, initiating the reaction with zinc acetate in
the amount of 1 × 10−3 mol. Aer 30 minutes, stop heating,
cool the sample to room temperature, and centrifuge. Wash the
resulting powder with deionized water and anhydrous ethanol
at least three times, then air-dry to obtain white powder.

2.4.2 CdO. Dissolve 1 g of cadmium sulfate (3CdSO4$8H2O)
in 50 mL of a Teon-lined stainless-steel autoclave, adding 3mL
of 30% hydrogen peroxide and 27 mL of distilled water. Adjust
the solution pH to 10 using ammonia, then react at 100 °C for
12 hours in an oven. Aer cooling, lter and wash with distilled
water and anhydrous ethanol, then dry at 80 °C in the air for 2
hours to obtain white powder.

2.4.3 Cu2O. Prepare a reaction solution of CuSO4 and
maintain it at 70 °C in a water bath with stirring. Add 1.6 g L−1

of polyvinylpyrrolidone (PVP) to the CuSO4 solution, followed by
NaOH solution (2 mol L−1). Gradually add N2H4$H2O solution.
The reaction solution turns from blue to green, producing an
orange-yellow precipitate. Aer 4 hours, wash the precipitate
with anhydrous ethanol and dry under vacuum at 70 °C for 8
hours to obtain a powder sample.

2.4.4 CeO2. Stir a microemulsion containing Ce(NO3)3 on
a magnetic stirrer for about 5 minutes, introducing N2 gas
during the reaction. Add a microemulsion containing ammonia
while stirring, forming a pale yellow precipitate at pH = 10.
RSC Adv., 2025, 15, 17036–17048 | 17039
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Fig. 2 Overview of nano particle data attributes/features in literature
(2765 data points).
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Centrifuge and wash the precipitate with ethanol and water
twice, then dry in a vacuum oven at 373 K.

2.4.5 Er2O3. Dissolve an appropriate amount of erbium
oxide in hydrochloric acid to prepare a solution of erbium
chloride (0.05 mol L−1) with pH 1.0–2.0. Add urea to maintain
a concentration of 1.0 mol L−1. Incubate at 85 °C for 85minutes,
cool quickly, and add 20% n-pentanol, stirring vigorously for 30
minutes before standing for 10–12 hours. Filter and wash the
precipitate with water 2–3 times, then dry at 90 °C for 4 hours.
Finally, calcine at 700 °C for 2 hours to obtain high-purity nano
erbium oxide.

2.4.6 Nd2O3. Prepare solutions of neodymium nitrate and
ammonium carbonate, adding a small amount of CTMAB
surfactant to the neodymium nitrate solution. Mix with stirring,
then add ammonium carbonate solution dropwise (about 1
mL min−1) to the neodymium nitrate solution, maintaining pH
7–8 to obtain the precursor of neodymium oxide. Age the
mixture, lter, wash with deionized water and anhydrous
ethanol, and dry. Calcine the precursor at 800 °C for 3 hours to
obtain neodymium oxide.

2.5 Characterization

Measure zeta potential using a Zetasizer Nano ZS90. Perform
XRD using a Rigaku D/MAX 2500V. Obtain SEM images with
a TESCAN MIRA LMS.

2.6 Cell experiments

2.6.1 Cell culture. Cultivate HeLa and A549 cells from the
cell bank of Guangxi University Medical School Laboratory.
Grow cells in high-glucose DMEM medium containing 10%
fetal bovine serum and 1% penicillin/streptomycin at 37 °C and
5% CO2.

2.6.2 In vitro cytotoxicity experiments. Seed HeLa and A549
cells into 96-well plates and treat with increasing concentra-
tions of metal oxide nanoparticles (ve concentration gradients
per material) for 24 or 48 hours. Aer co-culture, replace the
medium with DMEM containing 10% CCK8 or MTT, incubate
for 1–4 hours, remove the medium, and add 100 mL of DMSO
per well. Measure absorbance at 450 nm to assess relative cell
viability using a microplate reader.

3 Results and discussion
3.1 Data retrieval and mining

A dataset was compiled from 152 studies on the cytotoxicity of
nanomaterials published between 2004 and 2023. Keywords
such as “nanoparticles/nanomaterials/nanometals + toxicity/
cytotoxicity” were used to lter extensive online resources,
including Google, Scopus, CNKI, ACS, Wiley, Science, and
PubMed. The initial selection criteria required detailed
descriptions of the core material, diameter, identied cell types,
exposure duration, and mean cell viability/toxicity with stan-
dard deviations. From this preliminary selection, data specic
to nanometals, their oxides, and tumor cells were extracted,
resulting in 2765 instances. These instances encom-passed
characteristics such as nanoparticle type, size, shape, coating,
17040 | RSC Adv., 2025, 15, 17036–17048
surface charge, concentration, cell properties, assay type,
exposure duration, and the resulting cell viability values. The
distribution of these data features is illustrated in Fig. 2.

Notably, the dataset exhibited a degree of class imbalance,
with 656 samples categorized as toxic (cell viability < 50%) and
2109 as non-toxic. This imbalance is primarily associated with
the focus of our study, which centers on metal and metal oxide
nanoparticles relevant to cancer therapy. In this domain,
nanomaterials with favorable biocompatibility and low toxicity
are generally prioritized due to their translational potential and
suitability for biomedical applications.

The cytotoxicity of nanoparticles is a complex process
inuenced by various parameters, including surface charge,
surface coating, chemical composition, hydrodynamic diam-
eter, surface area, nanoparticle concentration, and cell
descriptors that determine the nanoparticle environment. To
build a reliable and interpretable machine learning model, it is
essential to collect extensive data that incorporates all these
parameters. To enhance the model's predictive accuracy and
deepen the understanding of the cytotoxic mechanisms of
nanoparticles, we included 17 features of M/MOx NPs extracted
from various references. In addition to 15 quantum chemical
features, we have also added 7 molecular features: metal elec-
tronegativity (x), the sum of metal electronegativities in a single
metal oxide (

P
x), the ratio of the number of oxygen atoms to

the sum of metal electronegativities in a specic metal oxide
(nO/

P
x), the number of metal atoms (NMetal), the number of

oxygen atoms (NOxygen), the metal cation charge corresponding
to a given oxide (q), and molecular weight (MW). These features
can be easily derived from molecular formulas and obtained
from the periodic table. All data visualization is shown in
Fig. 3a. Feature selection was implemented to reduce the
number of correlated features, resulting in a low level of
correlation among the parameters (Fig. 3b).
3.2 Quantum chemistry calculations

A cluster structure describing M/MOx NPs was prepared. Firstly,
spherical clusters of M/MOx NPs were constructed using
experimental crystal structures. In the design of the model
cluster, Materials Studio69 was used to extend the unit Celsius
on each axis to generate a polycrystalline cell, and then atoms
within 4.5 Å of the center of the poly-crystalline cell were
selected based on the point symmetry of the crystal structure as
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Data visualization of the dataset; (b) process the correlation
matrix on the dataset.
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a constraint. The design of spherical clusters takes into account
the inuence of M/MOx NP surface curvature on its molecular
orbital (MO) structure. The clusters are generated in a similar
manner at a distance of 4.5 Å to fairly compare their reactivity.
In QM calculations, the semi empirical PM7 (ref. 70) method
implemented in MOPAC2016 (ref. 71) was used to optimize the
geometric shape of the model cluster model with model
symmetry as a constraint.

In order to calculate further descriptors related to reactivity,
the coefficients of each atomic orbital in the MO linear
combination in the density matrix are further utilized to
calculate descriptors related to reactivity of M/MOx NP.72 The
summary of QM descriptor preparation is shown in Fig. 4.

Quantum chemical descriptors reect the intrinsic elec-
tronic, structural, and reactive properties of M/MOx NPs and
provide mechanistic insights into how these nanomaterials
interact with biological systems. For instance, the HOMO
energy level indicates the tendency of nanoparticles to donate
electrons; higher HOMO values are associated with stronger
electron-donating ability, which can facilitate redox reactions
Fig. 4 Quantum chemistry features and computational processes.

© 2025 The Author(s). Published by the Royal Society of Chemistry
with cellular components and induce oxidative stress. Similarly,
Eg relates to the material's electronic excitability; a narrower
bandgap oen implies higher reactivity and a greater likelihood
of generating ROS, a key factor in nanoparticle-induced cyto-
toxicity. Electronegativity reects the tendency of metal centers
to attract electrons, where materials with low electronegativity
are typically more reducing and prone to ROS generation. u, S,
and h inuence the stability and reactivity of nanoparticles
toward biological nucleophiles, such as proteins or DNA bases.
A higher electrophilicity value implies a greater capacity to
accept electrons from biomolecules, potentially leading to
adduct formation or enzyme inhibition. Pol affects how the
electronic cloud of a particle responds to external elds, such as
those found in biological environments; greater polarizability
may enhance interactions with charged cellular surfaces or
macromolecules. CA and CV provide spatial metrics that reect
the particle's surface exposure and its interaction potential with
surrounding molecules or membranes. These descriptors,
combined, allow the model to capture subtle structural and
electronic features that directly relate to nanotoxicity pathways,
such as oxidative damage, membrane penetration, or macro-
molecular binding.
3.3 Data supplementation

Due to unknown or missing values in the available datasets,
including the zeta potential—a crucial parameter that charac-
terizes the environment around nanoparticles and is vital for
describing toxicity phenomena—a signicant portion of all
dataset parameters were blank (Fig. 2A). Removing all such
samples signicantly reduced the dataset size, presenting
limitations in current methods. Incomplete observations could
adversely affect the performance of machine learning algo-
rithms. To address this issue, we supplemented the data using
similarity-based methods.

Through our analysis of similarity results, we found that the
Jaccard similarity coefficient more effectively measures the
similarity within our dataset. We hypothesize this is because the
Sf coefficient73 typically assesses symmetric correlation between
two binary variables and is suitable for balanced situations
where the number of 1s and 0s is roughly equal. However, our
dataset has an uneven distribution of 1s and 0s, which makes
the performance of the Sf coefficient less effective compared to
the Jaccard similarity coefficient. The Jaccard similarity coeffi-
cient, which measures similarity based on the proportion of
shared 1s and ignores shared 0s, is more appropriate for our
data, where 1s are fewer but signicantly impactful for analysis.

Thus, despite the usefulness of the Sf coefficient in certain
symmetric and balanced binary variable analyses, the Jaccard
similarity coefficient is better suited for our specic dataset and
research context due to its focus on matching 1s while ignoring
shared 0s. We used the Jaccard similarity coefficient to evaluate
the similarity within the dataset, calculating it pairwise for each
nanoparticle. The most similar results were used to ll in
missing data.

The complete dataset is available in the attached excel sheet
(excel sheet1). Before conducting machine learning
RSC Adv., 2025, 15, 17036–17048 | 17041
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experiments, some feature values (e.g. NP concentration) were
standardized (NP concentration is expressed in mM). The red
sections in the dataset represent supplemented missing data.
3.4 Model construction and comparison

To train our models, we selected nine mainstream and repre-
sentative machine learning algorithms, including Convolu-
tional Neural Networks (CNN),74 Multi-Layer Perceptron
(MLP),75 Random Forest,76 Extreme Gradient Boosting
Fig. 5 (a) ROC curves of various models. (b) Test set confusion matrix.
(c) F1 score of cross-validation. (d) AUC score of cross-validation.

17042 | RSC Adv., 2025, 15, 17036–17048
(XGBoost),77 Light Gradient Boosting Machine (LightGBM),78

Support Vector Machine (SVM),79 logistic regression,80 k-Nearest
Neighbors (kNN),81 and Naive Bayes.82

The dataset of 2765 samples was split into a training set and
a test set in a 2 : 1 ratio, with the external validation set
composed of subsequent experimental data. Model training
and evaluation were implemented using Python 3.9.13 with
PyTorch, Scikit-learn, XGBoost, and LightGBM libraries.

Given the class-imbalanced nature of the dataset, model
evaluation focused primarily on the F1 score and the area under
the receiver operating characteristic curve (AUC-ROC), as both
metrics are more informative than accuracy under skewed class
distributions. The F1 score was selected as the coremetric for its
ability to balance precision and recall, with particular emphasis
placed on recall to reduce false negatives and improve sensi-
tivity to toxic samples.

To address class imbalance during model training, we
employed tailored strategies: for neural network models (CNN
and MLP), a weighted cross-entropy loss was applied, assigning
higher weights to the minority (toxic) class. For gradient
boosting models (XGBoost and LightGBM), we used consistent
hyperparameters (200 trees, learning rate= 0.1, max depth= 8),
as these models inherently mitigate imbalance via split gain
functions. Parameters for other classiers were optimized
individually. SVM and kNN were included as baseline methods
to assess robustness under imbalanced conditions.

Model evaluation was initially performed using the xed test
set to simulate a realistic single-pass prediction scenario. The
corresponding ROC curves and confusion matrices are shown
in Fig. 5a and b. Among all models, LightGBM achieved the
highest test performance with an AUC of 0.9534 and a strong F1
score, demonstrating its superior discrimination ability (Table
2).

To further validate model robustness and account for vari-
ability due to random data partitioning, we performed stratied
ve-fold cross-validation. Cross-validation results (Fig. 5c, d and
Table 3) were subjected to pairwise t-tests at a 95% condence
level to compare LightGBM with other representative models
(CNN, MLP, SVM, kNN, and Naive Bayes). LightGBM signi-
cantly outperformed all other models in terms of F1 score (p <
0.05), conrming its superior sensitivity to toxic samples.
Although CNN and MLP achieve slightly better average AUCs,
with the differences reaching statistical signicance, their
performance on the other four evaluation metrics is inferior,
Table 2 Prediction scores of each model

Model Accuracy AUC Precision Recall F1

CNN (100 epoch) 0.8564 0.9125 0.89 0.9185 0.904
MLP (100 epoch) 0.8564 0.9103 0.8701 0.9461 0.9066
Random forest 0.8853 0.9278 0.894 0.9578 0.9248
XGBoost 0.9025 0.9414 0.9116 0.9607 0.9355
LightGBM 0.9078 0.9534 0.9168 0.9622 0.9389
SVM 0.8081 0.8763 0.8113 0.9636 0.8809
Logistic regression 0.7996 0.8584 0.8289 0.917 0.8708
kNN 0.8339 0.8739 0.8519 0.9374 0.8926
Naive Bayes 0.4244 0.7801 0.9688 0.2256 0.366

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 5-Fold CV results of each model

Model Accuracy AUC Precision Recall F1

CNN (100 epoch) 0.8683 0.9190 0.9085 0.9223 0.9153
MLP (100 epoch) 0.8650 0.9090 0.9064 0.9202 0.9132
Random forest 0.8920 0.8153 0.9086 0.9566 0.9319
XGBoost 0.9082 0.8474 0.9246 0.9594 0.9416
LightGBM 0.9098 0.8459 0.9230 0.9636 0.9428
SVM 0.8305 0.6639 0.8362 0.9706 0.8984
Logistic regression 0.7943 0.6028 0.8116 0.9552 0.8775
kNN 0.8407 0.7304 0.8698 0.9335 0.9004
Naive Bayes 0.7155 0.6234 0.8312 0.7929 0.8108

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 1
1:

48
:0

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
and their models exhibit greater instability, suggesting limited
applicability and reliability in class-imbalanced tasks.

While both LightGBM and XGBoost performed well,
LightGBM was ultimately selected for downstream analysis due
to its faster training speed, higher computational efficiency, and
direct support for categorical features.67 Additionally, the nal
model trained on the supplemented dataset showed a marked
improvement in predictive performance, with AUC increasing
from 82% to 95%, indicating that similarity-based data
augmentation signicantly enhanced model accuracy in pre-
dicting the cytotoxicity of M/MOx nanoparticles in tumor cells.
Fig. 6 (a) Comparison of the importance of various descriptors in
LightGBM. (b)SHAP analysis of dataset features.
3.5 Model interpretability analysis

3.5.1 Importance analysis. Beyond developing a successful
model, each articial intelligence method should both validate
existing knowledge and generate new insights. To uncover
potential associations between nanoparticles and tumor cell
cytotoxicity, we analyzed the importance of each descriptor and
the model's SHAP (Shapley Additive Explanations) values. This
analysis aimed to reveal how changes in each numerical
parameter affect the predicted viability values (Fig. 6).

The global contribution comparison (Fig. 6a) in the
LightGBM model, an ensemble decision tree model, evaluates
feature importance by calculating the frequency and informa-
tion gain of features at splitting nodes. The top ten features in
importance are concentration, diameter, zeta potential, expo-
sure time, cells, coat, test, nanoparticle, nO/

P
x and CA. These

features signicantly impact the prediction of cell survival rates,
aligning with researchers' experimental experience. However,
feature importance does not show how each feature inuences
the nal outcome. Therefore, SHAP values were introduced for
further analysis to uncover more hidden information.

SHAP values clearly display the well-known concentration
and time-dependent effects (Fig. 6b), where increasing these
parameters generally reduces tumor cell viability. Interestingly,
an increase in the absolute value of the zeta potential of M/MOx
enhances tumor cell survival rates. This could be because
nanoparticles with lower zeta potential are more readily taken
up by tumor cells,83 which is less noticeable in limited experi-
mental data. CA is a molecular surface area related parameter
based on the Continuous Solvent Model (COSMO), which typi-
cally reects the interaction between molecules and their
surrounding environment. For nanomaterials, a higher CA
© 2025 The Author(s). Published by the Royal Society of Chemistry
value may indicate a larger contact area with the external
environment (such as cell membranes or proteins), thereby
increasing the likelihood of interaction with cells.84 But in our
SHAP analysis, this situation seems to be the opposite, which
may be related to the interaction with the cell membrane. A
smaller surface area sometimes means high local reactivity,
increasing interaction with the cell membrane or internal
structure, thereby increasing toxicity.85 Additionally, increases
in metal electronegativity, the number of oxygen atoms, and
metal cation charge also boost cell survival rates, consistent
with Hu et al.'s experimental results.55 This can be explained by
the increased production of reactive oxygen species (ROS) by
highly reducing substances and materials containing less elec-
tronegative elements, leading to higher toxicity.57 Contrary to
general expectations, nanoparticles with smaller hydrodynamic
diameters did not signicantly decrease tumor cell viability in
our analysis. While smaller nanoparticles are typically believed
to have higher surface areas and be more easily taken up by
cells,86 recent literature suggests that size effects cannot always
be easily separated from concentration effects. Larger nano-
particles may exhibit greater toxicity at moderate to high
concentrations.87 Moreover, characteristics such as coating,
testing, and cells also have a signicant impact on cell toxicity,
for example, the surface properties of nanomaterials play a key
role in determining the outcome of their interactions with
cells.88 Thus, our model not only conrmed previous research
RSC Adv., 2025, 15, 17036–17048 | 17043
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but also provided insights for the design of M/MOx targeting
tumor cell cytotoxicity.

3.5.2 Feature effects. Although feature importance can
explain which features signicantly affect the prediction of
black box machine learning models, the relationship between
the predicted target and features is still unclear (linear, mono-
tonic, or more complex). Here, three model agnostic methods
are applied to understand feature effects from a local or global
perspective. PDP aims to display the marginal effect of one or
two features onmodel prediction by averaging themodel output
of different values of a feature.89 PDP can easily visualize the
relationship between predicted targets and selected features,
but due to average marginal effects, heterogeneity effects may
be hidden (i.e. the same feature may have different impacts on
individuals). ICE decomposes this mean by highlighting the
estimated functional relationships of individual observations.90

In the ICE graph, each line reects the change in the predicted
target of an instance when the selected feature changes. PDP is
the average value of all lines in the ICE graph. The visualization
results of the feature effects are shown in Fig. 7. The impact of
corresponding features on the results can be directly observed
from the PDP and ICE plots, such as the decrease in cytotoxicity
of M/MOx NPs with increasing concentration, exposure time,
molecular weight, and HOMO (7a, b, g and h). A high HOMO
value usually means that the electrons of the material are more
easily transferred or involved in reactions, especially in inter-
actions with biological systems. A higher HOMO value increases
the tendency of the material to undergo oxidation resulting in
the generation of free radicals or electron transfer with
biomolecules (such as proteins and DNA) in the cell, leading to
cell damage or cytotoxicity. The cytotoxicity of M/MOx NPs is
inversely proportional to zeta potential, CA, nO/

P
x and Pol (7d,

e, f and i). Interestingly, we found that M/MOx NPs with particle
sizes between 10–110 nm have stronger cytotoxicity (6c).
Generally speaking, small-sized nanoparticles usually have
higher surface energy and activity, making them easy to pene-
trate cell membranes or trigger oxidative stress reactions,
resulting in higher cytotoxicity. However, in our PDP results, 0–
10 nm did not show the expected high cytotoxicity. This may be
because small-sized nanoparticles tend to aggregate in solution,
Fig. 7 Feature effects of the nine important features. (a–i) PDP and
ICE results with different features. The thick line with a yellow shadow
is PDP.

17044 | RSC Adv., 2025, 15, 17036–17048
forming larger particles that reduce their direct interaction with
cells.91 Additionally, smaller nanoparticles in biological systems
may be more easily recognized and cleared by defense mecha-
nisms such as autophagosomes and macrophages, thereby
reducing their toxicity.92

When features interact, the combined effect between two
features may be nonadditive. In most practical situations, there
are more or less interactions. Therefore, in order to make
learning models interpretable, it is necessary to consider the
strength and effectiveness of feature interactions. Feature
interaction is oen considered as the interaction between two
features, as the interaction between more features is difficult to
visualize and interpret. The partial dependency relationship
between two features can be visualized in an interactive contour
map. It is worth noting that this interaction may only be
a correlation rather than a causal relationship, as the graph
shows a global explanation of feature interactions without effect
decomposition. SHAP dependency graph is another method of
visualizing the interaction between two features, where the
vertical dispersion of a single feature value on the x-axis
represents the interaction effect with another feature. However,
this visualization tool is difficult to display the interaction
between two classication features without inherent logical
relationships. Fig. 8 shows the combination effect between two
of the rst four features. Concentration shows a strong inu-
ence in all graphs, with higher concentrations indicating
stronger cytotoxicity (8a–c). There is a complex relationship
between zeta potential and particle size (8e), especially at
negative zeta potential, where toxicity increases with larger
particle size. The exposure time also increased cytotoxicity to
Fig. 8 PDP and SHAP dependency graphs are used to visualize the
combination effect between two features. (a–c) Concentration with
particle size, exposure time, and zeta potential, respectively; (d and e)
particle size with exposure time and zeta potential; (f) exposure time
with zeta potential.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 SEM and XRD characterization of metal oxide nanoparticles
(ZnO, CdO, Cu2O, CeO2, Er2O3, Nd2O3).

Fig. 10 The SHAP prediction and interpretation diagram of cytotox-
icity of different nano metal oxides (ZnO, CdO, Cu2O, CeO2, Er2O3,
Nd2O3) in the external validation set.
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a certain extent (8d and f), especially at smaller particle sizes
and negative zeta potentials. The longer the exposure time, the
stronger the toxicity. Overall, there is a highly non-linear
interaction between cytotoxicity and the concentration,
Table 4 LightGBM model predicts scores for experimental results

Model Accuracy AUC Precision Recall F1

LightGBM 0.9125 0.7887 0.9353 0.9731 0.9538

© 2025 The Author(s). Published by the Royal Society of Chemistry
particle size, zeta potential, and exposure time of nano-
materials. Reasonable control of these factors may reduce the
cytotoxicity of nanomaterials.
3.6 Experimental results comparison

To further demonstrate the model's practical application, we
synthesized six different types of metal oxide nanoparticles in the
lab (ZnO, CdO, Cu2O, CeO2, Er2O3, Nd2O3) and characterized
them using zeta potential measurements, X-ray powder diffrac-
tion (XRD), and scanning electron microscopy (SEM) to extract
key parameters (Fig. 9). Two tumor cell lines (A549 and HeLa)
were cultured, and their toxicity predictions were assessed.
Notably, CeO2, Er2O3, Nd2O3 nanoparticles, not presenting the
training dataset, were included to test the model's generalization
capability. Five concentration gradients were designed for each
nanoparticle, with two exposure times (24 h and 48 h) and two
detection methods (MTT and CCK8), resulting in a dataset of 240
instances (attached as Excelsheet2). The model's prediction
results are shown in Table 4. To further assess the reliability and
practical applicability of the predictive model in real experi-
mental settings, SHAP analysis was conducted on experimental
data to elucidate the contributions of individual features to cell
viability outcomes. One representative metal oxide nano-
particle—ZnO, CdO, Cu2O, CeO2, Er2O3, and Nd2O3—was
randomly selected from each material category for SHAP-based
prediction and interpretation, as illustrated in Fig. 10. In the
SHAP plots, arrows represent inuential features such as zeta
potential, concentration, and exposure time; red arrows indicate
positive contributions (i.e., enhanced cell survival), while blue
arrows reect negative impacts (i.e., increased cytotoxicity). The
nal SHAP output F(x) represents the predicted level of cell
viability. For instance, ZnO yielded a low F(x) value of −1.71,
suggesting high cytotoxicity, whereas CdO showed a high F(x)
value of 7.43, indicative of low toxicity. The SHAP interpretations
reveal that cytotoxicity arises from complex interactions among
multiple features. In general, higher nanoparticle concentrations
tend to reduce cell viability, negatively charged surfaces may
intensify cellular interactions, and longer exposure durations
increase toxicity. These mechanistic insights can inform future
experimental strategies, such as optimizing concentration and
exposure time to minimize adverse biological effects.
RSC Adv., 2025, 15, 17036–17048 | 17045
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4 Conclusions

In this study, we compiled 2765 toxicity data points of metal and
metal oxide (M/MOx) nanoparticles against tumor cells from
published literature and addressed data gaps using the Jaccard
similarity coefficient. We developed an interpretable machine
learningmodel, incorporating physicochemical, molecular, and
quantum chemical descriptors, to predict the in vitro cytotox-
icity of 26 nanoparticle types across 32 tumor cell lines. Feature
selection based on correlation analysis enhanced model
performance, and the nal LGBM model achieved over 90%
accuracy in cross-validation. Feature importance and effect
analysis revealed key variables consistent with experimental
understanding, supporting the model's interpretability. Exper-
imental validation with newly synthesized rare earth metal
oxide nanoparticles conrmed the model's predictive ability.
This approach provides a robust, scalable, and efficient
computational tool for toxicity screening, offering practical
guidance for the rational design of tumor-targeting nano-
materials (Fig. 10).

Data availability

The data that support the ndings of this study are available in
the ESI.† All code used for data preprocessing, similarity-based
imputation, and model construction is available at: https://
github.com/mcurcumin/mayoufu-rcs-I-ML-Predicts-Antitumor-
Effects-of-Metal-Metal-Oxide-NMs.
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84 A. Nel, T. Xia, L. Mädler and N. Li, Science, 2006, 311, 622–
627.

85 A. Verma, O. Uzun, Y. Hu, Y. Hu, H.-S. Han, N. Watson,
S. Chen, D. J. Irvine and F. Stellacci, Nat. Mater., 2008, 7,
588–595.

86 T.-H. Kim, M. Kim, H.-S. Park, U. S. Shin, M.-S. Gong and
H.-W. Kim, J. Biomed. Mater. Res., Part A, 2012, 100, 1033–
1043.

87 L. Li, W. S. Xi, Q. Su, Y. Li, G. H. Yan, Y. Liu, H. Wang and
A. Cao, Small, 2019, 15, e1901687.

88 V. Colvin, Environ. Mol. Mutagen., 2007, 48, 533.
89 J. H. Friedman, Ann. Stat., 2001, 29, 1189–1232.
90 A. Goldstein, A. Kapelner, J. Bleich and E. Pitkin, Journal of

Computational and Graphical Statistics, 2015, 24, 44–65.
91 S. Bhattacharjee, J. Controlled Release, 2016, 235, 337–351.
92 T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi,
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