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Advances in transition-metal catalyzed C-H
bond activation of amidines to synthesize
aza-heterocycles
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Amidine compounds, as important nitrogen analogues of isoelectronic carboxylic acids, are found
throughout biologically active molecules and serve as the most attractive precursors for the synthesis of
N-containing compounds. In this review, the advancements in the synthesis of aza-heterocycles via
transition-metal catalyzed C-H bond activation of amidines have been summarized through diverse
annulation reactions. Amidines act as two-electron donors via the more basic and less sterically crowded
imino lone pair and coordinate with transition-metals, in which N-H imine could act as both directing
group and intramolecular nucleophile, electrophile or proton acceptor. The mechanisms of different
annulation pathways will be highlighted in this review along with a discussion of more recent
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1 Introduction

Aza-heterocycles, as common fragments of the vast majority of
clinical drugs and candidates of medicinal targets, have made
notable contributions to the quality of human life."* Therefore,
the diversity of aza-heterocyclic structures, as well as the
important biological and pharmaceutical applications, moti-
vated researchers to develop efficient, atom economical and
selective transformations to access aza-heterocycles. Amidines,
as important nitrogen analogues of isoelectronic carboxylic
acids, are found throughout biologically active molecules and
among the most attractive precursors for the synthesis of N-
containing compounds (Scheme 1a).* The molecular structure
confirmation of amidines dates back to 1858, reported by Ger-
hardt, through the reaction of aniline with N-phenylbemimidyl
chloride and named.* Subsequently, Shriner noted that there
were five general types of amidines classified according to the
number and distribution of the substituents at the nitrogen
atoms, including (i) unsubstituted, (ii) monosubstituted, (iii)
symmetrical disubstituted, (iv) unsymmetrical disubstituted
and (v) trisubstituted (Scheme 1b).® Especially, amidines
contain an amino nitrogen atom with a free electron pair, which
conjugate with the w-electrons of the C=N double bond. It
combines the properties of an azomethine-like C=N double
bond with an amide like C-N single bond with a partial double
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bond character as indicated by the resonance form (Scheme
1b(ii)).* For more than 160 years, amidines have proven to be
irreplaceable building blocks and ranked as one of the most
important classes of nitrogen reagents in organic chemistry
because of their versatile chemical properties.” For example,
they are strongest neutral organic bases due to the ability of
their protonated forms to delocalise charge over two nitrogen
atoms.® These bases, such as 1,8-diazabicyclo[5.4.0Jundec-7-ene
(DBU) and 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) have been
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widely used in numerous organic reactions and have often been
shown to be advantageous when compared with other organic
bases (Scheme 1c).

Transition-metal catalyzed C-H bond activation has gained
great attention in the past decade and become one of the most
reliable tools for synthesis of N-heterocycles.®'® Among this
family, the directing groups (DGs) are generally required to
resolve the regio-selectivity and improve the catalytic activity of
metal.™ For example, the pyridines'> and oximes' are used as
DGs to realized C-H bond activation through coordinating with
transition-metal. However, a single reaction sits will bring
chemical trace left in the products, which leads to undesired
waste-products. Based on that, the commercially available
amidines have attracted intensive interest as DGs to synthesize
N-heterocycles, because amidines act as two-electron donors via
the more basic and less sterically crowded imino lone pair and
coordinate with transition-metal, in which N-H imine could act
as both directing group and intramolecular nucleophile or
electrophile. However, multiple activity reaction sites of
different substitutive amidines not only presented a challenge
for the synthetic chemistry but also offered the opportunity to
obtain an array of different N-heterocyclic compounds. Gener-
ally, according to the principal resonance structures of ami-
dines, the transition-metal catalyzed C-H bond activation of
amidines takes the following mainly four chemical trans-
formations (Scheme 2): (a) the N-H imine acts as intra-
molecular nucleophilic group to promote the [5 + n] annulation
progress; (b) the metal-X (X = C, N) or nucleophilic reagent
undergoes migratory insertion into the C=N bond (acting an
electrophilic group) or the N-H imine acts as intramolecular
nucleophilic group, leading [4 + n] annulation progress; (c)
nucleophilic reagent undergoes migratory insertion into the
C=N bond, resulting in [3 + 3] annulation and the cleavage of
C-N bond; (d) the N-H imine is used as the proton acceptor to
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Scheme 2 The strategies of C—H bond activation of amidines.
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promote intramolecular proton transfer (IPT) process. Based on
its recent advances, it would be timely to provide a compre-
hensive review of the plethora of transformations in the field of
C-H functionalization.

The previous reviews'® mainly summarized the prepara-
tion, structural studies and synthetic application of amidines.
In this review, we summarize and unify the development of the
transition-metal catalyzed C-H bond activation of amidines to
synthesize heterocyclic compounds since 2008. The critical
goal of our review is to draw attention to this burgeoning
research area, and stimulate further interest from the
synthetic community in discovering novel reactivities as well
as multidisciplinary application. We feature the recent
development of transition-metal catalyzed C-H bond activa-
tion of amidines to synthesize N-heterocycles through diverse
annulation models.

2 The [5 + n] annulation of amidines
in C—H activation
2.1 The [5 + 0] annulation of amidines

The earliest [5 + 0] annulation of amidines developed in the
1960s was a milestone in organic synthesis chemistry, which
has been successfully applied in the selective synthesis of
benzimidazoles.” Then, organic chemists have made signifi-
cant efforts to gain insight into the mechanism of this trans-
formation'*"” until C-H activation comes into view. As early as
2008, Buchwald group® firstly reported an efficient copper-
catalyzed C-H functionalization/C-N bond-forming approach,
providing benzimidazoles in good yields from N-phenyl-
benzamidines (Scheme 3). Various benzimidazoles could be
easily obtained with high step economy. This method could be
extended to the preparation of N-methylated 2-phenyl-
benzimidazoles. Meanwhile, the bulky tert-butyl group was also
compatible in this transformation, affording the corresponding
products in 83-89% yields. However, the functionalized ami-
dines without ortho substituents showed less reactivity to give
the desired benzimidazole, primarily underwent decomposi-
tion, which seemed to inhibit the catalytic cycle.
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Scheme 3 Cu-catalyzed intramolecular annulation of N-

phenylbenzamidines.
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Scheme 4 The possible reaction pathways for the conversion of 1
into 2.

On the basis of the previous reports,' the possible reaction
pathways were proposed in Scheme 4. First, the Cu(OAc),
presumably led to a Cu-N adduct 3 with copper either in
oxidation state II or III. Subsequently, the N-aryl ring attacked
the amidine moiety in a fashion similar to an electrophilic
aromatic substitution to form 4 with concurrent release of
a reduced copper species in pathway A. The rearomatization of
intermediate 4 provides the product 2. In pathway B, the N-
phenyl ring attacks the copper center in 3 to give a metallacycle
5, which underwent rearomatization and reductive elimination
of the metal to form 2. Pathway C involves a copper nitrene. A
concerted insertion of the nitrogen into a C-H bond or an
electrocyclic ring closure and a final [1,3]-shift of a hydrogen
would then lead to 2.

One year later, Shi and co-workers*® developed a novel
method to construct the core structure of 1H-benzo[d]imidazole
through Pd"-catalyzed C-H activation of N-phenyl-
benzamidines under mild reaction conditions (Scheme 5). This
transformation contains a broad substrate scope, with various
functional groups being well-tolerated. The detailed mecha-
nism studies indicated that a palladacycle monomer or dimer is
the key intermediate for this transformation and thiourea (tet-
ramethylthiourea, TMTU) was first used to prompt the effi-
ciency of C-H activation. Based on a series of control
experiments, a possible reaction mechanism was depicted in
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Scheme 5 Pd-catalyzed intramolecular C-H activation of N-

phenylbenzamidines.
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Scheme 6 Cu-catalyzed N-arylation of amidines with aryl boronic
acids.

Scheme 5. Initially, the Pd" coordinated with imino-group to
deliver the palladacycle intermediate 9. In Path a, after the
decomposition of the dimeric palladacycle to produce the
monomer 10 in the presence of TMTU, the acetate played a role
as a base to in removing the proton of the imine group to
generate intermediate 11. The intermediate 11 underwent
reductive elimination to yield the desired product 8 and Pd°
specie, which was oxidized to the Pd" by copper salt for the next
catalytic cycle. In Path b, the palladacycle dimer 9 may also go
through the direct deprotonation and reductive elimination to
finish this catalytic cycle according to its observed weak
reductive elimination activity.

In 2012, Zhu group® discovered a novel Cu-catalyzed N-ary-
lation of amidines with aryl boronic acids to synthesis of
benzimidazoles (Scheme 6). Unprotected amidines were
compatible in this transformation, affording the corresponding
products in moderate yields. Meanwhile, the N-arylated ami-
dine 16 was generated in situ in a one-pot manner to carry out
annulation reactions avoiding prefunctionalization of amines
prior to the reaction.

2.2 The [5 + 1] annulation of amidines

Inspired by Wasers work,” Ohno group* deduced that the
amidine group in N-phenylbenzamidine not only serves as
a directing group for copper-catalyzed C-H alkynylation, but
also forms substituted quinazoline through [5 + 1] cyclization as
a nucleophilic group (Scheme 7). Otherwise, nitrogen alkyny-
lation*® might promote tautomerization-electrocyclization
cascade™ of 20b to give the same quinazoline 19.

The challenges of this strategy include predominant alkyne
introduction over benzimidazole formation and and regiose-
lective cyclization or alkynylation in the presence of two
nitrogen atoms. After exploring appropriate alkyne sources for
the reaction, they successfully developed a novel synthesis of
quinazolines through copper-catalyzed alkynylation and [5 + 1]
cyclization of N-phenylbenzamidine in 2010 (Scheme 7). This

reaction was synthetically useful since functionalized

RSC Adv, 2025, 15, 1692116938 | 16923
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Scheme 7 Cu-catalyzed [5 + 1] annulation reactions of N-phenyl-
benzamidines with alkyne.

quinazolines can be directly constructed from ortho-unsub-
stituted amidines, readily prepared from commercially avail-
able anilines. Meanwhile, the reaction of 19 with TBAF in THF-
AcOH (20: 1) at room temperature led to efficient cleavage of the
TIPS group to give known quinazoline 21 in 76% yield.
Subsequently, the transition-metal catalyzed C-H bond
activation/[5 + 1] annulation of amidines has been made
significant progress. In 2011, Zhu group*® developed an efficient
synthesis of quinazoline-4-(3H)-ones from  N-phenyl-
benzamidine through palladium-catalyzed intramolecular
C(sp®)-H carboxamidation (Scheme 8). No atoms except protons
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Scheme 8 Pd-catalyzed intramolecular C—H carboxamidation of N-
arylamidines.
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in substrates were lost during the process. In addition, the
control experiments suggested that the C-H bond activation
was reversible and deuterium-hydrogen exchange occurred
during the reaction. In this reaction, initial chelation of the
amidine nitrogen with palladium(u) forms intermediate 24,
followed by reversible cyclopalladation. The coordinated CO
inserts into the C-Pd bond in intermediate 26, generating
a seven-membered palladacycle 26. Reductive elimination leads
to the product 23 and releases Pd(0), which is reoxidized by CuO
under the aid of HOAc.

At the same year, they”” found that the similarity of CO and
isonitriles in terms of their coordination to transition metal
suggested that an equivalent C-H isonitrile insertion process
should be viable. Based on that, they achieved palladium-
catalyzed intramolecular C-H amidination by isonitrile inser-
tion provided direct access to 4-aminoquinazolines (Scheme 9).

After these work, various kinds of C, synthons were applied
to this system to construct nitrogen-heterocycle derivatives. In
2013, Zhang group® used solvents (including DMSO, DMF,
DMA, NMP, TMEDA) as methyl one carbon synthons to
synthesize quinazolines through direct oxidative amination of
N-H bonds and methyl C(sp®)-H bonds followed by intra-
molecular C-C bond formation reactions (Scheme 10). In this
reaction, the oxidation of CuX with the oxidant (such as
selectfluor) provided the Cu(m) complex 34, which underwent
a C-N bond formation reaction via nitrene insertion into the
C(sp*)-H bond of DMSO to give the intermediate 35. Finally, in
the present of H', the cleavage of the C-S bond gave an iminium
species 36, which underwent an electrophilic addition reaction
or electrocyclization with the aromatic ring to provide di-
hydroquinazolines. Subsequently, aromatic aldehydes or
benzyl alcohol were found to be one carbon synthon for the
synthesis of quinazoline derivatives via reactions of N-phenyl-
benzamidines by Zhang.*® The CuO nanoparticles were used as
efficient catalysts, and reaction showed high generality and
functional group tolerance (Scheme 11).

Besides Cu and Pd, the [5 + 1] annulation reaction with N-
phenylbenzamidine could also occur through Rh(m)-catalyzed
C-H activation. However, this required an appropriate C; syn-
thon in reaction system and avoided the metal-X (X = C, N)
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Scheme 9 Pd-catalyzed intramolecular C-H amidination of N-
arylamidines.
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Scheme 11 Cu-catalyzed oxidative coupling of amidines with
aromatic alcohols.

undergoing migratory insertion into the C=N bond (acting an
electrophile), causing NH to be removed through subsequent
elimination. In 2018, the catalytic [5 + 1] annulation/5-
exocyclization reaction of amidines with diynes was reported
by Du (Scheme 12).*° Significantly, this reaction represented the
first example of using diyne as a one-carbon reaction partner in
C-H functionalization. The diynes were employed as new one-
carbon units that efficiently enable insertion of six-membered
metallacycles in situ and accelerate implementation of subse-
quent cascade reactions by another alkyne group, thereby
providing a favorable driving force for resisting well-established
[7 + 2] annulations. Initially, the C-H activation at the amidine
led to six-membered 43, which then would undergo ligand
exchange to deliver the intermediate 44. The intermediate 44
generated 45 has a lower barrier, and migratory insertion of 45
generated intermediate 46. Two distinct pathways can be
speculated after the formation of intermediate 46. In path a,
reductive elimination of intermediate 46 gave the intermediate
47 with release of the Cp*Rh(1). Then demetalation of inter-
mediate 47 led to the formation of desired products, which
proceeded with isomerization to yield the final [5 + 1] products.
Alternatively, for unsymmetrical diynes bearing the Me-group at
one alkyne terminus, continuous migration insertion and a 1,4-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 12 Rhodium(in)-catalyzed cascade [5 + 1] annulations of
amidines with diynes.

rhodium shift of 46 followed by the subsequent -H elimination
generates dehydrogenation product in path b.

In 2020, Wu group* used cyclopropenone as coupling
partner to realize rhodium-catalyzed [5 + 1] annulation reaction
of N-arylamidines (Scheme 13). The reaction featured mild
reaction conditions, wide substrate scope and high atom-
economy. Cyclopropenones were employed as appealing reac-
tion partners with the release of the ring strain being the driving
force. Interestingly, C-benzyl imidamides underwent not only
the C-H activation/annulation, but also the attached oxidation
to develop 2-benzoyl quinazolines. In addition, the synthetic
practicality has been highlighted in several derivatization
reactions, including the alkene functionalizations by reduction
and oxidation. A plausible mechanism was proposed by author.
First, a six-membered rhodacyclic intermediate 55 was gener-
ated via coordination of 50 to the active catalyst and following
cyclometalation. Subsequently, oxidative addition for the C-C
bond cleavage in cyclopropenone occurs through the transition
state 56 to form the Rh(v) intermediate 57. The followed
reductive elimination led to the formation of acyl arene in
intermediate 58. The final product 52 was obtained by way of
cyclocondensation with the release of H,O and the rhodium()

RSC Adv, 2025, 15, 1692116938 | 16925
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Scheme 13 Rhodium(i)-catalyzed [5 + 1] annulations of N-arylami-
dines with cyclopropenones.

species can be reoxidized by the action of Ag(i) and/or O, to
complete the catalytic cycle.

Different from the conventional transition metal-catalyzed
thermal annulation reactions, metal photocatalysis oxidative
Csp2-H annulation at room temperature (RT) is very challenging
and complementary, which has been proven to follow the
principles of green chemistry. In 2021, Hwang group®” reported
the visible light-initiated copper-catalyzed oxidative Cgp-H
annulation of amidines with terminal alkynes to form 2,4-
disubstituted quinazolines using molecular O, as an oxidant at
RT (Scheme 14). This method was applicable for the synthesis of
anticancer compounds from simple commercially available
starting materials. The green metrics and eco-scale evaluations
signify that the current photochemical process was simple, cost-
effective and environmentally benign.

Based on the mechanistic investigations, a possible reaction
mechanism was depicted. Under visible light irradiation, in situ
generated Cu(i)-phenylacetylide 62 absorbed blue light and
become photochemically excited triplet state 63. This photoex-
cited state 63 then underwent a SET process by donating an
electron to molecular O, and generated a Cu(u) complex 64, as
well as a superoxide anion radical. In the next stage, the basic
nature of the copper-superoxo radical anion had propensity to
abstract acidic NH proton 59 to form a nitrogen-centered
radical 65, which further reacts with Cu(u)-phenylacetylide
complex 64 and forms Cu™-complex species 66. This
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Scheme 14 Visible light-initiated copper-catalyzed aerobic oxidative
Csp2—H annulation of amidines with terminal alkynes.

Friedel Crafts
cyclization

/

intermediate Cu™

-complex 66 underwent reductive elimination
and generated Cu(i)-coordinated ynamine intermediate 67.
Intermediate 67 then underwent Friedel-Crafts-type cyclization
(6-exo-dig cyclization) to form cyclized intermediate 68 and
subsequent aromatization to form compound 69, which upon

photo-oxidation by Cu(u) superoxo forms product 61.

2.3 The [5 + 2] annulation of amidines

Compared with the C-H activation/[5 + 0] or [5 + 1] annulation
reactions with the amidines, the [5 + 2] annulation reaction is
more hard to achieve due to the fact that the formation of an
eight-membered metallacycle intermediate required in the
envisioned [5 + 2] annulation is energetically unfavorable.
Meanwhile, the substrate is requested to provide C, synthon in
reaction. With these challenges in mind, an efficient approach
for the synthesis of 1,3-benzodiazepines has been developed via
rhodium(ur)-catalyzed annulative coupling between N-aryl ami-
dines with propargylic esters by Fan group® in 2020 (Scheme
15). Of note, this was the first example in which N-aryl amidines
serving as a Cs synthon underwent a regioselective [5 + 2]
annulation with propargyl esters acting as a C, synthon to
afford valuable seven-membered heterocyclic system. This
protocol featured broad substrate scope, good tolerance of
a wide range of functional groups and facile operation process.
In addition, the cytotoxicity of selected products against several
human cancer cell lines was tested, which demonstrated their

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 15 Rh(i)-catalyzed [5 + 2] annulation of N-aryl amidines with
propargylic esters.
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Scheme 16 Ru(i)-catalyzed [5 + 2] annulation of N-aryl amidines with
alkynyl cyclobutyl acetates.

good potential for pharmaceutical applications. In this reac-
tion, the insertion of the triple bond into the C-Rh bond
generated an eight-membered rhodacycle 75, which underwent
areductive elimination to give the intermediate 76 and released
the Rh(1) species. The Rh(i) species was then oxidized back to
the active Rh(m) catalyst by Cu(u)/air. Finally, the intermediate
76 took part in a deacetylation process, most likely under the
promotion of Rh(m) as a Lewis acid catalyst via the formation of
intermediate 77 to give product 72.

In 2023, Cui group®* developed Ru(n)-catalyzed regioselective
[5 + 2] annulation of N-aryl amidines with alkynyl cyclobutyl
acetates to construct 5-cyclobutylidenebenzo[d][1,3] diazepines
(Scheme 16). The method featured excellent regioselectivity,
high step economy and good functional group tolerance. In this
reaction, cheaper and earth abundant ruthenium was used as
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catalyst and the introduced cyclobutyl group would facilitate the
subsequent biotransformation.

3 The [4 + n] annulation of amidines
in C—H activation
3.1 The [4 + 1] annulation of amidines

Recently, the metal-catalyzed annulation reaction has been
increasingly employed for synthesis of nitrogen-heterocycles,
especially by Rh™3* Ru"** Co™* and Ir'-catalyzed*® C-H
activation in the presence of a DG. For these metals, amidines
exhibited different chemical properties from copper and
palladium-catalyzed C-H activation reactions, which afforded
the opportunity to manipulate an array of different heterocyclic
compounds. The amidines were used in a series of [4 + 1]
annulation reactions, in which the metal-X (X = C, N) or
nucleophilic reagent underwent migratory insertion into the
C=N bond (acting an electrophilic group) and the cleavage of
C=N bond.

In 2016, Li group*® developed the firstly ruthenium(u)-cata-
lyzed intermolecular coupling between aryl imidamides and
diazo compounds by C-H activation, which enabled the
synthesis two classes of indole derivatives by [4 + 1] annulation
under mild conditions (Scheme 17). Derivatizations of 3H-
indole 84a were performed to further showcase the synthetic
utility of these compounds.*® Interestingly, the intermediate 91
was formed by Ru-C(alkyl) migratory insertion into the C=N
bond. In path A, the intermediate 91 underwent protonolysis,
intramolecular nucleophilic addition and subsequent elimina-
tion of one molecule of amide to generate product 83. In path B,
the intermediate 91 underwent elimination of ammonia with

H

R
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Scheme 17 Ru(i)-catalyzed C—H activation of imidamides and diver-
gent couplings with diazo compounds.
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Scheme 18 Rh(i)-catalyzed C-H activation/[4 + 1] annulation of
imidamides with a-diazo-B-ketoesters.

assistance of Ru" or acetic acid, furnishing 3H-indole 84 as the
final product. This change in selectivity was likely caused by the
reduced electro-philicity of the ester carbonyl group.

At the same year, they reported** a redox-neutral approach to
synthesize unprotected indoles via Rh(m)-catalyzed C-H acti-
vation in similar reaction system (Scheme 18). This reaction
proceeded under relatively mild conditions with broad
substrate scope. The metal-C underwent migratory insertion
into the C=N bond (acting an electrophile), causing NH to be
removed through subsequent elimination in the case of HOAc.
Meanwhile, a rhodacyclic intermediate was isolated to favor the
plausible mechanism.

Subsequently, Dong group** revealed an efficient approach
for the synthesis of unique 3H-indole derivatives from N-phe-
nylamidines with pyridotriazoles via a rhodium-catalyzed
highly selective C-H bond activation and annulation reaction
(Scheme 19). In this transformation, the pyrido-triazoles were
employed as a powerful carbene precursor coordinating with
the metal by releasing of N, to afford the rhodium carbene 99.
The intermediate 99 provided seven-membered rhodacyclic

[CP*RhCl,], (5 mol %) N
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Scheme 19 Rh(i)-catalyzed cascade annulation between N-phenyl-
benzimidamides and pyridotriazoles.
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species 100 by migratory insertion. Thereafter the Rh—C(alkyl)
bond underwent migratory insertion into the C=N bond to
intermediate 101, which underwent elimination of the active
Rh(m) catalyst and one molecule of NH; with the assistance of
acid upon protonolysis and intramolecular protonolysis to
afford product 98. The reaction tolerated diverse functional
groups and conveniently afforded various 3H-indoles in
moderate to excellent yields. In addition, the ester group could
be removed in the present of NaBH, to afford 2,3-disubstituted
indole 102, which suggested that this current protocol could be
a practicability synthetic method and a late-stage modification
tool.

In 2021, Fan group* developed Rh(m)-catalyzed coupling
and spirocyclization of N-aryl amidines with diazo oxindoles to
construct 3-spiroox-indole 3H-indoles (Scheme 20a). In this
reaction, the newly formed C(sp*)-Rh bond underwent a nucle-
ophilic addition onto the C-N double bond of the amidine
moiety to accomplish spirocyclization to form intermediate 107.
The protonation of 107 with HOAc afforded intermediate 108,
which underwent the elimination of ammonia to afford
product. This novel spirocyclization features easily accessible
substrates with a broad scope and generality, and formation of
multiple bonds with high efficiency. Subsequently, Cui group**
developed the Ru(u)-catalyzed selective C-H bond activation/[4 +
1] spirocyclization starting from easily available N-aryl amidines
and diazopyrazolones (Scheme 20b). A series of spiropyr-
azolones could be easily obtained under mild reaction condi-
tions with high step and atom economy.

In addition, sulfoxonium ylides as a convenient and safe
carbene precursor reagent, have been widely used in transition-
metal-catalyzed C-H activation.* Interestingly, the sulfoxonium
ylided can be used as the C, (ref. 46) unit or C; (ref. 47) unit
according to the different reaction conditions. In 2019, Wu
group®® reported their work on additive-controlled selective
synthesis of indoles and quinazolines by using N-arylamidines
and sulfoxonium ylides as the starting materials (Scheme 21). In

a) Fan group R*
N
4 N
) R [CP*RAClyl, (2 mol %) o s
N N 5 CsOAc (5 mol %) Ny P
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Scheme 20 Transition metal-catalyzed [4 + 1] spirocyclization of N-
aryl amidines with diazo compounds.
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Scheme 21 Rh(i)-catalyzed selective C—H activation/annulation of
N-arylamidines and sulfoxonium ylides.

this process, the oxidants were shown to play a key role in
selectively controlling the [4 + 1] and [5 + 1] annulation. In Ar
atmosphere, the reaction predominantly gave the indoles
through [4 + 1] annulation because sulfoxonium ylide was used
as internal oxidant. Changing to O, and copper salt system, the
preference of the annulation was switched to [5 + 1] annulation
because the Cp*Rh(i) need to be reoxidized for catalytic cycle.
Initially, the rhodacyclic intermediate 116 coordinated of sul-
foxonium ylides 113 to generate a Rh(m) alkyl species 117, and
the a-elimination of DMSO from 117 afforded a reactive
rhodium a-oxo carbene species 118. Subsequently, in pathway
a, the intermediate 118 was proposed to undergo migratory
insertion of the Rh-C bond to generate a seven-membered
rhodacyclic intermediate 119, which undergo Rh-C(alkyl)
migratory insertion into the C-N bond to afford intermediate
120. Finally, the product 114 was released from 120 by elimi-
nation of the active Rh(m) catalyst and one molecule of
ammonia from 120 upon protonolysis and intramolecular pro-
tonolysis. In pathway b, the reductive elimination from inter-
mediate 119’ formed partially reduced quinazoline 121.
Subsequently, the oxidation of 121 afforded the quinazoline
product 115. On the other hand, the resulting Cp*Rh(1) can be
reoxidized to the starting Rh(m) species by the action of Cu(u)
and/or O, to complete the catalytic cycle.

Subsequently, Cui group found that Ir(m)-catalyzed C-H
activation of arens bearing a protic directing group preferred to
couple with carbene compounds occurred under redox-neutral
conditions to furnish various heterocycles. Different from
ionic radius and catalytic activity of Ru and Rh, it can improve
the selectivity of reaction of N-phenylbenzamidine and promote
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the reaction to occur. Hence, they* reported a convenient and
straightforward approach to synthesis 1,2-disubtituted benz-
imidazoles via Ir(m)-catalyzed C-H activation of N-phenyl-
benzamidine and organic azides in 2017 (Scheme 22). The TsN;
took part in the reaction by removing N, as the precursor of the
nitrogen carbene, which coordinated with metal to generate
iridium carbene species 125. The Ir-Ar bond was proposed to
undergo migratory insertion into the carbene unit to generate
intermediate 126. The Ir-N(TsN;) bond then underwent
migratory insertion into the C=N bond to afford amide species
127. Finally, the product 124 was eventually formed from 127 by
elimination of the active Ir(m) catalyst and one molecule of NH;
from 127 upon protonolysis and intramolecular protonolysis.
The products could be easily obtained in up to 99% yield and
with good functional group tolerance.

However, the organic azide was unstable chemical reagent.
To solve this limitation, Cui group used N-hydroxycarbamates
instead of organic azides as amination reagents. Soon after,
they® successfully developed a novel method to synthesize 2-
alkylbenzimidazole through the direct C-H amination of imi-
damides with hydroxylamines catalyzed by Rh(m) (Scheme 23).
Various 2-alkylbenzimidaoles were conveniently afforded in
good to excellent yields under relatively mild conditions
employing readily available N-hydroxycarbamates as a nitrogen
source.
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Scheme 23 Rh(m)-catalyzed [4 + 1] annulation of imidamides with
hydroxylamines.
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Scheme 24 Rh(n)-catalyzed [4 + 1] annulation of N-phenylamidines
with a-halogenated ketones.

According to the property of C=N bond of imidamides
(acting an electrophile), causing NH to be removed through
subsequent elimination, various cyclization reactions of imi-
damides involving different nucleophiles were reported. In
2018, Liu group®* demonstrated that the easily accessible a-
halogenated ketones could be used as one-carbon reaction
partners for direct construction of 3-acylindoles via Rh(m)-
catalyzed annulation of N-phenylamidines (Scheme 24). This
strategy featured high regioselectivity and wide substrate
tolerance. In particular, the methodology could provide a short
synthesis route for pravadoline 138, which demonstrated the
practicability of this protocol. Meanwhile, the intermediate 139
was isolated and characterized, suggesting that C-H alkylation
took place before C=N bond cleavage. The key intermediate
139 could be further converted into the desired product 137
under standard conditions with Rh-catalyzed system.

Soon afterwards, Cui group® developed an efficient and
practical method to construct benzimidazole derivatives via
Rh(m)-catalyzed sequential C-H amination by using anthranil®®
as bifunctional aminating reagent (Scheme 25). This procedure
could proceed smoothly with a low catalyst loading, avoid the
external oxidants, and offer high-value products as versatile
building blocks for further transformation, especially for
heterocycle synthesis. In addition, the title product 142b could
be easily further converted into imidazo[4,5-clacridines 144,
which was observed with unique fluorescent properties.
According to the result of the control experiment, the NH of N-
phenyl pivalimid amide might play as a directing group to
sequential C-H aminations in the -catalytic cycle, and
compound 143 was a byproduct, but not the key intermediate in
this reaction.
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Scheme 25 Rh(i)-catalyzed sequential C—H amination/annulation
cascade reactions of imidamides with anthranils.

In 2020, an efficient and practical Rh(m)-catalyzed C-H
activation/annulation to construct benzimidazo[1,2-a]quino-
lines from readily imidamides and anthranils in [BMIM|BF, was
reported by Wu group (Scheme 26).** Anthranils were as a new
type of bifunctional aminating agent to expose carbonyl group
after breaking the N-O bond. Subsequently, the product was
obtained from the intramolecular Knoevenagel condensation of
intermediate 148 at high temperature without extra additives.

Based on that, Fan group® achieved a Rh(ui)-catalyzed [4 + 1]
annulation of N-arylpivalimidamides with dioxazolones
(Scheme 27). It was the first example in which N-acylbenzimi-
dazoles were synthesized through simultaneous formation of
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Scheme 26 Rh(i)-catalyzed C-H activation cascade reaction

between imidamides and anthranils.
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Scheme 27 Rh(i)-catalyzed C—H activation/[4 + 1] annulation reac-
tion of N-arylpivalimidamides with dioxazolones.

the imidazoyl moiety and introduction of the N-acyl group. The
dioxazolone as a masked amidating reagent followed by an
intramolecular N-nucleophilic addition and ammonia elimi-
nation to afford product. In addition, the chemistry trans-
formations illustrated the synthetic utility of the products.

3.2 The [4 + 2] annulation of amidines

Different from other DGs, the N-phenylbenzamidine is essen-
tially bifunctional with two N-H bonds. In addition, the low
thermostability of benzamidines might cause complications,
which is difficult to achieve the C-H activation at the C-phenyl
ring. In 2011, Li group® firstly achieved the synthesis of N-
substituted 1-aminoisoquinolines via Rh(u)-catalyzed oxidative
coupling of N-aryl and N-alkyl benzamidines with alkynes
(Scheme 28). C-H activation occurred at C-phenyl ring with
excellent regio-selectivity. The exposed amino group avoided
the use of other ammoniation reagent, which provided a new
strategy for synthesis of amino heterocyclic compounds.
Interestingly, they unconsciously discovered the incorpora-
tion of two alkynes units with N-phenylbenzamidine, even
though only 1.05 equiv alkyne was provided (Scheme 28b).
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N
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Scheme 28 Rh(i)-catalyzed oxidative coupling of N-aryl benzami-
dines with alkynes.
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Simple optimization by providing an excess of alkynes and
Cu(OAc), afforded this product in 73% yield. They reasoned that
the isolation of the 2-fold oxidative coupling product is due to
steric assistance. After the formation of the 1-(phenyl-amino)
isoquinoline intermediate, the steric repulsion between the o-
Me and the N-phenyl group renders these two groups distal to
each other, leading to a conformation that is exactly favorable
for C-H activation. With this conformational assistance, the
isoquinoline ring nitrogen coordinated to the Rh(m) to give an
intermediate in which the ortho C-H bond in the N-phenyl ring
is pointed favorable to the metal center, leading to cyclo-
metalation and eventually C-C and C-N formation.

Subsequently, in order to improve the selectivity, Ackermann
group” changed the N-aryl to N-alkyl benzamidines, and re-
ported a ruthenium(u)-catalyzed oxidative C-H-bond function-
alization on easily accessible N-alkyl benzamidines with alkynes
and alkenes (Scheme 29). Notably, this strategy proved to be
widely applicable and enabled annulations of alkynes and
alkenes to provide expedient access to diversely substituted 1-
aminoisoquinolines and novel 1-iminoisoindo-lines, respec-
tively. The desired product 164 was obtained through an intra-
molecular aza-Michael addition of intermediate 166, followed by
dehydrogenation of the thus obtained intermediate 167.

Under this strategy, a cobalt(ui)-catalyzed C-H/N-H bond
functionalization for the synthesis of 1-aminoisoquinolines
from amidines and diazo compounds was developed by them in
2016 (Scheme 30).”* The byproducts of N, and H,O in the
reaction made the process environmentally benign and the in
situ formed cationic cobalt(m) catalyst provided access to
structurally diverse isoquinolines under the assistance of
carboxylates cobalt intermediate.

It was not difficult to find that the Rh was more inclined to
react with N-phenylbenzamidine than other metals, and the
experimental results also confirmed this. For example, Shang*
and Li group® developed a Rh-catalyzed annulative coupling
between N-phenylbenzamidine with cyclic 2-diao-1,3-diketones
or sulfoxonium ylides to synthesize 1-aminoisoquinoline
derivatives (Scheme 31a and b). These methodologies featured
a broad substrate scope, and involved the formation of two new
o bonds (C-C and C-N) in a single operation under redox-
neutral conditions.

2 HN’RZ
W [ RuCly(p-cymene)l, KPFy
NS ¢ R=—R* CulOAckH;0 RN
NH H DCE, 120°C, 22 h PN R4
160 161 162 RalR
b) 4 /:—R1 _ o [RuCly(p-cymene)],, AgOAC N ';‘
R2,N § + ) Cu(OAG),.H,0 R'- PWLL
NH B DCE, 120°C, 22 h
160 R? 164 COOR®
HN HN- _R2

3
165 H COOR COOR3

CEE Cu(OAc),
167'—coor?
Scheme 29 Ruthenium(i)-catalyzed oxidative C—H bond functional-

ization of aryl amidines with alkynes and alkenes.
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Scheme 31 Rh(i)-catalyzed annulative coupling between N-aryl
amidines with cyclic 2-diazo-1,3-diketones and sulfoxonium ylides.

Interestingly enough, in 2019, Zhou group® developed
a catalyst-controlled highly selective synthetic strategy to
produce phosphoryl-indoles and phosphoryl-isoquinolines
through a selective C-H bond activation of N-phenyl-
benzimidamide and the subsequent divergent couplings with
diazophosphonate compounds (Scheme 32). Different C-H
activation pathways of the substrate N-phenylbenzimidamide
by altering the Rh(m)/Ru(u) catalyst systems prepared diverse
privileged scaffolds. The H/D exchange experiment indicated
that the C-H activation process preferred to occur on the C-
phenyl ring under the Rh(m) catalytic system, while C-H acti-
vation preferred to occur on the N-phenyl ring under the Ru(u)
catalytic system. In Ru(u) catalytic system, a Ru-C(alkyl)
migratory insertion into the C=N bond could give the species

=
S O
| V HN
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. h + T
RET T T PO " peg 1000c, 14h, N, R
S S 177 178 PO(OEY),
b) PO(OE
e i /+R2 N, [Ru(p-cymene)Cll,, (0%
: N > B
NN X + PO(OEt), —A9NTf2: CFsCOONa, | oy T N \ 32
R L MeOH, Nz, 80 °C, 14 h ZN i
e . 179
(Et0),0P.
S \
R LN
N

180y - CH3CONH,

Scheme 32 Highly selective C—H bond activation of N-arylbenzimi-
damide and divergent couplings with diazophosphonate compounds.
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181, which underwent further protonolysis, intramolecular
nucleophilic addition, and subsequent elimination of CHj-
CONH, to give the target product 179. This protocol might find
wider application in the discovery of lead compounds in the
future, and verified the importance of the Rh in the occurrence
of the C-H activation in C-phenyl ring.

In addition, the para-methoxybenzyl (PMB)-substituted ben-
zamidine furnished the product through a twofold C-H/N-H-
bond functionalization with two alkynes (Scheme 33a),””
thereby high-lighting the ability of the 1-aminoisoquinolines
themselves to serve as useful substrates for directed C-H-bond
transformations. In 2020, Du group® reported a tandem
process of multiple C-H activation and intermolecular highly
meta-selective C-H amination between N-phenylbenzimidamide
and alkynes (Scheme 33b). Initially, assisted by the N=C group,
the ortho C-H bond of the C-phenyl ring of 187 was activated to
generate a five-membered rhodacycle 190. Subsequently, 190
underwent alkyne insertion, followed by reductive elimination, to
form 193 as well as Cp*Rh(i). Reoxidation of Rh(i) to Rh(m) by
Mn(OAc);-2H,0 completed the catalytic cycle. Separately and
simultaneously, assisted by the N-C group, the ortho C-H bond of
the C-phenyl ring was activated to furnish another five-membered
rhodacycle intermediate 194. After that, coordination of alkyne to
rhodacycle intermediate 194 and insertion of alkyne into the Rh-
C bond afforded a seven-membered rhodacycle intermediate 196.
Reductive elimination of 196 leaded to the formation of 197 and
regenerates Cp*Rh(1). Then 197 and 193 underwent steric-effect-

controlled intermolecular meta C-H amination to form

a) Ackermann's work
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S [CPRACL,,
' Nt i+ R—=—_g' _Mn(OAc)3H,0
: ,@ NH R PhCN, KO'Bu, CE
H ,,,,,,,,, H 187 188 139 R‘

proposed mechanism +Ci
<} g@
©/ N—Rh,
194 190  Cp*
Cp*Rh(lll)

Cp 7

Rh Mn(l)

@p@ - e

al Mn(lll) Rh/Cp

195 Cp*Rh(l)

;/x@/

NH /~R!
196 @\
" ; §: R1 N

197 193

189

Scheme 33 Rhodium-catalyzed multiple C-H activation/highly
meta-selective C—H amination between amidines and alkynes.
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Scheme 34 Mn(i)-catalyzed [4 + 2] annulation of N-aryl amidines with
vinylene carbonate.

intermediate 198. In the final stage of this cascade reaction, an
intramolecular C-H amination delivered the product.

In 2021, Li group® developed Mn-catalyzed [4 + 2] annulation
of aryl amidines with vinylene carbonate for the synthesis of 1-
aminoisoquinolines (Scheme 34). The vinylene carbonate was
used as a acetylene surrogate through removing CO, in the
transition-metal-catalyzed coupling reactions. In addition, the
protocol obviates the need for any oxidants and shows good
functional group tolerance and high atom efficiency.

At the same year, Cui group® reported Rh(im)-catalyzed [4 + 2]
annulation of N-arylbenzamidines with 1,4,2-dioxazol-5-ones for
the synthesis of 4-aminoquinazolines (Scheme 35). This strategy
proceeded with excellent regioselectivity, broad substrate scope
and high step economy, and two C-N bonds were formed in
reaction. In addition, the benzimidazo-1,2-c]quinazolines 205
could also be synthesized via a phenyl-iodine diacetate (PIDA)-
mediated intramolecular C-H cyclo-amination of 204a.

Subsequently, Cui group® explored Rh(m)-catalyzed C-H
bond activation/annulation reactions of propargyl alcohols with
N-arylbenzamidines to synthesize 1-aminoisoquinolines
through a noncovalent interaction (Scheme 36). The hydroxyl
group in 207 might provide binding affinity for Rh, and
PhCOO™ facilitated the formation of the intramolecular
hydrogen bonding with 206 and 207, which guided the
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Scheme 36 Rh(in)-catalyzed [4 + 2] annulation of N-arylbenzamidines
with propargyl alcohols.
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Scheme 37 Rh(m)-catalyzed [4 + 1 + 1] annulation of N-aryl amidines
with diazo homophthalimides.

regioselective migratory insertion. Only one isomer was ob-
tained in this transformation, and the reactions proceeded with
a broad substrate scope and high atom economy. In addition,
the hydroxyl could be removed to afford the olefins.

In 2022, a Rh(u)-catalyzed [4 + 1 + 1] spirocyclization of N-aryl
amidines with diazo homophthalimides and O, to construct the
hitherto unreported spiro[benzo[d][1,3]oxazine-4,4’-isoquino-
line] derivatives has been developed by Fan group®
(Scheme 37). Interestingly, the intermediate 214 reacted with
oxygen in air and further transformed into 215, which under-
went intramolecular O-nucleophilic addition and elimination of
ammonia to afford product 213. In addition, this novel protocol
featured easily obtainable substrates bearing diverse functional
groups, structurally and pharmaceutically valuable products,
and mild reaction conditions, is cost-free and clean, and has an
abundant oxygen source and a sustainable reaction medium.

4 The [3 + 3] annulation of amidines
in C—H activation

Different from imine, the C-N bond of imidamides was difficult
to cleave due to the high stability. When NH of imidamides took

RSC Adv, 2025, 15, 16921-16938 | 16933
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Scheme 38 Rh(i)-catalyzed [3 + 3] annulation of imidamides with
cyclopropanol.

part in nucleophilic attack instead of imine, the other substrate
needed to provide sufficiently long chain of electrophilic point,
which avoided forming an intermediate with macrocyclic
tension with imine.

Cyclopropanols, as the p-aryl ketone precursor, can serve as
a readily available C; synthon for the construction of cyclic
compounds.®””®® To realize cyclization of p-aryl ketone
precursor, a bifunctional nucleophilic directing group that
attacked the resulting carbonyl group needs to be employed. In
2017, Li group® disclosed a Rh(m)-catalyzed annulative
coupling between cyclopropanlos and imidamides for the
synthesis of 2-substituted quinolines, where cyclopropanlos
acted as a C; synthon (Scheme 38). With the assistance of
a bifunctional imidamide directing group, the reaction
occurred via sequential C-H/C-C cleavage and C-C/C-N bond
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Scheme 39 Rh(i)-catalyzed [3 + 3] cascade annulation reactions of
N-aryl amidines with CFz-ynones.
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formation. According to the proposed mechanism, intra-
molecular nucleophilic addition of 220 generated a hemiaminal
221, dehydration of which delivered an N-protected 1,4-dihy-
droqquinoline intermediate 222. Nucleophilic deprotection of
222 furnished the intermediate 223, which was readily oxidized
even by Cu(1) species to eventually furnish the product.

In 2024, Fan group” developed Rh(m)-catalyzed cascade
reactions of N-aryl amidines with two CFz;-ynones for the
synthesis of CF;- and alkynyl-substituted quinoline derivatives
(Scheme 39). In this cascade procedure, the CF;-ynone played
multiple roles by acting not only as an alkenylating reagent but
also as an alkynylating reagent and a source of the CF; group.
Initially, under the promotion of Cu(u), CF3;-ynones 225 under-
went detrifluoroacetylation to form an alkynyl copper species
230, which was then trapped by intermediate 229 to give
intermediate 231. From intermediate 231, 231’ was formed
through equilibration. Subsequently, a reductive elimination
reaction took place with 231’ to furnish intermediate 232, which
underwent intramolecular N-nucleophilic addition to give
intermediate 233. The intermediate 233 underwent intermo-
lecular O-nucleophilic addition to form intermediate 234.
Finally, an aromatization driven ring-opening reaction of the
1,3-oxazetidine moiety took place to give product 226.

5 The intramolecular proton transfer
process of amidines in C—H activation

Intramolecular proton transfer is an important process in
chemical reactions and biological transformations.” In partic-
ular, the translocation of reactive carbanion centers can be
achieved through 1,n-proton transfer in either a direct or an
assisted manner (via the protonation/deprotonation mecha-
nism).” these pathways rely on intramolecular
carbon-to-carbon proton transfers, achieving the intra-
molecular proton transfer through transition metal-catalyzed
C-H bond activation process is still a challenge due to the
system incompatibility.

In 2023, Cui group” developed Rh(m)-catalyzed divergent
C-H bond functionalization of N-aryl amidines with iodonium
ylides. Carbazolones and zwitterionic salts were diversely con-
structed through intermolecular annulation and intramolecular
proton transfer under the different reaction conditions
(Scheme 40). Except for the coordination with metal, N-aryl
amidines were used as the proton acceptor for the first time,
affording the ammonium zwitterionic salts, which affords
a remarkable and meaningful expansion in the area of multi-
function directing groups. In path A, the intermediate 242
took enol-isomerization to give intermediate 243, which
underwent intramolecular proton transfer progress to afford
a new carbon anion and ammonium 237. In addition, the
intermediate 241 might also undergo enol-isomerization to
form O-Rh-N specie 242’ and followed by proton transfer
process to afford 243 and the active catalyst species. In path B,
the intramolecular nucleophilic addition of intermediate 242
afforded intermediate 244 with the help of K3[Fe(CN)s], followed
by elimination of water to yield intermediate 245. Finally,

However,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 40 Rh(i)-catalyzed divergent C—H functionalization of N-
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nucleophilic deprotection of intermediate 245 furnished the
product 238.

6 Conclusion

In this review, we have presented the progress of the transition-
metal catalyzed C-H activation of amidines to synthesize
heterocyclic compounds in the past decade. A wide range of
original procedures for synthesizing various classes of N-
heterocyclic systems have been developed on the basis of ami-
dines and their derivatives through diverse annulation strate-
gies. Different from other DGs, multiple activity reaction
positions of amidines presented a difficult challenge. Although
much progress has been achieved in this field, there are prob-
lems and demands for more applications of amidines in
organic synthesis. For example, it is still difficult to achieve the
C-H activation at the meta- or para-position of amidines.
Meanwhile, transition-metal-catalyzed C-H activation of ami-
dines to construct large and small ring compounds is very
limited. Recently reported methods pave the way for the future
of this exciting field where many more discoveries are surely
waiting to be uncovered. In summary, the field of amidines
chemistry is growing because of its high efficiency in the
preparation of N-heterocycles. The potential of these amidine
compounds is far from being fully realized. We hope that this
review will be a spur for other researchers to join the field and
we look forward to monitoring the literature as the synthetic
opportunities that exist for this transformation are exploited.
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