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A quantitative structure—activity relationship (QSAR) model for predicting the stability constant of uranium
coordination complexes to accelerate the discovery of novel uranium adsorbents was developed and
evaluated. Effective uranium adsorbents are crucial for mitigating environmental and health risks
associated with uranium wastewater, an unavoidable byproduct of nuclear fuel production and power
generation, as well as for sequestering uranium from seawater. QSAR modeling addresses the limitations
of quantum mechanics calculations and offers a time- and cost-efficient computational approach for
exploring vast chemical spaces. The QSAR model was built using a dataset of 108 uranium complexes,
incorporating features such as physicochemical properties, coordination numbers of ligands, molecular

charge, and the number of water molecules. Catboost regressor achieved an R? of 0.75 on the external
Received 31st March 2025 test set after h t timizati Aoplicability d . si ducted t luat
Accepted 10th May 2025 est set after hyperparameter optimization. Applicability domain analysis was conducted to evaluate
model predictive performance. The QSAR model predicts stability constants from the molecular

DOI-10.1039/d5ra02220g composition alone and is a valuable tool for the efficient design of safer and more sustainable uranium
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Introduction

Uranium plays an indispensable role in meeting the world's
growing energy demands, specifically in the production of
nuclear energy. However, terrestrial uranium resources are
finite, and as high-grade ores become increasingly scarce, the
need for alternative sources of uranium is becoming more
urgent. One such alternative is the extraction of uranium from
seawater. The world's oceans contain approximately 4.5 billion
tons of uranium, enough to meet the world's uranium demand
for over 10000 years." This immense resource, however, is
distributed at a very low concentration of about 3.3 ppb,>
making its extraction technically challenging. The retrieval of
uranium is also associated with safety concerns since the
traditional methods of uranium extraction, primarily terrestrial
mining, pose significant environmental and health risks.
Uranium mining and milling generate substantial radioactive
waste, leading to contamination of water, soil, and air, with
long-term consequences for ecosystems and human health.
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adsorption materials, potentially improving uranium collection processes.

Thus, effective treatment methods are needed for the safe and
sustainable extraction and use of uranium.® Uranium waste-
water containing uranyl ions poses direct environmental and
health hazards. With uranium wastewater being an unavoidable
byproduct of nuclear fuel production and power generation,
proper waste management is imperative.

While adsorption is an effective method for sequestering
uranium from wastewater,® the development of adsorbent
materials that can efficiently capture dilute concentrations of
uranium present in seawater, is a more difficult challenge.
These materials must exhibit high selectivity for uranium over
other metal ions, be resistant to biofouling, and maintain their
performance over multiple adsorption-desorption cycles.* The
extraction of uranium from seawater has been explored for
decades, but most of the adsorbents were ineffective except
polymeric adsorbents® and amidoxime-based materials.”
Amidoxime-based polymers have emerged as the leading
material for uranium adsorbents due to their strong affinity for
the uranyl ion (UO,*"). The amidoxime functional group, which
forms stable complexes with uranium, is central to the ability of
amidoxime-based adsorbents to selectively adsorb uranium
from seawater. However, the large-scale implementation of
seawater uranium extraction remains limited by the high costs
associated with the low efficiency of uranium extraction.
Therefore, new adsorbents which can efficiently extract

© 2025 The Author(s). Published by the Royal Society of Chemistry
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uranium from seawater must be continuously explored and
developed.

The adsorption performance of uranium adsorbents can be
assessed through the stability constant, which indicates the
strength of the interaction between adsorbent material and
uranium to form complexes.® The stability constant is repre-
sented as follows:

[complex]

’8_

" [uranium][adsorbent]

1)

where 8 is the stability constant, and [complex] is the concen-
tration of the uranium-adsorbent coordination complex, and
[uranium] and [adsorbent] are the concentrations of each
species. Computational methods can be used to determine .
Quantum mechanics (QM) calculations can be used to predict
6, and QM methods have been used in material design often.
However, QM methods cannot explore the vast chemical space
quickly and cost-effectively. Consequently, the use of machine
learning (ML) models for novel material design is more
efficient.*

The quantitative structure-activity relationship (QSAR)
model is an ML model whose input is a representation of the
molecular structure and whose output is the activity of the input
molecule (i.e., experimentally measured properties). In the
QSAR model, features calculated from molecular structures
(also called descriptors), are used to predict the activity varia-
tion of the molecule as a consequence of structural variation. To
the best of our knowledge, prior to this work, only one QSAR
model for ¢ prediction has been reported. Zahariev et al
developed a QSAR model based on graph neural network
models and traditional ML models for predicting 8 for metal-
ligand complexes with the aim of designing new selective
ligands for the target metal ion."* The predictive accuracy of the
QSAR model is heavily dependent on the applicability domain
(AD) of the model.** The predicted result is reliable when the
input molecule has similar structural features with training
data. If the specific target molecules only take small portion in
the entire training set, the structural pattern of such molecules
are not well trained; therefore, there is a high possibility that the
model can't produce reliable prediction results on the molecule.
Thus, for novel uranium adsorbent development, the developed
model focuses on the chemical space of uranium complexes can
provide better and reliable prediction results than the general
model.

In this study, we developed a QSAR model to predict § for
uranium complexes. In total, 108 uranium complexes were
collected with their stability constants. Descriptors used in the
model are the physicochemical properties, coordination
numbers according to ligand atom, charge number, and the
number of water molecules due to hydroxylation. The molecular
formula of the uranium complexes was used to calculate four
physicochemical properties, specifically, water solubility,
boiling point, melting point, and pyrolysis point using a neural
network model for inorganic compounds. Catboost achieved
the best prediction performance in the external test set (R*:
0.75). Therefore, the evaluation results confirm that the model

© 2025 The Author(s). Published by the Royal Society of Chemistry
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built in this study is capable of discovering novel uranium
adsorbents.

Materials and methods

Data preparation

The stability constant (log3) was collected from OECD-NEA
thermochemical database and research articles with the struc-
ture information of uranium coordination complexes (ESIt). In
data collection, we compared the different log § values from
different research articles and selected values with no signifi-
cant discrepancies. However, data obtained from OECD-NEA
thermochemical database, a widely accepted and rigorously
evaluated dataset, were used even if single value was available.
The log 8 values in our dataset are considered representative,
reducing concerns over variability. The molecular formula and
ligand atoms were used to represent the molecular structure of
uranium coordination complexes. The total data size was 108,
and the data set was divided into training and test sets with
a ratio of 8:2; thus, the training set comprised 86 data points
and the test set comprised 22 data points.

Feature preparation

Features were prepared based on the structural properties of the
uranium coordination complexes such as the coordination
number of each ligand (ligand_N, ligand_O, ligand_F, and
ligand_Cl), charge, number of water molecules through
hydroxylation (H,O), molecular weight (MW), and four physi-
cochemical properties: aqueous solubility (log S), melting point
(mp), boiling point (bp), and pyrolysis point (pp). These four
physicochemical properties were predicted based on the
molecular formula of the uranium coordination complexes
using a neural network model.”®> The physicochemical property
prediction models used here were developed for inorganic
compounds, in contrast to most existing models focusing on
organic molecules. These models use the electron configuration
of inorganic molecules based on the composition to calculate
the four physicochemical properties. In the collected dataset,
the coordination complexes have four different ligand atoms
such as N, O, F, and Cl. Thus, the number of ligand atoms was
used as a feature. Prepared features are available in ESI tables
(training set: Table S1, and external test set: Table S2+).

Machine learning model development

QSAR models were developed according to OECD QSAR vali-
dation guideline (Fig. 1)."> Two ML algorithms were tested in
model development: extreme gradient boosting (XGBoost), and
support vector regressor (SVR). Particularly, XGBoost and SVR
were used in this study since these two ML algorithms showed
good prediction accuracy compared to graph neural network in
few regression tasks.' Given that the data size is small in this
study, deep learning algorithms can't be applied; thus, two ML
algorithms were tested in this study. Bootstrapping was used for
internal validation instead of n-fold cross validation due to
small size of dataset. Bootstrapping allows duplication when
sampling data. Sampled data chunk is used as training set, and
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Fig.1 QSAR model development process. The composition of the molecule was used in feature preparation and physicochemical properties
were calculated based on molecular formular of the compounds. The data set was randomly split by 8: 2 (training : test). The best machine
learning algorithm was selected after bootstrapping (200 sampling) and was further developed through hyperparameter optimization.

unsampled data points are used as validation set. Recom-
mended sampling round is 20 to 200. In this study, each ML
algorithms were evaluated with 200 rounds of bootstrapping.
The optimum set of hyperparameters were searched using
Optuna library version 3.4.0."* ML models were developed with
scikit-learn (version 1.3.0),'® xgboost library (version 1.7.6),"”
and catboost library (version 1.2.7). The model performance was
evaluated using the root mean squared error (RMSE) and r
square (R®). The model developed in this work was used to
predict the 8 of candidate materials.

Model was further validated through y-randomization test'®
to check if the model's performance is achieved by coincidence
or not. In the test, the model was trained on the randomized
endpoint, and compare the model's performance between
original endpoint and shuffled endpoint. Z-score was calculated
as

Rori2 — mean (ermz)
std (Ran®)

where R is R* of the model from original dataset, and R.,,2 is
R* of the model from shuffled endpoint. During y-
randomization, endpoint was shuffled 30 times. R.,> was
calculated after each shuffling, and average and standard
deviation of R ,,2 were calculated for Z-score calculation. The
model's performance was based on strong correlation between
features and endpoint if Z-score is over 3.

Applicability domain analysis

The QSAR model makes a valid prediction when the input
molecule is sufficiently similar to the training set. Thus, it is

16590 | RSC Adv, 2025, 15, 16588-16596

crucial to perform AD analysis to determine if the prediction is
valid. Basically, AD analysis is an outlier detection step. The
simplest way to identify outliers involves checking the feature
range. Any data whose feature value is out of the training set's
feature value range is considered an outlier. The outlier was
identified using the leverage and warning values. The leverage
value was calculated for the i-th compound (/;) with the warning
value for the model as below:

hi = x(X" X 'x,"

e 3p+1)
n

(2)
(3)

where X is the feature matrix of the training set, x; is a feature
vector of i-th compound, p is the number of features used in the
model, n is the number of compounds in the training set, and
h* is a warning value. If #; is larger than /%, then the compound
is considered as an outlier. Then, the leverage value of the
model was examined, and the outlier was identified using
a William plot from the training and test sets. In candidate
material prediction, the leverage value was compared with the
warning leverage to check for outliers. Moreover, all the feature
value ranges were examined, and the candidate material was
considered an outlier if one of the features has a value outside
the range of the values in training set.

Results
Dataset analysis

Chemical diversity of dataset was examined through chemical
space in Fig. 2. The range of molecular weight was from 287 to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Chemical space of uranium coordination complexes visualized with molecular weight against aqueous solubility (A), melting point (B),
boiling point (C), and pyrolysis point (D). The chemical space shows that training set and test set have similar structural patterns. Moreover,
candidate materials also show similar chemical spaces, confirming that the model developed with training data and validated with test data can

make reliable prediction on the candidate material.

1199, which indicated that the size of molecules was highly
varied in the dataset. Also, physicochemical features (log S, mp,
bp, and pp) were calculated base on the composition of the
molecules. Wide range of each features showed that the
molecular composition was also diverse. Molecular formular of
the molecules is available in Table S1 (training set) and Table S2
(test set).t Training and test data split is important issue since
the model's performance may not be correctly evaluated
according to the data distribution in training and test set. Data
was randomly split multiple times to test if random sampling
may cause discrepancy in data distribution between training
and test set; however, test set was never biased. Therefore,

© 2025 The Author(s). Published by the Royal Society of Chemistry

training and test data was prepared with random split. Chem-
ical space analysis showed that training and test sets were well
diversified, which indicated that the model performance eval-
uated by external test set can be trusted within AD of the model
(Fig. 2).

The QSAR model prediction reliability was evaluated via AD
analysis. This involves checking the chemical space which
represents the structural diversity of the compounds in each
dataset. Normally, the chemical space is visualized based on the
molecular weight and the water/octanol partition coefficient
(log P) for organic molecules; however, the log P model does not
apply to inorganic molecules. In this study, four

RSC Adv, 2025, 15, 16588-16596 | 16591
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Table 1 Bootstrapping validation results
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Table 2 Best model performance

Q* (bootstrapping®)

Abb. Model Mean Std?
Catboost Catboost regressor 0.70 0.10
XGBoost Extreme gradient boosting 0.62 0.17
RF Random forest 0.61 0.16
kNN K-Nearest neighbors regressor ~ 0.56 0.19
LR Linear regressor 0.56 0.17
SVR Support vector regressor 0.23 0.10

200 times sampling was applied in the internal validation. ? Standard
deviation.

physicochemical properties were calculated from the molecular
formulas of the uranium coordination complexes; therefore, the
chemical space of the data set was compared based on the
molecular weight and the four physicochemical properties. The
chemical spaces of the training set, test set, and candidate
materials were compared as shown in Fig. 2. The training and
test sets show a similar distribution in the chemical space. Also,
the chemical space of the candidate material was similar to the
training and test data sets; therefore, we can conclude that the
model trained and validated with the dataset can be reliably
used to predict the 8 of the candidate materials.

Model development

According to the internal validation result, catboost achieved
highest prediction accuracy compared to other ML models
(Table 1). The catboost model exhibited R> of 0.75 (Fig. 3A) and
RMSE of 10.28 for external test set (Table 2). PCA was conducted

A) CatBoost: log beta
e Train
Test ‘,_'.
»
40 - ®
20 —
el
[
a
0 -
@
L
[ ]
—-20 - 22
L ]
I 1 I I
-20 0 20 40

Exp

Catboost R? RMSE NRMSE Endpoint range
Train 0.99 0.04 0.05% 86.4
External validation 0.75 10.28 12.31% 83.5

Table 3 Feature importance analysis

Q? (bootstrapping?)

Catboost Mean std®
PhyChem* alone 0.60 0.12
Composition? alone 0.68 0.11
PhysChem & composition 0.70 0.10

“200 times sampling of bootstrapping.  Standard deviation.
¢ PhysChem: physicochemical properties (molecular weight, water
solubility, melting point, boiling point, pyrolysis point).
¢ Composition: coordination number of ligand (N, O, F, Cl), charge,
and the number of water molecules.

to check if chemical space of candidate molecules were well
covered by the training and test set (Fig. 3B). Explained variance
of the first axis in PCA being 0.84 indicated that the candidate
molecules resided within the chemical space of the final model.
Y-randomization test was also conducted to check if the model's
prediction accuracy was merely by chance. Y-randomization test
was performed three times, and the lowest Z-score among the Y-
randomization test was 4.48, which showed that the model's
performance was based on good correlation between feature
and endpoint, and it wasn't achieved by mere coincidence.
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Fig. 3 (A) Parity plot of catboost regression model (RMSE: 10.28 and R?: 0.75 on external test set). (B) PCA showed that chemical space covered
by training and test set well overlapped with candidate absorbents (explained variance of the first axis: 0.84).
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Feature importance was analyzed by developing models with
composition features, and physicochemical properties alone.
When catboost was evaluated with five physicochemical prop-
erties (MW, log S, bp, mp, and pp) alone, the model only ach-
ieved 0.6 for Q in bootstrapping (200 round sampling). With
the six composition features alone (i.e., ligand_N, ligand_O,
ligand_F, ligand_Cl, charge, and H,0), the model achieved Q>
0.68. The composition features have low variance; therefore,
there is a clear limitation to represent structural diversity of
uranium coordination complex with the composition features
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alone. According to the experiment, composition features and
the physicochemical properties both were needed to represent
molecular structure of uranium coordination complex; thus,
the model performed best when all the features were used
together (Table 3).

The charge state of the uranium complex significantly
impacts B. Higher charges typically result in stronger electro-
static interactions between the uranium ion and the ligands,
leading to more stable complexes. This is consistent with the
observed feature importance, where the inclusion of molecular

(B) Training set
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Fig.4 Comparison of the experimental 8 and the predicted 8. The experimental 8 from the training and test sets is visualized with the predicted
6 from the candidate materials (A). The training set (B) and test set (C) have a wider range of 8 values whereas the predicted 8 has a narrower range

(D).
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charge as a feature notably improved the model performance.
The coordination number, which reflects the number of ligand
atoms bonded to the central uranium ion, directly influences
the stability of the complex. Ligands with a high coordination
number can donate more electrons to the uranium ion, stabi-
lizing the complex through stronger bonding interactions. The
sensitivity of the model to changes in coordination number
underscores its critical role in determining complex stability.
Additionally, the number of water molecules in the system is
significant, as hydration can either stabilize or destabilize the
complex depending on specific interactions with the central
metal ion and surrounding ligands. These composition
features, when incorporated into the model, allow for a more
comprehensive representation of the physicochemical factors
governing complex stability, thus explaining the significant
improvement in model performance.

Prediction result analysis

The range of prediction values was examined, as the prediction
values for the uranium complex should fall between the
maximum and minimum values in the training set. According
to the analysis comparing experimental and predicted results,
the predicted values of 8 for the candidate materials were within
the range of 8 in both the training and test sets (Fig. 4). AD
analysis was further performed on the training and test sets
(Fig. 5). The model domain contained 93% of the training set (6
molecules were considered as outliers), and only two molecules
were out of the domain in the test set. Thus, the model devel-
oped in this study covered nearly all of the uranium
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Fig. 5 William plot for analyzing the applicability domain (AD) of the
model. Only one compound was outside of the range of values of the
test set, and 93% of compounds in the training set was in the AD
domain (82 out of 86).
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Fig. 6 Averaged feature values were visualized between outliers and
other data points. Three features such as ligand ‘O’, charge, and H,O
have large gaps between them in common. Additionally, (A) four
molecules exceeding warning values have significant discrepancies in
ligands features (N, F, and Cl).

coordination complexes in the training and test set. To under-
stand characteristics of outliers, normalized feature values were
compared between outliers and other compounds. Outliers
showed discrepancies in the number of ligand_O and H,O, and
charge of the molecule. Apart from the three features, four
molecules with high leverage values over warning leverage have
significant differences in ligand features (ligand_N, ligand_F,
and ligand_Cl) whereas two molecules with large standardized
residuals show significantly varied distribution in physico-
chemical properties such as melting point (mp), boiling point
(bp), and pyrolysis point (pp) (Fig. 6).

AD analysis was applied to the candidate materials. Even
though the candidate materials were in the chemical spaces of
the training and test sets, there is always uncertainty in the
prediction values since the model was previously not exposed to
the candidate material. Therefore, we checked the feature
ranges of the candidate material data and compared them to
the training set. Even if the molecule was found in AD according
to the leverage value, we checked the range of 11 features
between the candidate data and the training set. If the molecule
is out of range even in a single feature, the molecule was also
marked as an outlier. After leverage analysis, 9 molecules were
found in AD. Two of these had features out of the range in
descriptors of the training set: the coordination number of N
and aquatic solubility. As a result, 7 molecules were considered
as reliably predicted by the model (Table 4). Detailed AD anal-
ysis can be found in Table S3.1 The model can make reliable
prediction as long as the query molecule has feature values

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 AD analysis result

AD analysis In-domain Out-of-domain
Leverage 9 7

Feature range 11 5

Reliable prediction 7

Table 5 Range of each feature and endpoint

Values Max. Min

log 8 54 —32.4
Ligand N 3 0
Ligand O 6 0
Ligand F 4 0
Ligand Cl 2 0
Charge 2 —6

H,0 12 0

Mw 1199.157 287.034
log S 0.112395 —4.21574
MP 1875.558 176.3154
BP 1887.21 391.5719
PP 1619.382 222.5845

within the range of each feature provided in the training set.
Therefore, any molecule having feature values exceeding the
range of each feature of the model shouldn't be used to make
prediction. Moreover, predicted log 8 should not exceed the
range of log 8 in the training set. Table 5 shows maximum and
minimum value of log 8 and each feature.

Discussion

The study successfully developed a QSAR model for predicting
the stability constant (8) of uranium coordination complexes,
demonstrating strong predictive performance with an R of 0.91
in external validation. The results indicate that both physico-
chemical properties and compositional features play a critical
role in accurately modeling uranium complex stability, rein-
forcing the necessity of incorporating diverse descriptors in
QSAR models for inorganic systems. The model results align
with the well-established principles of coordination chemistry,
where increased charge enhances electrostatic interactions,
stabilizing the metal-ligand complex. Likewise, the coordina-
tion number significantly influences complex stability, as
ligands with higher coordination numbers facilitate stronger
bonding interactions. These observations underscore the
model's ability to capture fundamental chemical principles
governing uranium-ligand interactions. Compared to previous
QSAR models for metal-ligand stability prediction (Zahariev
et al., 2024), the model developed in this study provides
domain-specific applicability for uranium complexes. The use
of a dataset exclusively focused on uranium coordination
chemistry, rather than a broad spectrum of metal-ligand
complexes, ensures that predictions are more relevant for
uranium-specific adsorbent development.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The identification of seven candidate materials within the
model's AD suggests that ML-driven QSAR models can be
a powerful tool for guiding experimental efforts in uranium
adsorbent discovery. The ability to screen potential adsorbents
computationally reduces the need for labor-intensive experi-
mental screening, making the discovery process more efficient.
However, experimental validation of these candidate materials
is necessary to confirm their real-world adsorption efficiency
and stability under marine conditions.

Conclusions

Nuclear energy will remain part of the world's sustainable
energy mix, and uranium adsorption material development is
paramount for protecting human and environmental health.
Safer, effective, and cost-efficient novel materials for uranium
adsorbents must be continuously developed. The QSAR model
for stability constant (8) prediction was developed in this study
to accelerate novel uranium adsorption material design. The
QSAR model uses composition features and physicochemical
properties to predict stable candidate materials. Given that the
physicochemical properties can be calculated from the
composition alone, appropriate candidate materials can be
predicted prior to synthesis. This enhances the speed of
candidate material discovery while reducing the cost. XGBoost
achieved good performance in the test set, and AD analysis can
be applied to further eliminate outlier candidates and increase
the predictive performance of the model.
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