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Square planar vs. pyramidal copper(i)-complexes
with benzylal vs. naphthylal-based Schiff bases?}
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Reaction of copper(i) acetate with (E)-2-(((2-benzoylphenyllimino)methyl)phenol (HL1), (E)-2-(((2-benzoyl-
5-chlorophenyl)imino)methyl)phenol  (HL2) and  (E)-1-(((2-benzoyl-5-chlorophenyllimino)methyl)-
naphthalen-2-ol (HL3) provided bis[(E)-2-(((2-benzoylphenyl)imino)methyl)phenolato-k>N,Olcopper(i)
(1), bisl(E)-2-(((2-benzoyl-5-chlorophenyl)imino)methyl)phenolato-k?N,Olcopper(i) (2) and bisl(E)-1-(((2-
benzoyl-5-chlorophenyl)imino)methylinaphthalen-2-olato-k?N,Olcopper(i) (3). The molecular structure
determinations revealed that the ligands existed as a usual (imine)N---H-O(phenol) (enolimine-form) in
the solid state, which was further evidenced using 'H NMR studies in solution (CDCly and DMSO-dg).
Unlike HL1 and HL2, two symmetry-independent molecules (A and B) were present in the unit cell of the
HL3 crystal. The molecular structures showed that the two N,O-chelating ligands coordinate to the
copper(i) ion through a square-planar (1), a distorted square-planar (2) and a square-pyramidal geometry
(3). Each asymmetric unit of the crystal structure contained one-half of the molecule for 1, a single
molecule for 2 and two symmetry-independent molecules for 3 (molecules A and B). Thermal
investigations using DSC demonstrated an irreversible phase transition from a crystalline solid to an
isotropic liquid (m.p.). Cyclic voltammogram results proved two quasi-reversible one-electron charge
transfer process for 1 and 3 in DMF at 25 °C. Complexes 1 and 2 exhibited low and significant
antibacterial activity, respectively, against E. coli and S. aureus, while 3 was completely inactive. Among
the ligands, only HL2 exhibited medium activity against microorganisms. The electronic and molecular
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Introduction

Copper is one of the most interesting and useful bio-metals,
mainly because of its biological functions and potential syner-
gistic activities with medicines.’ Moreover, it plays a vital role in
cell physiology, acting as a catalyst in the redox chemistry of
mitochondrial respiration and free radical scavenging.* Alterna-
tively, Schiff base ligands are considered some of the most versatile
and useful bioactive compounds because of their capability to
interact with a variety of metal ions.>® The presence of different
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structures correlated well with the computational modeling performed using DFT/TD-DFT calculations.

substituents in Schiff bases not only affects their physicochemical
properties but also strongly influences their coordination behavior
and geometry of the resulting metal complexes.”” In this regard,
benzophenone and its derivatives play crucial roles in organic
chemistry, serving as intermediates in the synthesis of various
pharmaceutical compounds, such as benzodiazepines' and diaz-
ocines,™ and in photochemical reactions, such as photo-Fries and
photo-Claisen rearrangements.”” These compounds are also
significant for their biological and physicochemical characteristics,
including electrochemical, spectroscopical, metal complexation
and crystallographic behaviors.”*® A key biological property of
benzophenone/derivatives is their ability to absorb a wide range of
UV radiation (200-350 nm). Owing to this characteristic, benzo-
phenone derivatives, such as 2-amino-benzophenone, 2-hydroxy-4-
methoxybenzophenone and  2-hydroxy-4-methoxy-4'-methoxy-
benzophenone, are utilized as raw materials in the synthesis of
sunscreen creams."” Furthermore, 2-amino-benzophenone and its
derivatives are important compounds in heterocyclic synthesis and
medicines.”**" The redox behaviors of these compounds in non-
aqueous solvents are well-established.”*>*

Benzophenone-derived Schiff bases have garnered significant
attention in the synthesis of metal complexes owing to their

© 2025 The Author(s). Published by the Royal Society of Chemistry
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widespread applications in both commercial and pharmaceutical
sectors. Furthermore, they have been investigated as potent
inhibitors of HIV, farnesyltransferase @ and  reverse
transcriptase.”?® Investigations on structural properties of cop-
per(n) and palladium(m) complexes with  2-amino-5-
chlorobenzophenone and  2-(2-hydroxybenzylidene)amino-5-
chlorobenzophenone-S-methyl-thiosemicarbazone have been re-
ported.” Indeed, some benzophenone-based Schiff bases, such as
5-chloro-2-(((2-hydroxy-phenyl)methylene)amino-phenyl)phenyl-
methanone, [(Z)-(5-chloro-2((3,5-dichloro-2-hydroxybenzylidene)
amino)phenyl)(phenyl)methanone and (2)-(2((5-bromo-2-
hydroxybenzylidene)amino-5-chlorophenyl)(phenyl)methanone)]
and their copper(i) complexes, have been synthesized and struc-
turally elucidated.’**

The halogen atom (chlorine) was incorporated into the
ligand framework to fine-tune the electronic and steric envi-
ronment of the resulting complexes' geometry. Chlorine exerts
an electron-withdrawing inductive effect, which can influence
metal-ligand coordination and potentially alter the redox
characteristics of the metal center. Furthermore, halogen
substitution may induce subtle changes in the molecular
geometry by affecting the spatial orientation of the ligands
around the metal, thereby offering a means to modulate the
structural and physicochemical properties of the complexes.
The organic chlorine atom may also be involved in non-covalent
C-H---Cl or CI---Cl interactions in the crystal packing.

Building upon ongoing research in metal(u)-Schiff base
complexes, herein, we report the syntheses and spectroscopic
characterizations of Schiff base ligands (HL1, HL2 and HL3)

o)
O '
OH
2-hydroxy-benzyldehyde or X =H:

2-hydroxy-1-naphthaldehyde
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and their copper complexes (1, 2 and 3), respectively. The
molecular structures, redox potential, thermal and antibacterial
activities of the Schiff bases and complexes were discussed.
Furthermore, a thorough computational modeling using DFT/
TD-DFT was applied to rationalise the experimental results.

Results and discussion

Treatment of the Schiff base ligands (HL1, HL2 and HL3) with
copper(n) acetate provides complexes 1, 2 and 3, respectively
(Scheme 1). We note that the nomenclature name for the three
ligands are (E)-(2-((2-hydroxybenzylidene)amino)phenyl)(phenyl)-
methanone (HL1), (E)-(5-chloro-2-((2-hydroxybenzylidene)amino)
phenyl)(phenyl}methanone  (HL2) and (E)-(5-chloro-2-(((2-
hydroxynaphthalen-1-yl)methylene)amino)phenyl)(phenyl)-
methanone (HL3). The vibrational spectra show two strong bands
at the range of 1666-1659, 1622-1591 and 1579-1529 cm ™" for
vC=0, vC=N and vC=C, respectively (Fig. S1}). The very low
molar conductance, A, = 2.02 (1), 2.37 (2) and 1.98 S m* mol * (3)
suggests a non-electrolyte profile of the complexes in DMF at 25 °C.
The EI-mass spectra show the parent ion peaks at m/z = 663 (1),
733 (2) and 828 (3) along with various ion peaks for the fragmented
species of Schiff bases and complexes (Fig. S27).

H/*3C NMR studies

'H NMR spectra (DMSO-d,) show a singlet at § 8.90 (HL1), 8.92
(HL2) and 9.68 ppm (HL3) for the imine-proton (CHN)
(Fig. S3a}). The aromatic protons displayed several peaks in the
range of ¢ 6.78-7.74 (HL1), 6.78-7.64 (HL2) and 6.98-8.50 ppm

EtOH,
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Reflux, O \

6or8h N O X
OH
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Scheme 1 Synthetic route for Schiff bases (HL1-HL3) and their complexes (1-3).
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Fig.1 Experimental and simulated UV-vis. spectra for 1 (ca. 0.02 mM), 2 (ca. 0.05 mM) and 3 (ca. 0.04 mM) in chloroform at 25 °C. Simulated
spectra were obtained using the cam-B3LYP/SDD method with PCM in chloroform (spectra at visible range are displayed in the inset).

(HL3), which were fully assigned (Fig. S3a,} see data in Experi-
mental section). The aromatic proton labeled as H3 shows
a triplet at ¢ 7.34 ppm (Jyn = 7.2 Hz) in HL1, a doublet of
a triplet at 6 7.35 ppm (Juu =8.0, 7.6, 1.2 Hz) in HL2 and
a multiplet at relatively downfield at ¢ 7.76-7.83 ppm in HL3.
The phenolic-proton (O-H) shows a broad peak at the most
downfield at 6 11.82 (HL1), 11.60 (HL2) and 14.05 ppm (HL3). In
the protic solvent (CDCl;, Fig. S3bi), the CHN peak shifted to
a relatively downfield at ¢ 9.93 ppm (6 8.92 ppm in DMSO-dj),
while the O-H peak shifts to high field at 6 11.04 ppm (6
11.60 ppm in DMSO-de) in comparison with the aprotic solvent
(DMSO-dg) for HL2. '"H NMR studies further confirmed the
absence of any keto-enol tautomerism in solution as observed
in the related Schiff base ligands.**"*

3C NMR spectra (Fig. S3c}) feature resonances in the range
of 6 116.95-137.24 (HL1), 116.98-136.76 (HL2) and 109.79-
136.84 ppm (HL3), corresponding to the aromatic carbon atoms
from benzoyl and benzylal or naphthylal moieties. The imine
carbon (HC=N) appears at ¢ 160.33 (HL1), 160.28 (HL2) and
159.96 ppm (HL3), consistent with a de-shielded sp>-hybridized
carbon in a conjugated system. The phenolic carbon bearing the
OH group resonates at 6 164.65 (HL1), 164.97 (HL2) and
165.38 ppm (HL3). Finally, the carbonyl carbon (C=O0) of the
benzoyl fragment is observed at the most downfield at 6 197.17
(HL1), 195.69 (HL2) and 195.66 ppm (HL3), confirming the
presence of ketone functionality. The 'H/”>C NMR spectral
results collectively affirm the formation of conjugated Schiff
base ligands (Scheme 1).

18360 | RSC Adv, 2025, 15, 18358-18371

Experimental and simulated electronic spectra

Electronic spectra (UV-vis.) show several strong bands or
shoulders below ca. 400 nm (for HL1 and HL2) and ca. 500 nm
(for HL3), which are attributed to intra-ligand n — ¥/t — 7*
(LL) transitions (Fig. Séa}). These bands shifted to higher
wavelengths (red-shift) upon coordination with the copper(i)
ion (Fig. 1, S6bif). The spectra of the complexes feature
a medium broad band at 400-500 nm (1 or 2) and 500-550 nm
(3), which are assigned to the metal-ligand charge transfer
(MLCT) transitions. The spectra further show a weak broadband
at 550-1000 nm, due to combinations of various d-d electron
transitions in metal, a classic band for the d° copper(n) core
electrons (Fig. 1 and S6b; inset).>*® To justify the experimental
UV-vis. spectra, we calculated the spectra by DFT/TD-DFT with
different arrangements of the functionals (e.g., B3LYP, cam-
B3LYP, M06 and M06-2X) and the basis sets (e.g., 6-31G(d),
SDD and SVP) with PCM in chloroform, respectively (Fig. 1 and
S7-S9%). The spectra thus obtained are almost identical in
pattern with a small change in the positions of the bands, and
match well with the experimental spectra (Fig. 1 and S7-S9%).
The relatively best-matching spectra are found for cam-B3LYP/
SDD (Fig. 1, see Experimental section for details).

X-ray crystal structures

X-ray molecular structure (Fig. 2) determination shows the HL1
ligand to crystallize in the orthorhombic space group Pbcn, HL2
in the triclinic space group P1 and HL3 in the orthorhombic
space group P2,2,2;. The structures further reveal that all

© 2025 The Author(s). Published by the Royal Society of Chemistry
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ligands exist as a usual (imine)N---H-O(phenol) (i.e., enol-
amine form) via intramolecular hydrogen bonding in the solid
state, in parallel to "H NMR studies in solution. Unlike HL1 and
HL2, there are two symmetry-independent molecules (A and B)
in a unit cell of the crystal structure of HL3. The bond lengths
and angles (Table 1) are comparable to those of the salicy-
laldimine or naphthalaldimine Schiff bases.**?%3*

The complexes crystallize in the triclinic space group P1 for 1
and 3, and in the monoclinic space group P2,/n for 2. An
asymmetric unit of the crystal structure contains one half of the
molecule for 1, a single molecule for 2 and two symmetry-
independent molecules for 3 (Fig. 3). The molecular struc-
tures reveal that two N,O-chelating ligands coordinate to the
copper(u) ion in a symmetry-imposed perfect square-planar
geometry for 1 and a distorted square-planar geometry for 2
with a dihedral angle (6/°) value of 24.2° between the two chelate
rings (i.e., N1-Cul-O1 and N2-Cu1-03) (Fig. 3a and b). In 3,
one of the benzophenone-oxygen is involved in axial coordina-
tion with the metal ion with a Jahn-Teller-distorted bond length
of CulA---O2A = 2.726(2) A in molecule A and Cul1B:--O2B =
2.593(2) A in molecule B, resulting in a square-pyramidal
geometry (Fig. 3c). Molecules A and B in 3 mainly differ in

HL1
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Table 1 Selected bond lengths (A) and angles (°) in HL1, HL2 and HL3

HL1 HL2 HL3 (A) HL3 (B)
01-H1 0.925 (15)  0.89 (3) 0.90 (5) 0.88 (5)
01-C1 1.3516 (12)  1.3533 (19)  1.349 (3) 1.336 (3)
02-C14 1.2195 (12)  1.2131 (18)  1.221 (3) 1.218 (3)
N1-C7 1.2871 (13)  1.2855 (18)  1.295 (3) 1.291 (3)
N1-C8 1.4166 (12)  1.4124 (18)  1.408 (3) 1.411 (3)
chi-c11 1.7371 (15)  1.746 (2) 1.741 (2)
C1-01-H1 106.0 (9) 107.5 (17) 105 (3) 108 (3)
C7-N1-C8 119.18 (8)  122.11 (12) 122.13 (19)  121.31 (19)
02-C14-C13  119.59 (9)  118.50 (13) 119.3 (2) 120.1 (2)
02-C14-C15  121.01(9)  122.12 (13) 121.1(2) 122.2 (2)
C10-C11-Cli 120.01 (11)  118.87 (18)  120.14 (18)
C12-C11-Cli 119.00 (12)  119.41 (18)  117.75 (19)

this long Cu1-0O2 bond and in the angle between the metal-
chelate ring planes, which is 26.4° in molecule A and 20.6° in
molecule B. An overlay of molecules A and B is shown in Fig. 4.
The Cu-O/Cu-N and C-Cl bond lengths and N-Cu-O bond
angles (Table 2) are in the range as expected from Cu(n)-
salicylaldimine/naphthalaldimine analogues.**** The bond

Cc2

HL2

HL3 (molecules 1 and 2)

Fig. 2 Molecular structures of the Schiff bases HL1, HL2 and HL3 (50% thermal ellipsoids, H atoms with arbitrary radii). The intramolecular
O-H---N hydrogen bond is depicted as an orange dashed line. HL3 contains two symmetry-independent molecules (labelled as A and B) in the

unit cell. For clarity, these two molecules are presented separately.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(®)

(©)

Fig. 3 Molecular structures of (a) 1, (b) 2 and (c) 3. Compound 3 contains two symmetry-independent molecules (labelled as A and B) in the unit
cell. For clarity, these two molecules, which behave as left- and right-hand mirror images, are shown separately. Symmetry code for 1 (i) —x + 1,

—y + 1, —z + 1. For fully atom-labeled structures, see Fig. S5 in the ESIL

lengths and angles of the calculated structures (Fig. S4}) were
also comparable to the experimental data (Table 2). In addition
to these differences, the two molecules A and B in 3 behave as
enantiomeric mirror images. Because of the centrosymmetric
space group P1 for 3, the mirror image molecules A and B in
Fig. 3c are supplemented by inversion symmetric molecules A’
to A and B’ to B such that A’ and B (or A and B’) become almost

Fig. 4 Overlay of molecules A’ (red) and B (green) in 3.

18362 | RSC Adv, 2025, 15, 18358-18371

superimposable (Fig. 4). The calculated structures for such
close-to-enantiomeric molecules A and B in 3 are expected to be
equi-energetic (Fig. S41).

Hirshfeld surface analysis

The analysis of the Hirshfeld surface provides a quantitative
assessment of the intermolecular contacts contributing to
crystal packing in the complexes. The 2D fingerprint plot of the
Hirshfeld surface estimated by CrystalExplorer**** shows all
possible closest contacts present in the compounds (Fig. 5,
right: for details see Fig. 6 and S10%). The highest contribution
to crystal packing arises from H---H contacts (35.2-51.7% of the
total surface), which features the dominance of van der Waals
forces between the hydrogen atoms in organizing the crystal
structure. The second-highest contribution comes from C---H
contacts (17.7-33.0%), an indicator of C-H:--® and C-H---C
contacts. The O---H contacts (5.8-15.6%) originate from inter-
molecular C-H---O contacts. Finally, the Cl---H contacts (11.4-
13.1%) indicate the influence of halogen bonding on the
molecular assembly. All these interactions play an important
role in stabilizing the crystal lattice and in enhancing the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Selected bond lengths (A) and angles (°) in 1, 2 and 3
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Complex 1

Complex 2

Complex 3

X-ray structure Opt. structure® X-ray structure Opt. structure”

Molecule A (CulA)

Molecule B (Cu1B)

X-ray structure Opt. structure® X-ray structure

Cul-01
Cul1-03
Cul-N1
Cul-N2
cl1-C11
Cl2-C31/35
01-Cu1-01'/03
01-Cul-N1
01-Cu1-N1//N2
01'/03-Cu1-N1

01'-Cu1-N1'/03-Cu1-N2

N1-Cul-N1Y/N2
6/°°

1.8776 (13)

2.0002 (15)

1.9128

2.0188

6) 179.98
(6) 91.04
(6) 88.96
(6) 88.96
(6) 91.04

179.99
0

1.8973 (18)
1.9072 (18)
1.983 (2)
1.980 (2)
1.744 (3)
1.749 (3)
161.75 (9)
91.98 (8)
89.38 (8)
91.32 (8)
92.51 (8)
163.53 (9)
24.2

1.9002
1.9137
1.9841
1.9927
1.7592
1.7563
145.72
94.04
90.63
92.81
92.03
163.78
37.3

1.9068 (10)
1.9022 (11)
1.9562 (11)
1.9561 (11)
1.7442(14)
1.7401 (15)
160.34 (5)
90.32 (5)
91.14 (4)
90.59 (5)
92.24 (5)
167.37 (5)
24.6

1.9456
1.9325
1.9995
1.9878
1.8228
1.8253
153.52
89.41
93.19
90.61
91.45
169.76
28.29

“ Optimized structures at B3LYP/SDD. ” B3LYP/6-31G(d). © f/° = dihedral angle between the chelate ring planes.

directional nature of crystal packing. The Hirshfeld surface
mapped with the d-norm property displays the red- and blue-
spots, indicating the nearest and distant contacts to the
closest atom's interior and exterior to the surface, respectively

(b)

1O T2 T4 16 1.82022242.62:8
'

ZTZA 26T

HoO T2 T4 1618202

42628

1.9118 (10)
1.9036 (11)
1.9627 (11)
1.9574 (11)
1.7455 (14)
1.7383 (14)
164.94 (5)
89.59 (5)
91.38 (4)
89.16 (5)
92.04 (5)
171.65 (5)
20.6

(Fig. 5, left). The breakdown of all possible contributions to the
Hirshfeld surface for different intermolecular contacts is illus-
trated in Fig. 6 (Fig. S10%).

(d)

O T2 T4 6 782022242628

TOT214161.82022242628 "

26
24

o8- de

ToTs

TAT6 T 82022242628

Fig. 5 Hirshfeld surface mapped with the d-norm property (left: red-spots indicate the nearest contact and blue ones represent the farthest
contacts) and 2D fingerprint plots (right) showing an overlay of all the possible close contacts in (a) HL1, (b) HL2, (c) HL3, (d) 1, (e) 2 and (f) 3. The
abscissa (di) and ordinate (de) represent the distances from the surface to the closest atom's interior and exterior, respectively.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Relative contributions of different intermolecular contacts (%)
present in the compounds to the Hirshfeld surface area.

Phase transition and thermal stability

The differential scanning calorimetry (DSC) curves of the Schiff
bases and complexes are presented in Fig. 7 (Table 3). The DSC
curves feature an endothermic peak with substantial amount of
enthalpy change (AH/k] mol™ '), corresponding to a simple
phase transition from crystalline solid (Cr) to isotropic liquid
(I:m.p.), and subsequently confirm the thermal stability of the
compounds, as reported for the related Schiff bases and met-
al(i)-Schiff base complexes.**** The cooling curves show no
corresponding peak in the reverse direction, indicating that the
phase transition is irreversible. The repeated heating curves for
the same sample (probe) during the second cycle also show no
peaks. The phase transition temperatures for HL3 (ca. 176 °C)
and 3 (ca. 272 °C) are considerably higher than those of HL2 (ca.
137 °C) and 2 (ca. 239 °C), whereas HL1 (ca. 105 °C) and 1 (ca.
217 °C) are the least, parallel to higher thermal stability as per
their high molecular weight.

Cyclic voltammetry

Cyclic voltammetry (CV) measurements of complexes 1 and 3
were conducted in DMF at 25 °C over a range of —1.5 to +1.2 V
(versus Ag/AgCl), with scan rates varying from 0.05 to 0.3 Vs "
(Fig. 8 and Table S1f). For the reduction scan, complex 1
showed peaks at E.; = —1.05 V (I,; = +15.48 pA) and E,, =
—1.3 V (I, = +11.19 pA), while complex 3 displayed peaks at E.;
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Table 3 Phase transition temperature (T/°C) and enthalpy change
(AH/kJ mol™) for the complexes

Compounds Cycles T (°C)/AH (k] mol™") (heating curve)
HL1 1st 80/—0.84 and 105/—22.43 (Cr < 1)
HL2 1st 138/—27.39 (Cr < 1)

HL3 1st 176/-32.73 (Cr S 1)

1 1st 217/—48.61 (Cr & 1)

2 1st 239/—41.29 (Cr & 1)

3 1st 273/—34.18 (Cr & 1)

= —0.92V (Io; = +21.94 uA) and E., = —1.33 V (I, = +14.25 pA)
at a scan rate of 0.10 Vs~ *. On the other hand, for the oxidation
scan, complex 1 showed peaks at E,; = +0.41 V (I,; = —4.85 pA)
and E,, = —0.73 V (I, = —2.05 pA), while complex 3 displayed
peaks at E,y = +0.42 V (I;; = —10.53 pA) and E,p = —0.63 V (I, =
—3.82 pA). This redox process is attributed to two stepwise one-
electron transfer processes corresponding to the Cu**/Cu* and
Cu*/Cu® couples and vice versa and diagnoses a quasi-reversible
redox process, as reported for the analogous Cu(u)-Schiff base
complexes.**3744546 The yoltammograms (Fig. 8) were recorded
in the conventional direction (i.e., from cathodic to anodic).
Analysis of CV data at varying scan rates exposes that the
cathodic or anodic peak shifts to more negative or positive
potentials with an increase in peak strength. The plots of I, I, or
I/I. vs. v''? exhibit an increase in I, or a decrease in I, values,
whereas no change in I,/I. values (Fig. 8, inset). The straight
correlation between the plots reflects a diffusion-controlled
redox process for the complexes in solution.

Magnetic measurements

The solid-state magnetic susceptibility (xm, = 1.48 x 107 (1),
1.18 x 107° (2), 1.35 x 10> (3)) and moment (ueg = 1.89 (1),
1.67 (2), 1.79 uB (3)) (diamagnetic contributions from ligand are
ignored) indicate the paramagnetic nature of the copper(u)
complexes.*****-*° The theoretical spin-only magnetic moment
for one unpaired electron (S = 1) for Cu(u) (d°) is 1.73 uB, and
the remaining differences (i.e., +0.16 uB for 1 and —0.06/+0.06
uB for 2/3) with the measured values (u.s) may arise from
orbital angular magnetic moment and/or diamagnetism of the
ligand.33,40,51754

T/°C °
30 80 130 180 30 8o 130 "Cigo 230 280
(a) 5
) — . \p
= =0
E E
x X
5 3
L5 [ ——HLI (stHeat ':'-(;_5 I —1 (1st Heat)
LI - HL1 (1st Cool) ° _; Sz: :::1))
----- HL2 (1st Cool) -2 (1st Cool)
-10 | ——HL2(1stHeat) 10 | ——3 (1st Heat)
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----- HL3 (1st Cool)
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Fig. 7 DSC curves of (a) Schiff bases (HL1, HL2, and HL3) and (b) complexes (1, 2 and 3).
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Fig. 9 Antibacterial activities of the Schiff bases and Cu(i) complexes against E. coli and S. aureus: (a and b) HL1 (L147), CuL147 (1); (c and d) HL2
(L87), HL3 (L102), CuL87 (2), CulL102 (3) and (e) comparison plot of inhibition zone with respect to chloramphenicol (+ve control).

Anti-bacterial activity

The antibacterial activities of HL1, HL2, HL3, 1, 2, 3, chloram-
phenicol (standard: +ve control) and DMSO (blank: —ve control)
are shown in Fig. 9.***%* Complex 2 exhibits significant anti-
bacterial activity against E. coli and S. aureus compared with
standard chloramphenicol, whereas complex 1 exhibits low
activity. On the other hand, complex 3 is fully inactive against
microorganisms, likely due to the steric and electronic effects
imparted by the bulky naphthyl group in the HL3 ligand, which
may impede effective interaction with bacterial membranes or
intracellular targets. In contrast to the square-planar geometry
observed in 1 and 2, complex 3 adopts a square-pyramidal
geometry, which alters the accessibility and redox potential of
the copper center, thereby reducing its ability to generate
reactive oxygen species (ROS), which are essential for antibac-
terial action. Furthermore, a reduced lipophilicity and altered
electronic distribution in 3 may impair membrane permeability

© 2025 The Author(s). Published by the Royal Society of Chemistry

and target binding, leading to its lack of bioactivity. Although
the ligand HL2 exhibits medium activity, HL1 and HL3 are fully
inactive. The increased antibacterial activity of the complex
compared with that of the free Schiff base was explained by the
chelation of the ligand to the metal(u) ions.>*’

Conclusions

The molecular structure determination for the Schiff bases
(HL1-HL3) shows a usual (imine)N---H-O(phenol) (enolimine)
based structure in the solid state and solution (evidenced by "H
NMR studies). Each unit cell in the HL1 or HL2 crystals contains
a single molecule, whereas two symmetry-independent mole-
cules (A and B) are present in HL3. The structural analysis
reveals that the two ligand molecules coordinate to the cop-
per(n) ion through the N,O-chelation mode, resulting in a vari-
able geometry from square-planar (1) to distorted square-planar

RSC Adv, 2025, 15, 18358-18371 | 18365
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(2) and to square-pyramidal (3) as a function of benzylal- vs.
naphthylal-based Schiff base ligands. An asymmetric unit of the
crystal structure holds half of the molecule for 1, a single
molecule for 2 and two symmetry-independent molecules for 3
(A and B). CV results indicate two quasi-reversible one-electron
charge transfer processes for 1 and 3 in DMF. Thermal analysis
corresponds to a phase transition from a crystalline solid to an
isotropic liquid (m.p.). The complexes were further authenti-
cated by paramagnetism and non-electrolyte profile. Complex 2
exhibited substantial antibacterial activity against E. coli and S.
aureus, whereas low or no activity was observed for 1 or 3.
Among the ligands, only HL2 exhibited medium activity against
microorganisms. Computational modeling corresponds well to
experimental results for electronic and molecular structures.

Experimental
Materials and methods

FT-IR spectra were recorded using a Prestige-21 spectropho-
tometer (Shimadzu) as KBr discs at room temperature. UV-vis.
spectra were collected using a UV-1800 spectrophotometer
(Shimadzu) in chloroform at 25 °C. Differential scanning calo-
rimeter (DSC) data were recorded on a DSC 60 (Shimadzu) at 30-
300 °C with a heating rate of 10 K min~". "H/"*C NMR spectra
were run on a Bruker Avance (DPX 400 spectrometer) at 20 °C
using CDCl; and DMSO-d; as solvents. EI-MS was collected on
a Thermo-Finnigan TSQ-700 mass spectrometer. The isotopic
scattering shapes of the ****Cu-containing mass ions are visible
in the spectra. Elemental analyses were performed using a Vario
EL instrument from Elementaranalysensysteme. The Magnetic
Susceptibility Balance MSB Mk1 (Sherwood Scientific Ltd.) was
used to measure the solid-state magnetic data at 25 °C. A Met-
tler Toledo Fivego (Model F3) conductivity meter was used to
determine the molar conductance in DMF at 25 °C. A CV
experiment was run on an Epsilon™ Instruments (BASi) using
the supporting electrolyte of tetra-N-butyl-ammonium-
hexafluorophosphate (TBAP) in acetonitrile at 25 °C. A three-
electrode system consisting of a platinum disc electrode
(working), a platinum wire electrode (auxiliary) and an Ag/AgCl
electrode (reference) was used for collecting CV data. N, gas was
passed into the solution mixture for ca. 10 min before collecting
the data.

Synthesis of the Schiff bases (HL1-HL3)

2-Hydroxy-1-benzaldehyde (salicylaldehyde: 1.2212 g, 10.0
mmol) or 2-hydroxy-1-naphthaldehyde (1.7800 g, 10.0 mmol)
were dissolved in 10 mL of ethanol. Added 2-3 drops of
concentrated H,SO, into this solution and stirred the solution
for 10-15 minutes at room temperature. Equimolar amounts of
2-amino-benzophenone (1.973 g, 10.0 mmol) or 2-amino-5-
chloro-benzophenone (2.3168 g, 10.0 mmol) dissolved in 5 mL
of ethanol were gently added to the mixture solution. The
mixture solution was refluxed for 6-8 hours, color turned into
a deep yellow. TLC was performed to track the reaction prog-
ress. After completing the reaction, the solvent was reduced to
ca. 50% in a vacuum rotatory evaporator until precipitation
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occurred. This solution was left in air for one day to ensure
complete precipitation. The precipitate was collected via filtra-
tion and washed with cold ethanol three times (2 mL in each).
The products were dried in air for several days to obtain yellow
and lemon microcrystals of HL1, HL2 and HL3, respectively.
Single crystals suitable for X-ray diffraction were grown via slow
evaporation of concentrated methanol solution for HL1, slow
diffusion of ethanol into concentrated dichloromethane (or n-
hexane into concentrated chloroform) solution for HL2, and
slow diffusion of methanol into concentrated chloroform
solution for HL3 after 2-3 days at room temperature.
(£)-2-(((2-Benzoylphenyl)imino)methyl)phenol or (E)-(2-((2-
hydroxybenzylidene)amino)phenyl)(phenyl)methanone (HL1).
Yield: 2.532 g (79.27% based on 2-hydroxy-benzaldehyde). IR
(KBr, cm ™ Y): » = 3453 m (br, O-H), 3049, 3032, 2929 w (Ar-H),
1659 vs. (C=0), 1614 vs. (C=N) and 1566 vs. (C=C) (see
Fig. S1f). UV-vis. (0.09 mM, CHCl3): Apmax/NM  (Emax/L
mol ™" em™") = 344 (7168) and 257 (16 935). "H NMR (400 MHz,
DMSO-dy): 6/ppm = 6.79 (d, Jyyy = 8.0 Hz, 1H, H,), 6.91 (t, Jyy =
7.6 Hz, 1H, H,), 7.34 (t, Jux = 7.2 Hz, 1H, H;3),7.46-7.55 (m, 5H,
Ho 11,17,18,10), 7-59 (d, Juu = 8.0 Hz,1H, Hs), 7.65-7.68 (m, 2H,
Hio,12), 7.73 (d, Jun = 7.6 Hz, 2H, Hjs 50), 8.90 (s, 1H, CNH) and
11.82 (s, H, OH) (Fig. S3a}). ">*C NMR (100 MHz, DMSO-dg) 6/
ppm: 116.95 (C,), 119.30 (Cq), 119.59 (C,), 119.60 (Cy), 127.27
(C11), 128.69 (Cy7), 128.71 (Cyg), 128.97 (Cye), 129.32 (Cyo),
129.93 (Cy3), 132.09 (Cy,), 133.17 (Cs), 134.09 (Cs), 134.16 (Cyg),
134.97 (C4o), 137.24 (Cy5), 146.73 (Cg), 160.33 (C;, C=N), 164.65
(C1, OH) and 197.17 (Cy4, C=0) (Fig. S3ci). Anal. caled for
C,oH,5NO,: C, 79.72; H, 5.02; N, 4.65%. Found C, 79.44; H,
4.83; N, 4.82%.
(E)-2-(((2-Benzoyl-5-chlorophenyl)imino)methyl)phenol  or
(E)-(5-chloro-2-((2-hydroxybenzylidene)amino)phenyl)(phenyl)
methanone (HL2). Yield: 2.924 g (82.65% based on 2-hydroxy-
benzaldehyde). IR (KBr, cm™'): » = 3421 m (br, O-H), 3059,
3037, 2989 w (Ar-H), 1664 vs. (C=0), 1610, 1593 vs. (C=N) and
1579 vs. (C=C) (see Fig. S1}). UV-vis. (0.05 mM, CHCl3): Apax/
nm (ema/L Mol em™") = 348 (12 240) and 261 (23 000). 'H
NMR (400 MHz, CDCl;): 6/ppm = 6.98-7.07 (m, 2H, H,,4), 7.33
(dd, Juy = 8.4, 1.6 Hz, 1H, H;), 7.46 (d, Juy = 2.0 Hz, 1H, Hy),
7.48-7.52 (m, 3H, Hi7 15 10), 7.56-7.61 (m, 3H, H; 10,12), 7.67 (d,
Juu = 7.6 Hz, 2H, Hyg 50), 9.93 (s, 1H, CHN) and 11.04 (s, H, OH)
(Fig. S3b}). "THNMR (400 MHz, DMSO-d): 6/ppm = 6.79 (d, Juu
= 8.4 Hz, 1H, H,), 6.91 (t, Jyny = 7.6 Hz, 1H, Hy), 7.35 (dt, Juy =
8.0, 7.6, 1.2 Hz, 1H, Hj), 7.54 (t, Juu = 8.0 Hz, 3H, Hy7 15 10),
7.61-7.69 (m, 3H, Hs 0 10), 7.73-7.76 (m, 3H, Hi; 16,20), 8-92 (8,
1H, CHN) and 11.60 (s, H, OH) (Fig. S3a}). ">*C NMR (100 MHz,
DMSO-dg) 6/ppm: 116.98 (C,), 119.55 (Cg), 119.69 (C,), 121.18
(Co), 128.13 (Cy1), 128.88 (Cy5), 128.97 (Cyo), 129.42 (Cy), 129.99
(Ca0), 131.64C;3), 131.76 (Cyp), 133.12 (Cs), 134.33 (C3), 134.48
(C1s), 136.70 (Cy), 136.76 (Cy5), 145.51 (Cg), 160.28 (C;, C=N),
164.97 (C4, OH) and 195.69 (Cy4, C=0) (Fig. S3ci). Anal. calcd
for C,oH,,CINO,: C, 71.54; H, 4.20; N, 4.17%. Found C, 71.43; H,
4.09; N, 4.04%.
(E)-1-(((2-Benzoyl-5-chlorophenyl)imino)methyl)naphthalen-
2-ol or (E)-(5-chloro-2-(((2-hydroxynaphthalen-1-yl)methylene)
amino)phenyl)(phenyl)methanone (HL3). Yield: 3.156 ¢
(81.62% based on 2-hydroxy-1-napthaldehyde). IR (KBr, cm ™ ): v

© 2025 The Author(s). Published by the Royal Society of Chemistry
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= 3431 m (br, O-H), 3057, 2924 w (Ar-H), 1660 vs. (C=0), 1622,
1602 vs. (C=N) and 1577, 1550 vs. (C=C) (see Fig. S11). UV-vis.
(0.05 mM, CHCl3): Apa/NM (ema/L mol ™" cm ™) = 386 (5166),
322 (4466) and 256 (11 900). "HNMR (400 MHz, DMSO-d): 6/
ppm = 6.97 (d, Juu = 9.2 Hz, 1H, H,), 7.38 (t, Jun = 7.6 Hz, 1H,
H,3), 7.52-7.57 (m, 3H, Ho 17 .2,), 7.61 (d, Jun = 2.4 Hz, 1H, Hy),
7.69 (t, Jun = 7.6 Hz, 1H, Hyo), 7.76-7.83 (m, 4H, Hs 15 15.21),
7.92-7.98 (m, 2H, Hyg 0), 8-49 (d, Jun = 8.4 Hz, 1H, Hy,), 9.68 (s,
1H, CHN) and 14.05 (s, H, OH) (Fig. S3a}). ">C NMR (100 MHz,
DMSO-dg) 6/ppm: 109.79 (Cg), 120.42 (Cy,), 121.31 (C,), 121.86
(Ca3), 124.28 (Cyy), 124.29 (Cy), 127.66 (Cyy), 128.35 (Cy5), 128.60
(C1o), 129.42 (Cy4), 129.45 (Cy6), 130.15 (Cy), 130.17 (Cy), 131.16
(Cs), 131.87 (Cyg), 133.06 (Cyy), 134.53 (Cy3), 135.77 (Cs), 136.68
(C10), 136.84 (Cy5), 144.25 (Cg), 159.96 (C;, C=N), 165.38 (C;,
OH) and 195.66 (Cy4, C=O0) (Fig. S3cf). Anal. caled for
C,4H16CINO,: C, 74.71; H, 4.18; N, 3.63%. Found C, 74.57; H,
4.09; N, 3.78%.

Syntheses of the complexes (1-3)

Two equivalents of HL1 (602.5 mg, 2.0 mmol) or HL2 (670.0 mg,
2.0 mmol) or HL3 (772.0 mg, 2.0 mmol) were dissolved in 10 mL
of methanol and 2 mL of dichloromethane (DCM), and the
solution was stirred for ca. 10 min. One equivalent amount of
copper(u) acetate (200.0 mg, 1.0 mmol) dissolved in 10 mL of
methanol was added to this mixture solution. The color
changed immediately to light green (for HL1) or light brown (for
HL2 or HL3). The reaction mixture was stirred for ca. 24 hours at
room temperature in the presence of N, gas. The final color of
the solution turned to green (for HL1) and deep brown (for HL2
or HL3). The solution was then fully dried in a vacuum rotary
evaporator at ca. 40 °C. The products were washed four times
with ethanol, followed by n-hexane (2 mL in each) to obtain
green or deep brown microcrystals of 1, 2 and 3. The micro-
crystals were dried in air for 3-4 days at room temperature and
then preserved under N, gas. Single crystals suitable for X-ray
diffraction were grown via slow diffusion of MeOH into
concentrated DCM solution for 1 and slow evaporation of
concentrated methanol solution of 2 or 3 after 2-3 days at room
temperature.
Bis[(E)-2-(((2-benzoylphenyl)imino)methyl)phenolato-
K°N,O]copper(u), [(Cu(L1),] (1). Yield: 0.538 g (67%). IR
(KBr, cm ™~ "): » = 3048 and 2997 w (vC-H), 1661vs. (vC=0), 1607,
1591v s (vC=N) and 1530 vs. (vC=C) (see Fig. S1}). UV-vis.
(0.04 mM, CHCl;): Amay/NM (£ma/L mol ™' em ™) = 552 (201)
and 257 (33 533). EI-MS: m/z (%) = 663 (30) [Cu(L1),], 363 (100)
[Cu(L1),—L1]%, 301 (15) [HL1]', 256 (10) [C;3H,;NO-H]', 152 (22)
[C11H;N-H]" and 105 (18) [C;H50]" {[Cu(L1),] = C40H,5CuN,0y,
HL1 = CyH,;5NO,} (see Fig. S2}). Conductance (/,,) = 2.02 S m*
mol ™" in DMF at 25 °C. Solid state magnetic moment (tieg) =
1.89 uB at 25 °C. Anal. calcd for C,,H,3CuN,O,: C, 72.33; H,
4.25; N, 4.22%. Found C, 72.18; H, 4.12; N, 4.12%.
Bis[(E)-2-(((2-benzoyl-4-chlorophenyl)imino)methyl)pheno-

lato-k®N,O]copper(n), [(Cu(L2),] (2). Yield: 0.698 g (76%). IR
(KBr, cm™*): » = 3055 and 3020 w (vC-H), 1664 vs. (vC=0), 1614
vs. (vC=N) and 1531 vs. (vC=C) (see Fig. S1f). UV-vis.
(0.05 mM, CHCl;): Apa/nM (ema/L mol™* em™) = 572 (75)
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and 399 (11 153). EI-MS: m/z (%) = 733 (5) [Cu(L2),]", 397 (100)
[Cu(L2),—HL2 + H]", 335 (15) [HL2]", 182 (22) [C;Hs;CuNO]" and
105 (21) [C,H50]" {[Cu(L2),] = C, H,sCl,CuN,04, HL2 =
C0H14CINO,} (see Fig. S2%). Conductance (Ay,) = 2.37 S m>
mol ! in DMF at 25 °C. Solid-state magnetic moment (ucs) =
1.67 uB at 25 °C. Anal. caled for C,0H,cCl,CuN,O,: C, 65.54; H,
3.57; N, 3.82%. Found C, 65.34; H, 3.38; N, 3.79%.
Bis[(E)-1-(((2-benzoyl-4-chlorophenyl)imino)methyl)naph-

thalen-2-olato-k*N,O]copper(u), [(Cu(L3),] (3). Yield: 0.644 g
(78.12%). IR (KBr, cm ™ '): v = 3049, 3028 w (vC-H), 1666 vs.
(vC=0), 1614, 1601 vs. (vC=N) and 1571, 1529 vs. (vC=C) (see
Fig. S1}). UVwis. (0.016 mM, CHCl3): Apna/Nm  (emax/L
mol ' em ™) = 640 (80), 390 (1688) and 333 (3888). EI-MS: m/z
(%) = 828 (15) [Cu(L3),]", 442 (100) [Cu(L3),-L3+H]", 384 (90)
[L3-H]", 277 (15) [C;7H;,CINO-2H]", 226 (10) [C,,H,NNiO]", 152
(45) [C11HgN-2H]", 105 (48) [C;H;0]" and 77 (25) [CeHs]"
{[Cu(L3),] = C4sH3,Cl,CuN,0;, HL3 = C,,H;cCINO,} (see
Fig. S21). Conductance (4,,) = 1.98 S m> mol " in DMF at 25 °C.
Solid-state magnetic moment (uer) = 1.79 uB at 25 °C. Anal.
caled for Cu5H,0ClL,CuN,0,: C, 69.19; H, 3.63; N, 3.36%. Found
C, 70.00; H, 3.58; N, 3.23%.

X-ray crystallography

Data collection. A Rigaku XtaLAB Synergy (Rigaku, Tokyo,
Japan), Dualflex, HyPix diffractometer with a micro-focus X-ray
tube with Cu-Ko radiation (A = 1.54182 A) was used. A polarized-
light Leica M80 microscope (Leica, Wetzlar, Germany) was used
to select suitable single crystals, which were covered with oil on
a cryo-loop. The temperatures for data collection were 150 K for
HL1 and 1, HL2 at 220 K, HL3 at 251 K, 2 at 100 K and 3 at 200 K.
Structure Analysis and Refinement: CRYSALISPRO was used for
cell refinement, data reduction and absorption correction.’® The
crystal structures were solved using OLEX2-1.5 (ref. 59) with
SHELXT and refined with SHELXL.®*** All non-hydrogen atoms
were refined using anisotropic displacement parameters. All
hydrogen atoms on C were positioned geometrically. Hydrogen
atoms on O were found and refined with Ujsory = 1.5Ucq(0) for
HL1, HL2 and HL3. The crystal data and structure refinement
results are listed in Table 4. The intermolecular interactions
were calculated, and the graphics were designed using DIA-
MOND.* The CCDC numbers are 2425911-2425916 and data
can be obtained free of charge from http://www.ccdc.cam.ac.uk/
data_request/cif.

Computational method

The Gaussian 09% software was used for the computational
procedures. The molecular structures for 1, 2 and 3 were used to
design the initial gas phase geometry for DFT optimization
using the functional B3LYP or M06 and the basis sets 6-31G(d)
or SDD (Fig. S4}).**** The UV-vis. spectra and excited-state
properties were calculated by TD-DFT with different arrange-
ments of the functionals (e.g., B3LYP, cam-B3LYP, M06 and
M06-2X) and the basis sets (e.g., 6-31G(d), SDD and SVP),
respectively (Fig. 1 and S7-S9%). The spectra were further
calculated using the mixed basis sets LANL2DZ (for copper) and
6-31G(d) (for other atoms) with B3LYP and M06 functionals,
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respectively. The spectra thus obtained from different arrange-
ments are almost similar, with a small change in the positions
of the bands, and match well with the experimental spectra
(Fig. 1 and S7-S9%). These outcomes validate the legitimacy and
consistency of the simulation protocol. The polarization
continuum model (PCM) using CHCl; as the solvent and 72
excited states (roots) was used for the computations. The
spectra were constructed with SpecDis soft®® using a Gaussian
band shape with exponential half-width, ¢ = 0.33 eV.

Antibacterial activity study

The agar-well diffusion method****** was used to measure the
antibacterial activity of the Schiff bases (HL1, HL2, HL3) and
complexes (1, 2, 3) against Escherichia coli (gram —ve, ATCC 11303)
and Staphylococcus aureus (gram +ve, ATCC 9144). In Mueller-
Hinton Broth, bacterial colonies were cultivated at 120 rpm and 37
=+ 2 °C. On the agar plates, sterile micropipette tips were used to
make 5-7 mm diameter wells. The complex solution in DMSO (ca.
250-300 pg mL ") was placed onto the wells with the same solvent
mixture as a blank (a —ve control) and showed no or very little
inhibition. A dose (ca. 30 pg) of a chloramphenicol disc (standard)
was used as a +ve control. The agar plates were kept at 4 °C for 3
hours to prevent any diffusion or penetration of the complex. The
diameter of the inhibitory zone was measured after 20 hours of
incubation on agar plates.
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Data will be made available upon request.
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