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In energy storage applications, supercapacitors serve as an alternative to electrochemical batteries due to
their large power density and exceptionally long cycle life. Redox-active supercapacitors are favoured for
their durability and power density arising from the carbon-dominated field. However, their
commercialization is questioned due to their slow reaction kinetics and low energy density limitations.
Electrode materials with superior electrochemical behaviour must be developed to overcome these
obstacles. The oxygen anion-intercalation mechanism leads to an interest in perovskite oxide materials
with intrinsic oxygen vacancies and flexible structural characteristics. The primary objective of this review
is to present an overview of the fundamental characteristics of perovskite oxides, their charge storage
mechanism, and the key factors governing the electrochemical behaviour of the active material. This

review was also compiled by reviewing previous research on perovskite materials for supercapacitors.
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1. Introduction

In the field of energy conversion and storage, supercapacitors
(SC), Li-ion batteries, and fuel cells are gaining more attention.
To close the gap between conventional capacitors and
rechargeable batteries, SCs are viewed as a new kind of energy
storage device because of their high-power density, ultrafast
charge-discharge rate, low internal resistance, long cycling life,
and wide operating temperature (from —40 to 70 °C).*”* SCs
generally operate through two distinct mechanisms: Electric
Double-Layer Capacitance (EDLC) and pseudo capacitance. The
fundamental mechanism in EDLCs is electrostatic adsorption,
which results in the formation of charges at the electrode-
electrolyte interface.*” Conversely, pseudocapacitors have
charge storage through the faradaic reaction between electro-
active species, which helps in achieving better charge density.
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it presents the design guidelines for
supercapacitors, which appear beneficial for future studies on these materials.

perovskite materials for

The charge storage capacity of pseudocapacitors, which relies
on redox reactions, surpasses that of EDLC by 10-100 times.®®
This significant enhancement is attributed to the rapid faradaic
process employed in pseudocapacitance for charge storage, as
opposed to the electrostatic adsorption mechanism in
EDLC.'*"* Although Transition Metal Oxides (TMOs), including
MnO, and Coz0,, are considered cost-effective and promising
electrodes for SC, their widespread adoption in SC applications
is significantly hindered by their poor energy density and
limited cycling lifespan.””** During redox reactions in perov-
skite oxides (PO) within the electrolyte, the oxygen vacancies
associated with the oxygen ion intercalation mechanism explain
the oxygen ion insertion and extraction process.” As oxygen
vacancies carry charges, it is well known that controlling their
concentration is one of the most efficient and simplest paths for
increasing the capacitance of the materials used for oxygen ion
intercalation.’® A-Site and B-site doping techniques in ABO;
have been demonstrated to modify intrinsic physicochemical
properties, including electrical conductivity, catalytic activity,
ferromagnetism, and oxygen vacancies.”” Moreover, construct-
ing lattice distortion can produce abundant oxygen vacancies.
On the other hand, oxygen ion's insertion and extraction
capabilities are influenced by the variable valence of B-site ions
which is observed in the lattice of perovskite-type oxides.'® As
a result, hetero ion doping can alter the perovskite's lattice
structure and improve its electrochemical characteristics.” The
primary PO for supercapacitors includes single perovskite oxide
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(ABO3), double perovskite oxide (AA'BB'Og_;), triple perovskite
oxide (AA’A"BB'B"Oy_;), Ruddlesden-Popper (RP, A,BO, ;),
and other derived perovskite-type oxides.”*** Single perovskite
oxides have been extensively studied in lanthanide-based (La-
based) perovskites, including LaMnOj;, LaFeO;3;, LaCoOj3, and
LaNiOs;, due to their high voltage window and excellent stability.
LaNiO; demonstrated the highest specific capacitance (Csp) of
719 F g~ in neutral electrolyte.?*** However, leaching cations in
the aqueous electrolyte can damage the crystal structure of
a single perovskite oxide.*® The electrochemical stability of SC is
enhanced by the more stable structure of double and triple
perovskite oxides, which feature a mixed arrangement of
distinctions.***” Moreover, they exhibit wider voltage windows,
which increases the energy density of SC according to the energy
density calculation formula, E = 1CV?, where C and V represent
the working electrode’s specific capacitance (Cyp) and potential
window, respectively, and also highlight the SC's application
potential.*®*** Meanwhile, the power density is calculated by the
formula P = (E x 3600)/At where E and At represents energy
density and discharge time. In particular, under various
reduction conditions, the rapidly scattered lattice elements of
a simple double perovskite oxide (AA'B,O¢) can be transformed
into an ordered structure with a uniform distribution of A-site
cations. Faster oxygen kinetics are promoted by the internally
ordered structure of double perovskite oxides compared to the
disordered structure in solid oxide fuel cells.?**' For SC, the
ordered structure facilitates the concentration of oxygen
vacancies. Sr,CoMoOg and PrBaMn,0Os, two prominent double
perovskite oxides, have been studied as electrode materials.**=*
Sr,CoMoOg demonstrates a B-site-ordered rock-salt structure,
whereas PrBaMn,0Os exhibits an A-site-ordered structure.
According to the description, the internally ordered structure
can offer a more convenient electron transmission path and
more oxygen vacancies than the disordered counterpart. Liu
et al. noted an ultrahigh Cy, of 1571 F g~ for PrysBag sMn; -
C0¢.306_5 With Co3;0, on the double perovskite surface.*® It
utilized the decay of specific transition metal ions in double
perovskite oxide within an H, atmosphere.*” The use of triple
and double POs is expanding quickly, and more practical
methods of enhancing their functionality in SC have been
created.*® Moreover, as of the rapid development, a current
conclusion is necessary to systematically describe the most
recent development direction in SC with a perovskite oxide
electrode in recent years. It will serve as both a rapid reference
and an inspiration for creative approaches for future research.
This paper compiles the modification guidelines for PO,
including morphological design, doping strategy, and
composite formation with other materials.>® The phase transi-
tion transformation process under a reduced environment and
the modifications induced by the segregation of B-site metal
ions are explicitly discussed for double perovskite oxide.

2. Types of perovskites
2.1 Single perovskite oxides

Perovskite materials have served as a substance for several
decades. A perovskite structure embodies an ideal configuration

© 2025 The Author(s). Published by the Royal Society of Chemistry
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characterized by an A-cubic crystal and ABO; stoichiometry
lattice, which belongs to the space group Pm3m (Fig. 1). The
components of this structure consist of a three-dimensional
framework created by corner-sharing BOs octahedra. Perov-
skite oxide with the formula ABO; has a distorted structure,
oxygen vacancy concentration, and high tap density, where A
represents the alkaline rare earth, and B represents the transi-
tion rare earth elements.*® Element A possesses a larger ionic
radius than element B, and other metal elements can be
substituted for the ions at both the A and B sites. PO doped with
varying physicochemical characteristics, such as polarity,
specific surface area, and electrical conductivity, enable the
exploitation of this property.***° As a result, PO holds enormous
promise for use in solar cells, superconductors, catalysts, and
sensor materials.

The oxygen atom is present at the centre of each of the 12
sides, the centre of the cube's body is A-cations, and each of the
eight corners is called B-cations while examining the structure
of PO. Considering the A site at the cubic corner position (0, 0,
0), the face-centred position of the oxygen atom will be located
at the cubic lattice (2, 1, 0), and the B cation occupies the body-

202
centred position (%, 1, 1)) while the A cation is visible with 12-

’ b ’
coordination to tlfe 2())<2ygen anion (Fig. 2). Therefore, the B-O
bond distance is a/2, and the A-O bond distance is a//2, where
a is the cubic unit cell parameter.**> The radii of the A-site and
B-site ions must satisfy the formula ¢ = (ry + r,)/V2(rs + 1),
which results in the formation of the required perovskite
structure. The tolerance of the cubic system is ¢ = 1, which
represents the optimal value for the perovskite structure.
Adjusting the octahedral factor u-value (u = rp/r,) between 0.44
and 0.90 and the ¢-value between 0.89 and 1.0 aids in forming
the ideal cube-shaped perovskite structure and regulates the

Fig. 1 Ideal cubic perovskite structure for ABOs (BOg units — cyan; A
atoms — yellow; O atoms — red).3® This figure has been reproduced
from ref. 38 with permission from Frontiers in Chemistry, copyright
2025.
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Fig. 2 Different structures of perovskite material (a) cubic, (b) monoclinic, (c) orthorhombic and (d) tetragonal.*4? This figure has been
reproduced from ref. 41 and 42 with permission from Elseiver, copyright 2025.

stability of the octahedra. Moreover, A-O and B-O bond lengths
will vary when a significant portion of the atoms in the A and B
sites are changed for other elements. Therefore, a popular
technique for enhancing the properties of perovskites is to dope
with numerous cations of different ionic radii and valence to
substitute the A and B site cations fractionally. The current
value of u = 0.59 can form the BX, structure, which enhances
the stability of the perovskite. When tilting the crystal structure
of perovskite ABO;, octahedra are formed, leading to the
development of crystal phases such as triclinic, monoclinic,
orthogonal, tetragonal, and rhombohedral (Fig. 2).***

2.2 Double perovskite oxides

Perovskite oxides (ABOj3) can result in the formation of double
perovskite oxides when half of the B site cation is replaced by
one cation.*®*>** Meanwhile, the cations of the A and B sites are
positioned in the resulting structures, such as A’A”BOg (double

A site) and AB'B"Og¢ (double B site) (Fig. 3).*® The expansion of
a basic perovskite oxide unit results in the formation of double
perovskite oxides, where the A and A’ cations are enclosed
within cub-octahedrons, while the B and B’ cations occupy the
central positions of octahedrons in the double perovskite oxide
structure.**® The appropriately ordered B’ and B” cations are
necessary for the double perovskite A,B'B"O4 crystal struc-
ture.”**” There are three primary types: layered B-cation sub-
lattice structures, rock salt, and columns. Bochu et al. initially
identified these materials, where an additional transition metal
(the A’ site) occupies 75% of the A site.®* This can lead to the
emergence of two possible structures: an A site-ordered
quadruple perovskite (AA;B,O2) or a 1:3-type A site cation
arrangement (AA;B,B;,O1,). High-pressure techniques are
generally necessary to synthesize these quadruple perovskites,
ensuring the cation is accurately positioned in the A’ site under
square planar conditions.’"** Alternatively, the B site is adapt-
able and can accommodate cation variability. One of the

Fig. 3 Schematic illustration of (a) A’A"BOg (double A site), (b) AB'B”Og (double B site).*®4” This figure has been reproduced from ref. 46 and 47

with permission from RSC, copyright 2025.
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distinctive structural and electronic properties of these struc-
tured quadruple perovskites is A’-B intersite charge transfer.
The A and B sites promote ferroelectricity, while the A’-B-B’
spin interactions are strengthened, leading to elevated spin
ordering temperatures.”*** Kumar et al. investigated the elec-
trochemical performance of R,MMnOg perovskite oxides (R =
La, Gd; M = Zn, Cu, Ni). The prepared electrode namely La,-
ZnMnOg, La,CuMnOs, and Gd,NiMnOg exhibited specific
capacitances of 718.6 F g !, 205.5 F g ', and 400.46 F g,
respectively, at varying current densities.’®* Further, to
enhance supercapacitor characteristics, improving specific
surface area and increasing charge transfer at the nanoscale are
found to be effective measures.*®** Meng et al. synthesized
a hollow spherical porous structure of La,CoMnOg through
template impregnation (HS-LCMO).*® In comparison, La,-
CoMnOg was synthesized using the sol-gel method (SG-LCMO).
The specific surface area of HS-LCMO and SG-LCMO was found
to be 22.14 and 10.36 m* g~ ', respectively.®

2.3 Triple perovskite oxides

More precise configurations, such as triple POs (A;BB,0,) and
the perovskite family, offer a straightforward method for
exploring structure-property relationships due to their ability to
adopt various distinct stacking sequences. They can also
accommodate a variety of metal cations, including those with
unpaired electrons, in unique crystallographic positions with
flexible bond angles.*” Their general formula is typically
A3B'B;09 or A;B;0,, where the specific arrangement of cations
is crucial in determining the material's overall properties. The
A-site cations (e.g., La, Sr, Ba, Ca) typically occupy a cubic or
distorted cubic lattice, providing structural stability. In
contrast, two transition metal (B-site) cations occupy distinct
positions within the octahedral network. The crystal structure is
significant for basic and applied research in any chemical
system, including triple perovskites.** The triple perovskite
oxide can be divided into hexagonal and non-hexagonal systems
depending on the material's structural distortion. Most systems
belong to hexagons, while others belong to non-hexagonal
crystal structures like monoclinic and orthorhombic. The

(b)
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hexagonal triple perovskite may contain a 6H hexagonal struc-
ture with unique 3-fold or 6-fold rotational symmetry, which
undergoes crystallization belonging to P6s;/mmc and P6;mc
space groups, respectively. These crystal systems are named
6H-A and 6H-B triple perovskite system.®* Fig. 4 shows the
schematic representation of (a) 6H-A and (b) 6H-B crystal
systems. In non-hexagonal triple perovskite systems, the 6H-A
crystal structure transforms to other structures like monoclinic
or orthorhombic due to structural distortion, as shown in
Fig. 4c. This primarily depends on the amplitude of distortion
caused by the cationic size mismatches in the system and
accompanied by the modulation of face-sharing octahedra-
polymers.®"¢>

The specific capacitance of PO has been significantly
enhanced through the various modification techniques,
leading to an expansion in the energy density of these mate-
rials. Among the key innovations is extending the voltage
window, which directly contributes to improving the energy
density of SC. The unique crystal structure of PO allows for
incorporating different metal components, making them
highly suitable for improving the voltage range in SC. A notable
example is the triple perovskite oxide Srz;CoFeMoOg._s,
proposed by Qiao, demonstrating distinct redox potentials for
its metal components—Co, Fe, and Mo. The specific arrange-
ment of these metals, influenced by the Fe elements against
inductive effects, leads to a long voltage window of 1.4 V for
Srz;CoFeMoOy_; (SCFM). Furthermore, the voltage profile from
the GDC curve demonstrated exceptional stability at different
current densities, indicating consistent performance under
varying conditions. The material exhibited excellent capaci-
tance retention, with 74.6% of the Cy, preserved at a scanning
speed of 10 mV s '. These characteristics highlight the
potential of PO, particularly SCFM, as advanced materials for
next-generation supercapacitors with enhanced stability and
energy density. The symmetrical supercapacitor SCFM||SCFM
exhibited a power density of 1412.9 W kg™" and an energy
density of 58.5 W h kg~ within a potential window of 1.4 V.%
The supercapacitors fabricated with this electrode material
demonstrated an Cy, of 685 Fg~ " ata 2.0 Ag™ ' current density.
The partial substitution of Mn" at the B-site was pivotal in

X (2a) X (3a)

Fig.4 Schematic representation of (a) 6H-A and (b) 6H-B and (c) orthorhombic crystal systems.®*¢2 This figure has been reproduced from ref. 61

and 62 with permission from RSC, copyright 2025.
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Fig. 5 Charge storage mechanism of Sr,CoMo;_,Ni,Og_;.5° This figure has been reproduced from ref. 65 with permission from Elseiver,

copyright 2025.

enhancing the oxidation state of Fe cations and promoting the
mobility of oxygen ions through oxygen vacancy sites. More-
over, the electrochemical stability of LBFM-0.2 was rigorously
evaluated by subjecting it to extended charge-discharge cycles,
showcasing its potential for practical applications. After 3000
charge-discharge cycles, the supercapacitor retained approxi-
mately 94% of its initial capacity.®® Yin Qiao synthesized
SrFe, ,Zr,O;_; by using a solid-state synthesis method. Zr
substitution enhances the structural stability in comparison
with the pure SrFeO;_;. The fabricated electrode demonstrates
a suitable Cy;, of 163.92 F ¢ ' and excellent cycling stability.*?
Liu et al. synthesized Sr,CoMo,; ,Ni,Os_; using the sol-gel
method. The prepared electrode enables two distinct forms of
energy storage, including faradaic surface redox pseudocapa-
citance and oxygen anion-intercalation pseudocapacitance, as
shown in Fig. 5. The electrode exhibits enhanced electro-
chemical performance, demonstrating a Cy, of 930 F g~ '.%
Furthermore, Zhu et al. synthesized SrCo,oNb,10;_5 (SCN)
using the ball milling method, which exhibits stability at 95.7%
of its original capacity after 3000 cycles with a high energy
density of 37.6 W h kg™ '.4% Hence, double perovskite oxide
clarifies its well-ordered structure and specific surface modi-
fication engineering, whereas triple perovskite oxide offers the
advantages of a diverse metal element arrangement.

16770 | RSC Adv, 2025, 15, 16766-16791

3. Charge storage mechanism in
perovskite oxides

Due to their simple cost, large skeletal structure, high charge
density, and basic properties like oxygen vacancies and chem-
ical tunability, PO have attracted much interest.®”*® These
materials have been widely used as useful substances in energy-
related applications for several years. Meffold efforts towards
the study of the oxygen anion intercalation process in nano-
structured lanthanum-based PO was an important historical
moment.* The method follows like this: first, oxygen diffuses as
OH™ ions from the electrolyte. Within the crystal lattice, these
OH ions increase in the edges of the octahedral structures and
fill the oxygen vacancies. Water is produced due to the oxidation
of two Mn>" ions to Mn*' simultaneously. Intercalation of
excess oxygen occurs at the material's surface in the next reac-
tion phase. As shown in Fig. 6, this involves the oxidation of two
Mn®" ions to Mn*" and the release of manganese to the
surface.” As mentioned earlier, most PO are essential for charge
storage. Other metal oxides that rely on positive ions such as Li*
or Na' for charge transfer, including TiO,-B, T-Nb,Os, and a-
MoOj;, demonstrated similar intercalation behaviour. On the
other hand, O* ions in PO are very useful and can store
multiple times as much charge per cycle as Li" intercalation.”7
PO are also considered upcoming materials for supercapacitors

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Schematic illustration of oxygen intercalation mechanism in PO.7° This figure has been reproduced from ref. 70 with permission from

Elseiver, copyright 2025.

due to this characteristic. The idea is that 0>~ ions have greater
intercalation pseudocapacitance because they can carry two
negative charges per unit.

4. Synthesis methods of perovskite
oxides
4.1 Microwave synthesis method

There are several benefits of using vapour-phase synthesis for
introducing and managing nanostructures. Electromagnetic
waves with high frequency and wavelengths ranging from 1 mm
to 1 m, specifically microwaves operating within the frequency
range of 0.3 to 300 GHz, are utilized. They are frequently
employed for both cooling and heating purposes. The micro-
wave approach uses heating mechanisms, including ionic
conduction and depolarization, which heat molecules or ions
through collisions and friction. Chemical reactions are effi-
ciently enhanced by this method.” Fig. 7 illustrates the sche-
matic representation of the microwave synthesis method. Chen
et al. used vapor-phase synthesis at high temperatures to
synthesis CsSnl;, which displayed a low surface combination
rate and a long carrier diffusion length (~1 pm). The CsSnX;
precursor powder was heated to 280 °C and then produced to
a mica substrate ([KAl,(SizAl)O,4(OH),]) by flowing argon gas to
enable the controlled growth of nanowires. Bulk synthesis,
melting, and colloidal processes are standard synthesis tech-
niques for PTO.”

Due to perovskite's outstanding characteristics that have
made it easy to modify, several manufacturing methods have

© 2025 The Author(s). Published by the Royal Society of Chemistry

been developed, with the solvothermal approach being one of
the most widely used. To create Ru-based perovskite/graphene
nanocomposites, Hassan et al. used the redox reactions that
were started by heating using thermal and microwave assis-
tance. Both techniques utilized direct redox interactions
between GO and Ru precursors.”*”® According to structural
research and material characterizations, the microwave-
assisted method developed more well-ordered nanoparticles,
while thermal heating yielded better reduction efficiency.”
Kostyukhin et al utilized microwave heating to synthesize
lanthanum orthoferrite (LaFeO;) perovskites to address the
issue of extended synthesis durations.”® This microwave
method accelerates LaFeO; particle growth and crystallization
through surface polarization and localized overheating. This
method provided a more efficient method for material creation
than hydrothermal synthesis, decreasing the synthesis time by
about 10 hours.”

4.2 Sol-gel method

The sol-gel technique allows for precise control over composite
particle’s uniformity and particle size. However, it typically
requires multiple complex agents, extended processing times,
and stringent parameters such as specific temperatures and
pH.”® Controlling the structure of oxides produced by the sol-
gel technique is challenging, and the intrinsic instability of the
structure restricts its application. Despite being highly
homogenous and not requiring high processing temperatures,
nanomaterials are frequently created in polycrystalline form.”
Fig. 8 illustrates the schematic representation of PO using the

RSC Adv, 2025, 15, 16766-16791 | 16771
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sol-gel method.** Kharangarh et al. used the sol-gel and
hydrothermal methods in a process that involved two steps to
create a high-conductivity electrode material. Initially, the
SrCo¢.9M0y.103_5 (SCM) perovskite had been generated by
doping molybdenum into cobaltite using the sol-gel technique.
Graphite was finally added to the SCM using the hydrothermal
process. Due to increased oxygen vacancies, SCM showed better
cycle life and specific 440 F ¢~ Hu et al. synthesized CsPbX,
NCs in a covalent solvent to create advanced CsPbX; NCs using
a water-assisted transformation method. The surface of perov-
skite NCs at the hexane/water interface was then functionalized
through an effective sol-gel modification approach. With this
method, monodisperse CsPbX;/SiO, and CsPbBr;/Ta,Os were
effectively produced. At the hexane/water contact, it is notable
that change and oxide attachment took place at the same time.*
Zhang et al. successfully produced LaFeO; perovskite nano-
particles using a sol-gel method by utilizing the porosity
properties of MOF templates and advanced methods. The new
technique performed exceptionally well, offering more relaxed
preparation conditions, easier preparation, and flexible pro-
cessing intervals. The procedure started with systematically
mixing La salt, Fe salt, and the organic ligand H;BTC in an
ethanolic solution to create the first product (MOG-La-Fe). After
MOG-La-Fe was pyrolyzed on an appropriate substrate, meso-
porous LaFeO; perovskite nanoparticles were produced. At
a power density of 900 W kg, these materials demonstrated
outstanding energy efficiency of 34 W h kg™~ *.#%%* Tomar et al.
synthesized SrTiO; perovskite oxide nanofibers. The synthesis
of SrTiO; nanostructures was carried out by sol-gel method,
then heating at various temperatures. Consequently, the
generated electrode exhibits improved electrochemical charac-
teristics, including increased Cgp, high-rate capability 208.47 F

3o
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Sodium Citrate

6h

12h
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g !, better cyclic stability at 1500 cycles and longer cycle life.®®
Tomar et al. synthesized SrTiO; using the sol-gel method for PO
with a cubic structure. Consequently, the SrTiO; cubic structure
offers several benefits, such as being environmentally friendly
and having a specific surface area, enhancing supercapacitor
performance with a high specific surface area and an efficient
mass transfer rate of electrolyte ions. The fabricated symmetric
supercapacitor exhibited a higher Cg, of approximately 212.5 F
g " at 0.63 A g~ ' with improved cyclic stability and excellent
capacitance retention of about 99% after 5000 continuous
cycles.® Shereef et al. synthesized double perovskite La,NiMnOg
by the sol-gel technique. At a current density of 0.1 A g™ %, the
material exhibited a reduced specific capacity of 9.16 F g~ .5
Jose et al. reported the synthesis of La,FeMnOg, demonstrating
high specific capacitance, good electrical conductivity, and
long-term cycle stability. The mesoporous capacitance of La,-
FeMnOj, reached up to 10.9 mF g, with excellent capacitance
retention of 96% after 5000 cycles.®”

4.3 Solvothermal method

In the solvothermal technique, the solvent is nonaqueous,
which is how it varies from the hydrothermal approach. On the
other hand, hydrothermal synthesis produces the desired
product by reacting precursors in a solution containing water,
usually at high temperatures and pressure.*® Riaz et al
employed a solvothermal approach to produce KCdCl;/rGO and
KCdCl;/Ceo. More reactive sites, efficient charge/ion movement,
exceptional cycle stability, and high Cs, are among the benefits
provided by KCdCl;/Cg in electrochemical processes.*® Hussain
et al. synthesized hollow spherical perovskite fluoride NaNiF;
using a one-step solvothermal process, as shown in Fig. 9. The
supercapacitor (SC) made with NaNiF;/AC

asymmetric

Perovskite Fluoride NaNiF3

Fig. 9 Synthesis process of hollow spherical NaNiFz perovskite fluoride nanocrystals.®® This figure has been reproduced from ref. 90 with

permission from Wiley, copyright 2025.
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electrodes demonstrated a high energy density of
51.78 W h kg™ ' at 1.65 kW kg™ ', a wide electrochemical window
(1.65 V), and excellent cycling durability, maintaining 100%
capacity retention from 1400 to 10 000 cycles. The production
mechanism of hollow spherical perovskite fluoride has also
been investigated.”® N. Bibi et al. hydrothermally produced
SrZrO; nanorods with high electrical conductivity, porosity, and
cyclic stability. Therefore, the as-synthesized electrode demon-
strates remarkable capacitance retention over 1000 cycles and
a capacitance of 1225 F g ' at a current density of 10 A g~
Additionally, the fabricated electrode achieves a maximum
power density of 4000 W kg ' and an energy density of
65 W h kg™ 1.

4.4 SILAR method

SILAR is regarded as a relatively straightforward and econom-
ical technique for thin-film deposition, allowing for accurate
control over thickness and composition.?>** The method entails
the repetition of four-step sequential adsorption, rinsing,
reaction, and rinsing stages, leading to the layer-by-layer growth
of thin films (Fig. 10). This layer-by-layer deposition mechanism
enables precise film thickness and composition control, which
can be fine-tuned by altering parameters such as precursor
concentration, immersion time, and reaction conditions. In the
1980s, Nicolau et al. introduced the successive ionic layer
adsorption and reaction (SILAR) method for fabricating thin
films.” Subsequently, a modified pseudo-SILAR (p-SILAR)
method was developed for synthesizing doped and binary/
ternary nanocomposites (NCs). Yasmeen et al. reported the
synthesis of perovskite CsPb,Brs; nanocomposites using the
SILAR method. It has been demonstrated that SILAR and p-
SILAR are straightforward, cost-effective, rapid, and scalable
synthesis techniques that involve exposing a substrate film or
particles to ionic precursors, leading to (1) cation adsorption,
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(2) washing, (3) anion reaction, and (4) further rinsing.°® For
instance, Ghule et al. synthesized nano pebbles-like BiVO,@C
electrodes by the SILAR method. The following are the steps in
the systematic method for the deposition of BivO,@C: (1) the
first beaker containing the cationic precursor (Bi(NO;); + BGBE)
was submerged in the cleaned FSSM substrate for 10 s. During
this time, Bi*" ions were adsorbed onto the substrate due to the
force of attraction between the ions in the solution and the
substrate surface. (2) To eliminate the weakly bound Bi** ions,
the FSSM substrate was submerged in the second beaker filled
with double-distilled water for ten seconds. (3) In order to create
stable BiVO,@C thin films, the previously adsorbed Bi*" ions
reacted with VO,*>” ions in the third beaker containing the
anionic precursor (NH,VO; + BGBE) for 10 seconds. (4) The
substrate was rinsed with DDW for ten seconds in the fourth
beaker to eliminate extra or unreacted species. During 5000
GCD cycles, the BiVO,@C electrodes exhibited enhanced
cycling performance with 94.6% capacitive retention.®”

4.5 Electrospinning method

Electrospinning is a complex yet cost-effective method to
fabricate nanotubes and nanofibers with diameters ranging
from several micrometres to tens of nanometers. Additionally,
beyond the size and structure, it also depends on other factors
such as the concentration of the parent compound, the viscosity
of the parent compound solution, the type of polymer, and the
electrospinning parameters, including voltage, working
distance, and feed rate, which are other crucial factors
(Fig. 11).°® In the case of supercapacitors, the perovskite-type
metal oxide is a reliable electrode material with remarkable
capacitive performance. Due to the high concentration of
oxygen vacancies in these perovskites, they exhibit outstanding
electrochemical properties. The supercapacitor based on La,-
Sr; ,NiO;_4; (0.3 = x = 1) NFs demonstrated exceptional

Repeat cycles

@ Adsorption ==} Rinsing =) Reaction == Rinsing

>

STEP I

SS substrate ‘

STEP II

STEP IV

3

STEP III

3

btk

Cationic precursor

DDW

Anionic precursor

DDW

Fig. 10 Schematic representation of SILAR method.®* This figure has been reproduced from ref. 94 with permission from Elseiver, copyright

2025.
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Fig. 11 Schematic diagram of set up of electrospinning apparatus (a) horizontal set up and (b) vertical setup.®® This figure has been reproduced

from ref. 98 with permission from Elseiver, copyright 2025.

electrochemical characteristics, achieving 719 Fg 'at2 Ag .
Similarly, La,Sr; ,Co¢1Mngy 03 5 (0.3 = x = 1) NFs demon-
strated a capacitance of 485 F ¢ ' at 1 A ¢ ' in 1 M KOH.
Similarly, the supercapacitive performance of StMnO; NFs has
been investigated concerning the effects of doping Ba, Ca, and
Ni on the Sr site and Co, Fe, and Ni on the Mn site, respectively.
The study revealed that adding 20 mol% Ba to the StMnO;
matrix enhanced capacitance from 321.7 F g~ ' to 446.8 Fg " at
0.5 A gt

5. Strategies of perovskite oxides on
the performance of supercapacitors
5.1 A-Site doping

Generally, the supercapacitor performance of perovskite oxides
is directly linked to the B-site transition metal element. The A-
site component, which consists of alkaline earth and lantha-
nide elements, is typically inert in the redox reaction. However,
the cation at the A-site may influence the electronic coordina-
tion and structure. A significant improvement occurs when
a low-valence cation partially replaces the A-site, causing some
B-site transition-metal ions to shift to unstable oxidation states
(B™/B™)* redox pair, such as Sr*" and Ca'. This alteration
also generates additional oxygen vacancies. Consequently, the
electrochemical performance is enhanced, and electronic
conductivity increases. It is environmentally advantageous for
alkaline earth metals to replace rare earth metals due to their
similar atomic radii. In this context, Roy et al. utilized a sol-gel
technique to synthesize Ca-doped perovskite lanthanum
manganates (La, ;CaysMnO3). The Csp, of Lay 5Cag sMnO; was
2.4 times higher than that of pure LaMnO;.'*»'** Similarly,
Wang et al. doped LaMnO; with Sr and observed that after 1000
cycles, the cycle life enhanced from 40% to 80%, and the
capacitance slightly increased from 187 t0 198 Fg ™" at 0.5 A g™ "
Meanwhile, Tian et al. used the sol-gel method to synthesize
La; ,Sr,MnO; (x = 0, 0.15, 0.3, 0.5) to understand better how
the  substitution degree influences electrochemical

© 2025 The Author(s). Published by the Royal Society of Chemistry

performance.'® It was discovered that the value of x influences
the charge transfer resistance, Cg,, and degree of nanoparticle
aggregation.'® A group of PO with the composition La; ,Sr,-
BO;3;_4 (x = 0-1; B = Fe, Mn, Co) was recently synthesized by
Wang et al. to investigate anion-based pseudocapacitors
systematically. They found that the surface-normalized
capacity, whose slope is determined by the B-site element,
increases linearly with a higher oxygen vacancy content
following the systematic addition of Sr**.1> Compared to the Fe
and Co oxides, Lag,SrysMnO, ; exhibited the highest Cg, of
approximately 492 F g~ ". The energy required for the aliovalent
substitution of oxygen vacancies depends on the alkaline-earth
metals. Luo et al. investigated the influence of Ba and Ca doping
on SrMnOj; nanofibers. By doping the SrMnO; matrix with
20 mol% Ba, the Cs,, significantly increased from 321.7 F g~ ' to
446.8 F g~ '. Furthermore, the Sr,sBa,,MnO; based ASC
demonstrated excellent capacitance retention of 87% after 5000
cycles and an energy density of 37.3 W h kg™ " at a power density
of 400 W kg~ *.1

5.2 B-Site doping

Cobalt-based PO exhibit greater efficiency than Mn-based ones
due to their enhanced oxygen-ion mobility and higher concen-
tration of oxygen vacancies. Certain cobalt-based PO such as
cubic phase, at room temperature SrCoO;_ ;s are unstable.
Sharma et al. partially substituted Mo for Co in SrCoO;_; to
widely deploy cobalt-based PO in SCs (Fig. 12a).** It was found
that SrCog oMo, 103 (SCM) had 2.1 times more oxygen vacancies
than SrCoO;_;. Furthermore, compared to SrCoO;_s;, SCM
exhibits a Cs, of approximately 1223.34 F g~ ' at 1 A g
(Fig. 12b). Notably, after 10 000 cycles, the ASC, utilizing lacey-
reduced graphene oxide nanoribbon (LRGONR) as the nega-
tive electrode, demonstrated long-term stability (Fig. 12c¢). At
a power density of 734.5 W kg™ ?, it also achieved a specific
energy density of 74.8 W h kg™" (Fig. 12d).**® Similarly, Shao
et al. reported Nb-doped SrCoO;_; with a gravimetric capaci-
tance of approximately 773.6 F g~ ' and excellent cycling
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(a) Schematic representation of the synthesis process of SCM. (b) GCD curves of the SCM electrode at varying current densities. (c)

Cycling stability of the ASC at 10 A g~*. The inset displays the final five GCD cycles. (d) Ragone plot of a hybrid SCM cell compared with literature
findings.®® This figure has been reproduced from ref. 98 with permission from Elseiver, copyright 2025.

stability, exhibiting about 95.7% capacitance retention after
3000 cycles. Additionally, an ASC was assembled with AC and
SrCoyoNby105_s (SCN), serving as the cathode and anode,
respectively. When the power density was 433.9 W kg™, the
device's energy density reached 37.6 W h kg™', and when the
power density increased to 9864.2 W kg™, it continued to
maintain an energy density of 32.9 W h kg™ ". Furthermore, the
potential window of PO may be influenced by B-site doping.** G.
Singh et al.** explored the impact of B-site element doping on
the stability window of SrRuOj;. Notably, it was found that
doping SrRuO; with 20 mol% Mg enhanced its Cg, without
altering its stability window. Conversely, substituting Fe or Co
could lead to a reduced stability window.

5.3 Modulating stoichiometry

Various post-processing techniques, including heat treatment
at elevated temperatures in an environment with low oxygen
partial pressure and inert conditions, are used in a reducing
atmosphere like H, to produce oxygen-deficient POs with the
general formula ABO;_;s. According to research by Mefford et al.,
sub-stoichiometric LaMnO, o; performed better than anion
excess form LaMnOj; 0."° Oxygen vacancy concentration and
overall performance are also significantly impacted by cation
deficiencies. The influence of cation stoichiometry in LaMnO;

16776 | RSC Adv, 2025, 15, 16766-16791

was explored by Qian et al. by manipulating the A and B-site
cation ratio. The LaMn,.,0; ; outperformed the stoichio-
metric LaMnOs;. Although supercapacitor performance was not
specifically examined, perovskites with A-site cation deficiency
have been demonstrated to produce oxygen-deficient struc-
tures.'®” Fig. 13 shows the synthesis process of different perov-
skite oxide powders.

6. Design of perovskite electrode
materials

Design principles for perovskite electrode materials can be
clarified based on the charge storage mechanism of the perov-
skite oxide electrode. These principles can be classified into the
following sections.

6.1 Creating oxygen vacancy

According to the perovskite oxide structure theory, substituting
the A site with a low valence can enhance the valence of the B
site element or increase the oxygen vacancy concentration.'*®
The oxygen vacancy concentration is only marginally influenced
by replacing the A site with a high valence, which may reduce
the valence of the B or A sites. As the concentration of oxygen
vacancies increases, more hydroxide anions intercalate through

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the electrode surface and diffuse from the electrolyte to the
electrode more efficiently.’” However, elevating the B site
element's valence restricts the theoretical Csp. Consequently,
enhancing the electrochemical performance of perovskite by
replacing the A site with low valence is an inefficient technique.
Even though achieving theoretical specific capacitance is highly
challenging, the approach can enhance electrochemical
performance due to its partially diminished internal resistance
and capability to facilitate diffusion and intercalation
quantity.”*"> The internal resistance of perovskite, which
affects the electrode's power density, is influenced by the B-O-B
bond length and angle, which are determined by the atomic size
and the type of doped element. While certain perovskite struc-
tures have been identified, accurately measuring the crystal
structure's B-O-B bond angle and length remains a significant
challenge.' These bond angles and lengths require first-
principles simulations for a more precise explanation. The
relationship between bond angle, length, and doped element
can be analyzed through perovskite material design in
conjunction with first-principles simulations. Additionally, it
can calculate the theoretical internal resistance of perovskite,
which may help reduce the development cycle of doped perov-
skite design."*

In conclusion, Cs, and power density can be optimized by
developing element-doped perovskite oxides with high oxygen
vacancies and minimal internal resistance. Several examples of
suitable composition selection are provided, including Ti, Nb,
Mo, and V, whose oxides have been used as electrodes to
fabricate electrochemical capacitors. With high valence states,
these elements doped in the B site can enhance the oxygen
vacancy in perovskites.'*>'¢

© 2025 The Author(s). Published by the Royal Society of Chemistry

6.2 Designing the microstructure and high specific surface
area

A large specific surface area can enhance the Cg, and ion
exchange rate between electrodes and electrolytes. The advan-
tages of different microstructures for supercapacitors vary."'”'*®
A core-shell structure can improve the electrode's cycle stability
by limiting the core material's phase transition. The electrode's
resistance can be reduced by shortening the electron transfer
path from the active material's surface to the current collector
using a nanoneedle or nanosheet structure. Perovskites with
various nanostructures are expected to exhibit higher Cgp,
longer cycle stability, greater power density, and increased
energy density."**** However, there is still much to discover due
to different microstructures were created through hydrothermal
reactions, guiding agents like urea, hexamine, and ammonium
hydroxide, which stop hydroxide coprecipitation from
happening when lanthanum-based perovskites are being
prepared. Although the sol-gel method can produce flower-like
and nanowire perovskites, these structures are unsuitable for in
situ growth on the surface of the current collector."”>*** There-
fore, to achieve successive coprecipitation or obtain perovskite
in situ, further research should focus on developing a novel
guiding agent for the hydrothermal reaction of perovskite.
Binder-free in situ growth can improve the electrochemical
performance of perovskites by preventing issues related to poor
conductivity.**>***

First, at the perovskite calcination temperature, conven-
tional current collectors such as carbon paper and nickel foam
undergo significant oxidation in the air. Therefore, protection
with argon or nitrogen is necessary. Second, the formation of
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perovskite is impeded by certain transition metal hydroxides,
like Mn(OH),, Ni(OH),, and Co(OH),, which can only be con-
verted into diatomic metal oxides and cannot undergo further
oxidation when protected by nitrogen or argon.'”® Conse-
quently, it is essential to prepare the trihydroxide before calci-
nation. As a result, Fe and Ti, which can exist as Fe(OH); and
Ti(OH);, are promising candidates for in situ perovskite
production. In conclusion, hydrothermal reactions are neces-
sary to produce perovskites with a wider range of microstruc-
tures, but careful selection of guiding agents and B-site
components is essential to obtain the desired perovskites.'**

6.3 Developing perovskite composites

Three main components comprise the design concept for
perovskite composites: initially, perovskites can be combined
with oxides whose potential window partially overlaps the
perovskite's potential window. Furthermore, this kind of
perovskite composite can enhance its integral potential
window."”**® At the same time, the energy density of compos-
ites is enhanced when the specific capacitance is either mini-
mally affected or even increased by the extended potential
window. Additionally, perovskites can be combined with oxides
with a different redox potential than the perovskites themselves.
This enables simultaneous charge storage at competing active
sites during the charging process, enhancing the specific
capacitance. The combination of LaggsSro15MnO; with
NiCo,0, was recently explored, addressing the challenge of
binder-free electrodes for perovskites with a core-shell archi-
tecture. This material demonstrated remarkable electro-
chemical performance, including a high specific capacity of
260.75 mA h g at 0.5 A g ' in 6 M KOH. Additionally, it
demonstrated exceptional cycle stability, retaining 200% after
10 000 cycles at a current density of 20 A g~ '. When incorpo-
rated into hybrid supercapacitors, it achieved an energy density
of 63.5 W h kg™ " at a power density of 900 W kg™ '."> The high
electrochemical performance can be attributed to the syner-
gistic interaction of Mn, Co, and Ni, coupled with the excellent
contact between the active materials and the current collector.
Lastly, perovskites can be combined with a conductor to form
a composite. Even though perovskites have good electrical
conductivity, most cannot match conductor conductivity.
Combining perovskites with conductors can further enhance
electrochemical performance due to resistance affecting power
density and SpC.***

7. Applications of perovskite oxides
towards supercapacitors

Previous studies suggest that the defective structure of perov-
skite oxide and its enhanced oxygen ion mobility can facilitate
the conversion of B*' to a high valence state, thereby improving
electrochemical properties. However, limitations of PO, such as
their restricted surface area and high transport resistance of
aggregated nanoparticles, impede further enhancement of
electrochemical performance.**"**> Combining ABO; with other
materials, such as metal oxides, carbon materials, and noble
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metals, to form composites with enriched chemistry effectively
solves these challenges.

7.1 Perovskite oxide based electrode materials

7.1.1 Strontium-based perovskite oxides. Strontium-based
perovskite oxides have attracted considerable research atten-
tion as supercapacitor electrode materials due to their natural
abundance, excellent ionic and electronic conductivity, and
resistance to redox cycling. Table 1 compares the specific
capacitance of various strontium-based PO. SrFeO;, SrCoOs3,
and SrCoFeOj;, representing three distinct perovskites, were
synthesized using the sol-gel method, achieving a high density
of oxygen vacancies and exceptional capacitance. Co-doping
with a 1:1 ratio (Co/Fe) at the B site of SrFeO; decreased the
Csp when applied to supercapacitors. The synthesized electrode
demonstrated a Cg, of approximately 60.912 F g ' at a scan rate
of 10 mV s~ '. Additionally, nitrogen adsorption and desorption
measurements were conducted to gain a detailed under-
standing of the porosity characteristics of the synthesized
samples. SEM images revealed a rough and highly porous
structure that enhances the electrode's active surface area,
consistent with theoretical values.’*® George et al. synthesized
SrMnO; perovskite oxide nanofibers using a sol-gel electro-
spinning method followed by calcination at various tempera-
tures.’® The resulting electrode exhibited enhanced
electrochemical properties, including a higher specific capaci-
tance, excellent rate capability (446.8 F g~' at 0.5 A g 1),
improved cyclic stability (87% at 5000 cycles), and extended
cycle life. The device fabricated with these nanofibers demon-
strated a specific energy of 37.3 W h kg™ at a specific power of
400 W kg ™', proving its effectiveness as an electrode material
for high-rate charge-discharge performance in supercapacitors.
Lei et al. synthesized SrCoTiO; using a solid-state reaction
method. However, it exhibited the major drawback of poor
electrochemical activity as an electrode material with Cg, of
114.4 F g~ '.* Using the solid-state reaction method, Lei et al.
synthesized SrBNbO; (where B = Mn, Co). The subsequent
electrochemical performance of an asymmetric supercapacitor
demonstrated a higher Cg, of about 894 F g at 1 A g~ ! with
a capacitance retention of 88.88% after 10 000 cycles.'*

7.1.2 Lanthanum-based perovskite oxides. Lanthanum-
based perovskite oxides have gained significant attention in
supercapacitors due to their high thermal stability, ease of
synthesis, oxygen storage capacity, low cost, and excellent
electrical conductivity. LaMnO; is the first lanthanum-based

Table 1 Comparison of specific capacitance of various strontium
based perovskite oxides

Specific capacitance

Electrode material ~Synthesis method (F g '/mF em™) Ref.
Sr,CoMo0Og_s Sol-gel method 747 105
SrCog g75Nbg 1,503  Solid state reaction 894 133
SrCoy oNby 105_5 Solid state reaction 774 133
Ni-SrTiO; Ball milling method 142 134
Sr,CoSbOg Solid-state method 228 135

© 2025 The Author(s). Published by the Royal Society of Chemistry
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perovskite oxide to be employed in SCs. The lattice, which is
deficient in cations and the presence of manganese in two
oxidation states (Mn**/Mn*"), leads to a stable and consistent
oxygen excess in LaMnO;."*” Table 2 compares the specific
capacitance of various lanthanum-based perovskite oxides.
Augustyn et al. reported a specific capacitance of 609.8 F g~ * for
LaMnO;."”* LaNiO; exhibits a charge storage mechanism
similar to that of LaMnO; but demonstrates lower electrical
resistivity (approximately 10~* Ohm). Shao et al. employed
a template-free solvothermal method to synthesize a hollow
spherical structure of LaNiO;, leading to a high specific capac-
itance (422 F g " at 1 A ¢ ') and excellent cycle stability (83.3%
capacitance retention after 5000 cycles).””> Compared with
LaNiO;, LaFeOj; is more stable because Fe*' has a stable elec-
tronic configuration 3d°. Zhang et al. used mesoporous LaFeOj
nanoparticles as an electrode material for SCs (Fig. 14a). The
fabricated symmetric SC cell (SSC) exhibits a high energy
density of 34 W h kg™' and a power density of 900 W kg™,
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retaining 92.2% capacitance after 5000 cycles (Fig. 14b and c).**®
Harikrishnan et al used coprecipitation to create LaCoO;
nanoparticles. LaCoO; has good electrochemical redox proper-
ties due to its multiple oxidation states (+2, +3 and +4), with
a Csp of 299.64 F g at 10 A g~ '.* Hussain et al. synthesized
a hierarchical mesoporous nanostructure of LaCrOj; via the sol-
gel method. The electrode exhibits a high Cs, of 1268 F g~ '.**

7.1.3 Cerium-based perovskite oxides. Cerium-based POs
are promising because of their high dielectric constant, low
cost, high bandgap, and variable valence states (Ce*" and
Ce*).”° For instance, Nsar et al. employed electrospinning
followed by calcination processes to synthesize CeMnO; nano-
fibers (NFs)."” It is widely accepted that A-site cations of PO do
not contribute to the electronic structure near the Fermi level.
However, due to cerium's high redox capability between Ce**
and Ce™, the faradaic redox reaction (Ce**/Ce*" and Mn**/Mn*")
occurred on the CeMnO; electrode surface. CeMnOj; nanofibers
exhibits Cs, of 159.59 F g ' at 1 A g~ ' current density. Cerium-

Table 2 Comparison of specific capacitance for various lanthanum-based perovskite oxides

Electrode material Synthesis method Specific capacitance (F g '/mAh g ) Electrolyte Ref.
LaFeO; Sol-gel 241 1 M Na,SO, 138
La,NiFeOg Solvothermal 768 2 M KOH 139
Lag ,Sro sMnO, 5 Co-precipitation 492 1 M KOH 140
LaMnO; Co-precipitation 520 0.5 M Na,SO, 141
Lagy gNay ,Fey sMng ,05 Modified Pechini 56 1M H,SO, 141
Lag gSro.15MnO;@NiC0,0, Hydrothermal 1341 6 M KOH 142
LaMnO;/Mn;0, One pot 135 1 M Na,SO, 143
La;_,Sr,MnO; Sol-gel 102 1 M KOH 144
La,Sr;_,NiO;_; Electrospinning 719 1 M Na,SO, 145
LaNi; ,Fe,O;_; Modified Pechini 894 1M KOH 146
LaNiO3 Electrospinning 116 6 M KOH 147
La,ZnMnOg Hydrothermal 718 2 M KOH 148
La,CuMnOg Hydrothermal 205 2 M KOH 149
La,FeCoOg Sol-gel 831 2 M KOH 150
La,CoMnOgq Impregnation 376 1 M Na,SO, 151
Lag 5CagsMnO; Sol-gel 170 1 M KOH 152
LaNiO; Solvothermal 422 6 M KOH 153
Lag ;Srg 3FeO; Electrospinning 523 1 M Na,SO, 154
La,CoNiOg Solvothermal 635 2 M KOH 155
LaCrO; Sol-gel 1268 1 M LiCl 156
LaFe, 5Cry.50; Sol-gel 16 6 M KOH 157
Lay.g55r.15Mng oNij 103 Electrospinning 113 1M KOH 158
Lay 7Srg.3C001Mng 6055 Electrospinning 485 1 M KOH 159
Ag/La, ;Sr03C00;_5 Ball milling 517 1 M KOH 160
LaNiO; Sol-gel 139 6 M KOH 161
Lag 7Sr9.3MnO; Ball milling 393 1 M Na,SO, 162
La; _xAgxMnO. s Co-precipitation 152 6 M KOH 163
LaMnO;@NiCo0,0, Hydrothermal 811 6 M KOH 159
LaCoO; Co-precipitation 299 3 M KOH 164
Lay gNdy ,Feg sMn, ,03 Hydrothermal 158 3 M KOH 165
LaCoO; Plasma etching 706 6 M KOH 165
Lay.7Srp.3C00;_;@MnO, Electrospinning 570 6 M KOH 165
LaSr, gsMng 1505 Sol-gel 198 1 M KOH 166
La,CoNiOg Electrospinning 335 6 M KOH 167
Lag ¢St 4NiO;_5 Sol-gel 115 6 M KOH 168
La,NiOy, Citrate method 657 3 M KOH 169
La;_xKxFeO;_sS Ceramic synthesis 662 2 M KOH 170
LaFeO3 Electrospinning 183 6 M KOH 169
LaCoO; Electrospinning 95 6 M KOH 169

© 2025 The Author(s). Published by the Royal Society of Chemistry
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based POs (CeCo0j3, CeNiO3, and CeCuOj3) have recently shown
Csp of 128, 189, and 117 F g~ !, respectively.'”* Ahangari et al.
compared the electrochemical properties of CeMO3(M = CO, Ni,
Cu), among which CeNiO; nanoplates shows high Cg;, of 189 F
g~ " with good cyclic stability.””> Harikrishnan et al. synthesized
by coprecipitation method, and a symmetric supercapacitor was
fabricated with the prepared material showing energy and
power density 27 W h kg™* and 826 W kg ' with better cyclic
stability of 92% at 5000 cycles."”®

7.1.4 Calcium-based perovskite oxides. CaTiO;, a perov-
skite oxide material, is attracting interest for future applications
in supercapacitors. However, pure CaTiO; is not commonly
used directly as an electrode material in supercapacitors due to
its comparatively low electrical conductivity. Researchers
focused on doping or mixing its electrochemical performance
with other substances to enhance its electrochemical perfor-
mance.”””"”® Lang et al. investigated CaTiO; combined with
Activated Carbon (AC) to enhance the specific surface area and
electrochemical performance of supercapacitors. The CaTiO;3-
AC composite showed a Cs, of 270 F g™ ', significantly higher
than pure CaTiO;. The activated carbon contributed to a higher
surface area and better ion adsorption, improving the energy
storage capacity. The composite also exhibited good long-term
cycling stability.'7®%°
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7.2 Perovskite oxides based composite electrode materials

7.2.1 Perovskite oxides with noble metals. The movement
of electrons produced by the oxidation or reduction of PCs to
the current collectors can be facilitated by noble metals, such as
platinum (Pt) and gold (Au), which have good electric conduc-
tivity.'®* However, because noble metals are expensive and
scarce, combining them with other affordable and sustainable
materials is one of the most appealing ways to reduce their
use.'® ' One advantage of PO is that they are naturally occur-
ring and reasonably priced. Unfortunately, PO still lack suffi-
cient electrical conductivity. Consequently, the synergistic
effects of combining PO and noble metals are anticipated to
enhance their SC performance. Ag is the noble metal with the
highest conductivity."® Moreover, it offers the benefit of an
acceptable activity and a reasonable cost. Cao et al. synthesized
an Ag nanoparticle decorated Lag g5sSro.1sMnO; and employed it
as an electrode for SC. It can create electron transfer channels
because silver has a far higher electrical conductivity than
carbon. The redox reaction between Ag and Ag,O in an alkaline
electrolyte solution may also slightly influence pseudocapaci-
tance. The Ag@LSM15 composite thus produced a long cycle
life retaining 100% capacitance retention after 1000 cycles and
a high Cgp of 186 F g~' at 1 A g~ '.'%1% Another study used
a porous perovskite La, Sty 3C003_s (LSC) substrate (Ag/LSC) to

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra01950h

Open Access Article. Published on 21 May 2025. Downloaded on 1/22/2026 3:36:24 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

grow Ag nanoparticles directly. The performance was examined
with varying mass loadings of Ag of about 10.61, 30.60, and
51.31 mg. When the Ag content was 30 mg (30 Ag/LSC) or less,
the surface became rough, and the porous structure of LSC was
maintained. This advantageous structure may make more active
surface sites and quicker mass transport possible. In addition,
the Ag/LSC electrode with 30 mg Ag loading showed the best
performance of 14.8 F cm™> due to lower R of 1.28 Q cm® and
R, of 0.61 Q cm?>.17®

7.2.2 Perovskite oxides with metal oxides. Due to their
numerous oxidation states, metal oxides have drawn increasing
attention because they can store energy up to an order of
magnitude more generously than carbon-based EDLCs.
However, during charge/discharge processes, most metal oxides
have poor durability, low conductivity, and poor rate capability.
On the other hand, the stable structure of PO allows for
improved surface oxygen exchange kinetics and significantly
higher oxygen ion/electron conductivity.”®® Since being inex-
pensive and having the potential to achieve high Cgp/capacity
values, exhibiting exceptional stability, perovskite oxide and
metal oxide composites are attractive alternatives. Among the
metal oxides, MnO, is unique because of its natural abundance,
low cost, and high theoretical Cg, of roughly 1370 F g~ '. As an
electrode for SCs, Jingbo et al. used a hydrothermal method to
create a ((Lag.755r0.25)0.0sMN0O3_s(LSM)/MnO,) composite. The
resulting electrode exhibits a higher Cs, of about 437.2 F g~ " at
2 mV s 1186 Although CeO, has distinct chemical characteris-
tics, it has a lower theoretical capacitance than MnO,. It is,
therefore, readily oxidized and reduced throughout the
oxidation-reduction process. LaMnO; mixed CeO, (CeO,/
LaMnO;) nanocomposites with a greater Cs, of about 262 F g~*
at 1A g ' in 1 M Na,SO, solution were reported by Nagamuthu
et al. The CeO,/LaMnO; nanocomposite worked better with
ASC-negative electrodes. In particular, an ASC device was con-
structed with AC as the positive electrode and CeO,/LaMnO;
nanocomposites as the negative electrode. This resulted in an
energy density of 17.2 W h kg™ at a power density of 1015 W
kg~ 118718 The relationship between the potential window (V)
and energy density (E) is well known. Therefore, expanding the
potential window is an additional method of raising the energy
density. Stoller et al. synthesized LaygSry1sMnO;@NiC0,0,
(LSM15@NC) core-shell nanoflower structure grown directly on
Ni foam. LSM15@NC displayed a broad window and the coex-
istence of PC and EDLC behaviour. Moreover, the ASC produced
an energy density of 63.5 W h kg™ at a power density of 900 W
kg~" when the AC was used as the negative electrode and the
LSM15@NC composite as the positive electrode.'®

7.2.3 Perovskite oxides with carbonaceous materials.
Carbonaceous materials with a large specific surface area, good
electronic conductivity, and high chemical stability, such as
graphene, reduced graphene oxide, graphene, and AC, have
been used extensively in SC. The low intrinsic conductivity of
perovskite oxide limits their usage in SC. An efficient method to
address this shortcoming is, incorporating carbonaceous
materials to create PO/carbon composites. To improve SC
performance, graphene is typically added to perovskite oxides
because of its superior electrical conductivity of 6000 S cm ™"

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and extra-large theoretical specific surface area of 2630 m?
g .18 Agolomeration of perovskite oxides can be effectively
inhibited by graphene. It can offer a fast channel for the
transport of electrons in the meantime. The loading of perov-
skite oxide nanoparticles increases the distance between gra-
phene sheets; they can also preserve the structural integrity of
monolayer graphene. Immobilized BiFeO; (BFO) nanowires on
nanometer-thin RGO show superior charge transfer resistance
and Cs, of about 368.28 F g~ compared to BFO and RGO. The
electrolyte also significantly affects BFO-RGO performance,
which is noteworthy.'*® To examine the capacitive behaviour of
graphene-perovskite oxide compound materials in aqueous
electrolytes with varying basicity or acidity, Jingbo et al.*®*® tested
reduced graphene performance sheets decorated SrRuO;
(SRGO) in three different electrolytes: 1.0 M KOH, 1.0 M NaNO3,
and 1.0 M H3PO,. The SRGO showed the highest capacitance of
160 F ¢~ in 1.0 M KOH. Adding carbon improves the electro-
chemical performance compared to pure PO. Pseudocapaci-
tance is caused by the redox reaction of oxygenated groups on
the surface of carbon nanostructures. Accordingly, adding
heteroatoms or surface functional groups to the surface of
carbon-based materials is a useful method of raising the
capacitance of the composite electrode. Cheng et al. introduced
a heteroatom to reduce graphene oxide (rGO) by substituting
the hydroxyl groups with the nitrogen atoms. A three-
dimensional network (LMO/N-rGO) can then be created by
directly integrating the as-prepared nitrogen-doped graphene
(N-rGO) sheets with LaMnO; (LMO) via electrostatic interac-
tions. The resulting nanocomposites showed the best stability
of 79% capacitance retention after 2000 cycles at 10 A g~ " and
a Csp of 687 F g ' at 5 mV s ' compared to pristine graphene
and LMO.”™ In a different study, Shafi et al. used in situ
chemical polymerization to create a composite material
comprising LaMnOj3;, RGO, and polyaniline (PANI). Due to the
excellent structural stability and electrical conductivity offered
by the RGO support and PANI coating, the synthesized ternary
composite demonstrated a Cs, of 802 F g~ at 1 A g "1

7.2.4 Perovskite oxides with conducting polymers. Riaz
et al reported the synthesis of KCuCls-polyaniline (PANI)
composites. KCuCls-polyaniline (PANI) composites have excel-
lent electrochemical properties, with Cgj, values as high as 1757 F
g '. This high-performance is due to the positive relationship of
KCuCl; conductivity and structural integrity with PANI's pseu-
docapacitive activity. These composites are good options for
advanced supercapacitor applications due to their enhanced
mechanical durability, cyclic stability, and energy storage effi-
ciency." According to the study, this improved performance was
achieved by the conducting polymer's effective result with
CaTiO;'s strong dielectric properties, which improved cycle
stability and charge storage. At a current density of 6.86 A g™, the
composite showed a Cs,, of 984.21 F g~". The power density was
3.2 kW kg', and the energy density was 58.14 W h kg ".**
LaNiO; nanosheets and polyazulene are promising materials for
supercapacitors due to their electrochemical properties. LaNiO3,
a perovskite oxide, exhibits high capacitance and fast charge/
discharge cycles when synthesized into nanosheet form, as
shown in Fig. 15. The nanosheet morphology increases surface
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Fig. 15 Schematic representation of the preparation of PAz@LaNiOz nanosheets.***

area, improving electrochemical performance. Polyazulene, an
organic conductive polymer, offers good conductivity and redox
activity, enhancing charge storage. It undergoes reversible elec-
trochemical reactions, making it suitable for supercapacitors.
Combining LaNiO; nanoparticle nanosheets with polyazulene in
composite electrodes exhibits improved capacitance and cycling
stability. It exhibited a Cs;, of 464 F g~ ' at a current density of
2 A g~ ', Thus, the material serves as a promising candidate for
advanced energy storage devices.'*

This figure has been reproduced from ref. 195 with permis-
sion from Wiley, copyright 2025.

8. Conclusion and future outlooks

Perovskite oxides (POs) have recently gained widespread atten-
tion as electrode materials for supercapacitors (SCs) due to their
unique structure, compositional flexibility, and inherent oxygen
vacancy. Notably, PO, as an active component in intercalation-
type capacitors, possess high concentrations of oxygen vacan-
cies and do not require significant surface area for energy
storage. This article primarily compiles the recent advance-
ments in PO (i.e., single, double, and RP perovskite oxides) for
SC applications. It also delves into the formation of composites
and the increase in oxygen vacancy concentration to improve
the electrochemical properties of PO. Despite the progress,
several aspects still need to be addressed when designing future
perovskite oxide electrode materials.

(1) Hydrothermal and solvothermal reactions are the
primary techniques for synthesizing perovskite materials;
however, their high energy requirements and costly reactants
restrict large-scale synthesis. Perovskite materials with high
purity and good uniformity can be synthesized using the most

16782 | RSC Adv, 2025, 15, 16766-16791

common synthesis techniques, such as sol-gel and solid-state
methods, which use minimal energy. Therefore, it is essential
to continue developing highly effective, environmentally
friendly, and energy-efficient synthesis techniques.

(2) Perovskite materials are primarily determined by their
oxygen vacancies, which can be created by doping, non-
stoichiometric substitution, and other processes. Oxygen vacan-
cies cause holes and redox pairs to form, which improves
conductivity by promoting charge transfer. Moreover, more
oxygen vacancies may promote pseudocapacitive qualities. Both
A-site and B-site doping are practical methods for creating oxygen
vacancies in perovskites, although B-site doping has been thor-
oughly and successfully investigated. In addition, excessive
doping causes the crystal surface to segregate, and proper doping
promotes the stability of the crystal lattice. Molecular and ionic
doping can also enhance the electrochemical characteristics of
perovskites. Future research must examine how co-doping A and
B sites can create anionic vacancies as charge storage locations
and achieve pseudo-capacitance in SCs.

(3) The morphology of the perovskite itself significantly
influences the electrochemical properties of the composite.
High charge mobility and quick electron transfer are made
possible by the controlled scale, increased surface area, porous
structure, and ion channels of nanostructures (flowers, nano-
arrays, and nanorods). Carbon nanotubes (CNTs) and Activated
Carbon (AC) with a large surface area were coupled with chal-
cocite materials to use perovskite as an electrode material for
SCs with high energy and power densities and stability. The
polymerization of polyazulene (PAz) on the surface of perovskite
nanosheets enhances electron transfer by acting as a linker.
This combination of organic and inorganic components shows
both pseudo-capacitance and double-layer capacitance.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(4) The 3D bulk perovskite exhibits higher electronic conduc-
tivity than its 2D and 1D counterparts, primarily due to stronger
electron-ion coupling and better orbital overlap. However, in terms
of chemical and structural stability especially under environmental
stressors like moisture or heat. The lower-dimensional 2D and 1D
perovskites are generally more robust, owing to their layered or
confined structures and often more hydrophobic organic compo-
nents. Low-dimensional hybridized perovskites show promise as
materials for charge storage while combining 2D and 3D materials
preserves the former's stability and the latter's high efficiency.

(5) The electrochemical characteristics of the electrode
material are also affected by the acidity or alkalinity of the
electrolyte solution. In recent studies, perovskite bodies adsorb
OH ions in the solution, releasing H' ions and oxidizing them
to O,, which, in turn, oxidizes other ions. Consequently, the
alkaline electrolyte solution promotes the formation of oxygen
vacancies and redox reactions. This process contributes to the
high electrical conductivity observed in these materials.

(6) The electronic conductivity of RP perovskite oxides is
expected to improve as their n value increases. However, most
reports focus on RP perovskite oxides with n = 1. Consequently,
RP perovskite oxides with higher » values are anticipated to be
utilized as advanced SC electrode materials. Therefore, further
efforts are needed to overcome the challenges presented by
current research and to exploit novel perovskite materials for
more promising applications.
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