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Multicomponent catalyst-free regioselective
synthesis and binding studies of 3-aroyl-2-
methylimidazo[1,2-alpyrimidines with BSA using
biophysical and computational techniquesy
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A facile and environmentally benign protocol for regioselective synthesis of diversely substituted imidazo
[1,2-alpyrimidines 5a—h has been described via multicomponent reaction of unsymmetrical B-diketones
1, N-bromosuccinimide 2 and 2-aminopyrimidine 4 in DCM. The reaction proceeds through in situ
formation of a-bromo-B-diketones 3 and their ensuing condensation with 2-aminopyrimidine without
the need of any organic or inorganic catalyst. The structure of the regioisomeric product was
characterized by 'H, 3C NMR, heteronuclear 2D NMR and HRMS studies. The present protocol offers
several advantages such as avoidance of metal-based and toxic catalysts, broad substrate scope with
respect to substitutions on B-diketones, operational simplicity, easy work-up and high Yyields.
Computational molecular docking studies were carried out to examine the interaction of imidazol1,2-al
pyrimidines with bovine serum albumin (BSA). Moreover, different spectroscopic approaches viz. UV-
visible, steady-state fluorescence and competitive displacement assays were carried out to investigate
the binding mechanisms of imidazol[1,2-alpyrimidines (5c, 5e and 5h) with BSA. The results thus obtained
revealed that imidazoll,2-alpyrimidines showed moderate binding with BSA through a static quenching
mechanism and compound 5e had more affinity to bind in site | of BSA.

1. Introduction

Nitrogen containing heterocyclic compounds are constituents
of many biologically important molecules, including several
endogenous metabolites, natural products and pharmaceuti-
cals."” Imidazopyrimidines containing a bridgehead nitrogen
atom are an important class of fused heterocycles due to their
structural resemblance to purine bases present in DNA and
RNA.? In particular, imidazo[1,2-a]pyrimidines are considered
as important scaffolds in medicinal and pharmaceutical
science, because of their broad spectrum of biological activities
such as cytotoxic,® antimicrobial,® anti-inflammatory,® anti-
viral,” anti-tubercular,® antileishmanial, and antimalarial
activity.” Imidazo[1,2-a]pyrimidine derivatives also acted as
acetylcholinesterase inhibitors' for Alzheimer's disease
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treatment, a-glucosidase inhibitors to treat diabetes mellitus,*?
dual inhibitors of both ACE2 and spike protein to prevent SARS-
CoV-2 infection,” GABA receptor ligands for treatment of
anxiety disorders," and p38 MAP kinase inhibitors for treat-
ment of inflammatory conditions such as rheumatoid arthritis
and Crohn's disease.” Additionally, a photophysical study of
imidazo[1,2-a]pyrimidines demonstrated that these derivatives
serve as photosensitizers in intracellular environments that
generate singlet oxygen upon irradiation for killing cancer
cells,’ and act as a fluorescent chemo sensor to detect zinc
ions,"” and an electrochemical study showed that imidazo[1,2-a]
pyrimidines are proven effective corrosion inhibitors for
copper.’® Moreover, many drugs containing imidazo[1,2-a]
pyrimidine scaffold as a core unit such as fasiplon, taniplon,
and divaplon are available in the market (Fig. 1).

Serum albumins, major constituent proteins of blood, are
a type of biological receptor that are intricate in transport and
distribution of endogenous and exogenous chemicals including
thyroid hormones, metals, fatty acids, steroids, and other
molecules throughout the bloodstream.* Serum albumins also
play a crucial role in maintaining the extracellular fluid by
influencing the plasma oncotic pressure.”” The drug-protein
interaction significantly influences pharmacokinetic properties
such as absorption, delivery, metabolism, and excretion
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Fig. 1 Representative molecules containing imidazol[1,2-alpyrimidine scaffold.

(ADME) and pharmacodynamics properties of drugs.>" In order
to achieve the desired therapeutic effect, drugs must bind to
serum albumin with optimum binding affinity. Therefore,
investigation of the molecular interactions between proteins
and small organic molecules and drugs is very crucial to design
and develop novel and more efficient drugs with improved
plasma solubility/stability.

Bovine serum albumin (BSA) is one of the most extensively
researched proteins as primary molecular targets due to its
capability to reversibly bind to a wide variety of drugs.>* BSA is
more widely used as a crucial model protein to study the
interaction of small molecules with serum albumins due to its
cost effectiveness, wide availability, good stability and 76%
structural homology with Human serum albumin (HSA).>* BSA's
primary structure contains 583 amino acids with 17 disulfide
bonds and a free cysteine residue.” It has three homologous a-
helical domains (I-1II), each containing two subdomains A and
B.>* BSA exhibits intrinsic fluorescence specifically due to
Trp134 and Trp213 residues which are located on the surface of

O O
(] — (7 T
A =
Claisen 1
condensation

subdomain IB and in the hydrophobic cavity of subdomain IIA,
respectively®” and the quenching of this fluorescence by small
molecules is used in BSA-ligand interaction studies.

In view of their biological potential, to date different
synthetic strategies have been developed for the construction of
functionalized imidazo[1,2-a]pyrimidine derivatives.®® The
traditional and most commonly used method for the synthesis
of imidazo[1,2-a]pyrimidines is Hantzsch-type synthesis which
involves the cyclo-condensation of a-functionalized carbonyl
compounds with 2-aminopyrimidine in the presence of various
catalysts such as neutral Al,03,* KI, K,CO3,* PTSA,* NaHCO3,*
etc. For o-bromination of 1,3-diketones, N-bromosuccinimide
(NBS) was utilized over other reagents e.g. molecular bromine,
sodium hypobromite, tetraalkylammonium tribromide, CuBr,
with Koser's reagent, HBr-H,0,, due to its easily accessible,
easy to handle, inexpensive, and selective brominating prop-
erty.®® In recent years, three component reactions of aldehydes,
2-aminopyrimidine and nitriles/isonitriles/alkyne or their
derivatives have been reported to produce imidazo[1,2-a]

Scheme 1 Retrosynthetic approach for the construction of imidazol[l1,2-alpyrimidine.
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pyrimidines."”*® Other method involves the reaction between 2-
aminopyrimidine, ketone and [hydroxy(tosyloxy)iodo]benzene
(HTIB) in one pot.** More recently, Chanda et al.** described
water and isopropanol mediated catalyst-free microwave assis-
ted protocol for the synthesis of imidazo[1,2-a]pyrimidines
which shows progress towards green synthetic methods.
However, most of these methods often suffer from a drawback
of harsh reaction conditions calling for high temperature,
hazardous high boiling organic solvents, long reaction times,
decomposition of substrates during overheating and lower
yields of the products. The necessity of thermal activation for
the imidazo[1,2-a]pyrimidines ring closure is one of the main
and most disappointing limitations on the way to medicinal
utilization of this heterocyclic motif. Therefore, the develop-
ment of energy and environment-efficient greener synthetic
methodologies for the construction of these versatile bicyclic
heterocycles is always in demand.

Synthetic strategy for functionalized imidazo[1,2-a]pyrimi-
dine through a classical Hanztsch reaction between the o-
bromo-1,3-diketones and 2-aminopyrimidine is shown in
Scheme 1. The reaction of unsymmetrical diketones 1 with 2-
aminopyrimidine 4 in the presence of NBS may lead to the
formation of two possible regioisomers: 3-aroyl-2-methyl-imi-
dazo[1,2-a]pyrimidines 5 and 3-acetyl-2-aryl-imidazo[1,2-a]
pyrimidines 6, by different permutations, as depicted in Scheme
1. Differently substituted acetophenones on reaction with ethyl
acetate in the presence of sodium ethoxide were converted into
corresponding unsymmetrical 1,3-diketones through Claisen
condensation following the literature protocol.

Recently, multicomponent reactions (MCRs) have gained
considerable interest as a sustainable approach offering several
advantages such as efficiency, selectivity, high atom economy,
reduced waste generation and short reaction time.*® Currently
our research group is exploring regioselective reaction of
substituted unsymmetrical a-bromo-1,3-diketones with various
binucleophiles,*” therefore, it was planned to examine study of
regioselectivity pattern of the reaction between o-bromo-1,3-
diketones and 2-aminopyrimidine to construct the functional-
ized imidazo[1,2-a]pyrimidine scaffold using MCR approach. To
the best of our knowledge, the reaction between 2-amino-
pyrimidine and unsymmetrical a-bromo-1,3-diketones has not
been proposed yet. Intrigued by these findings and in contin-
uation of our ongoing efforts towards the synthesis of fused
nitrogen-bridged heterocyclic compounds using green synthetic
protocols,*** herein we describe a highly efficient, catalyst-free
regioselective approach for the synthesis of functionalized
imidazo[1,2-a]pyrimidine derivatives involving in situ bromi-
nation of unsymmetrical 1,3-diketones by NBS and condensa-
tion with 2-aminopyrimidine under mild reaction condition
and characterization of regioisomer on the basis of hetero-
nuclear 2D NMR [(*H-"C) heteronuclear multiple bond corre-
lation, HMBC, (‘H-'°C) heteronuclear multiple quantum
coherence, HSQC, (*H-">N) HMBC] spectroscopic studies. The
molecular docking studies have been executed to determine
interaction mode of imidazo[1,2-a]pyrimidine derivatives with
BSA. Binding studies of representative compounds with BSA

© 2025 The Author(s). Published by the Royal Society of Chemistry
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have been investigated using UV-visible absorption spectros-
copy and fluorescence emission spectroscopy.

2. Result and discussion
2.1 Chemistry

In order to synthesize imidazo[1,2-a]pyrimidines, a model
reaction was carried out by stirring an equimolar amount of 1-
phenylbutane-1,3-dione 1 with NBS 2 to form 2-bromo-1-
phenylbutane-1,3-dione 3 in situ and then followed by the
subsequent addition of 2-aminopyrimidine 4 in acetone at
room temperature. Thin layer chromatography (TLC) examina-
tion of the reaction mixture denoted that the reaction was
complete within 24 h, resulting in the formation of a single
regioisomer out of two possible regioisomers with only 25%
yield (entry 1, Table 1).

Further to optimize the reaction condition, we explored the
model reaction in different polar protic (MeOH, EtOH, AcOH);
polar aprotic (DCM, chloroform, acetone, MeCN) and nonpolar
aprotic (toluene) solvents at different temperatures (room
temperature up to reflux) to determine the most appropriate
reaction conditions (entry 2-8, Table 1). Among the solvents
screened, DCM improved the yield significantly to 75% at room
temperature (entry 5, Table 1). To further improve the yield,
reaction was also carried out in DCM by the gradual increase of
temperature from r.t. to refluxing temperature. However, there
was no further improvisation of the product yield. In addition,
the reaction was performed at r.t. under solvent-free conditions
which furnished the desired product in trace amount (entry 9,
Table 1). However, on heating under solvent-free conditions,
the desired product was obtained but only with 60% yield (entry
10, Table 1).

Having optimized conditions identified for sequential
synthesis, we explored further one-pot multicomponent
domino process by stirring an equimolar mixture of 2-amino-
pyrimidine 4, 1-phenylbutane-1,3-dione 1 and NBS 2 in DCM at
r.t. The reaction proceeded smoothly to yield the single product

Table 1 Screening of solvents and optimization of reaction temper-
ature for synthesis of imidazol[l,2-alpyrimidine from 2-bromo-1-
phenylbutane-1,3-dione 3 and 2-aminopyrimidine 4

Entry Solvent® Temperature® Time Yield” (%)
1 Acetone r.t. 24 h 25

2 MeOH Reflux 6 h 45

3 EtOH Reflux 6 h 52

4 AcOH Reflux 4h 48

5 DCM r.t. 6 h 45 min 75

6 DCM Reflux 2.5h 65

7 MeCN Reflux 6 h 55

8 Toluene Reflux 5h NR®
9 Solvent-free r.t. 3h Trace
10 Solvent-free 90 °C 1.5h 60

11 DCM* r.t. 4h 80

¢ Reaction conditions: unsymmetrical B-diketone (1a, 1 mmol), NBS (2,
1 mmol), 2-aminopyrimidine (4, 1 mmol) and an appropriate solvent
(10.0 mL). ? Tsolated yield. © NR, no reaction. ¢ Domino reaction.
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Scheme 2 Sequential and multicomponent regioselective synthesis of 3-aroylimidazo[1,2-a]pyrimidines.

in 4 h as indicated by TLC out of two possible regioisomers. It is
noteworthy to mention that this domino approach increased
the yield (entry 11 vs. 5) and the product was isolated in 80%
yield in short reaction time (4 h vs. 6 h 45, entry 11 vs. 5) than the
sequential synthesis protocol. Hence, this one-pot MCRs
approach was chosen as the model method (Scheme 2).

To get an insight into the extensibility and efficiency of the
developed protocol, differently substituted unsymmetrical -
diketones containing electron donating and electron with-
drawing substituents were reacted with 2-aminopyrimidine
under optimized conditions. All the reaction combinations
underwent successful condensation and yielded the corre-
sponding products in high yields with high regioselectivity.
Generally, p-diketones bearing electron-donating groups
provided better yields of products than B-diketones bearing

Table 2 Substrate scope for unsymmetrical B-diketones®?

electron-withdrawing groups. Differently synthesized imidazo
[1,2-a]pyrimidines are outlined in Table 2.

The successful conversion of reactants into products was
confirmed through spectroscopic ("H-NMR, "*C-NMR, IR) data
analysis. The IR spectrum of the attained product 5a displayed
a sharp absorption band at 1648 cm ™' corresponding to
carbonyl group stretch indicating the product formation. The
"H NMR spectrum of compound 5a displayed a singlet of three
proton intensity at 6 2.21 ppm corresponding to the methyl
group, three signals each as doublet of doublet of one proton
intensity at 7.62, 9.02 and 9.65 ppm attributable to H-6, H-5, H-7
protons of pyrimidine nucleus, respectively, and three signals
for two, one and two proton intensity at 7.62, 7.73, 7.80 ppm
corresponding to phenyl protons. *C NMR spectrum of
compound 5a displayed signals at ¢ 15.44 and 186.20 ppm

0 0 F
N %
\N)\\N \N N
58 (80%) 5h (79%)
Q OMe 0
0 O™
NS ~ ~
N/LN S SN
Se (86%) 5 (82%)

(0] Cl O Br
7NN K NN
EN\)Q N \N)Q N
5¢ (77%) 5d (72%)
MeO,
o) O 7\
S
C- R
\N)QN \N N
5g (80%) 5h (79%)

“ Reaction conditions: B-diketones 1 (1.0 mmol), NBS 2 (1.0 mmol) and 2-aminopyrimidine 4 (1.0 mmol) were stirred in DCM at room temperature

for 4-5 h. ? Isolated yields.
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Fig. 2 H (in red), **C (in blue) and **N (in green) NMR chemical shift values and 2D NMR correlation illustration for compound 5a and 5c.

corresponding to methyl and carbonyl carbon, along with
required number of signals for aromatic carbons, thus vali-
dating the successful condensation of 2-aminopyrimidine

Table 3 Assignment and chemical shifts in compound 5a

with a-bromo-f-diketones to give the desired product 5a.
Additionally, the mass spectra of 5a exhibited a peak at m/z =
238.0890, representing the molecular ion, [M + H]", which

Chemical shifts (6 in ppm) 2s-HMQC correlation gs-HMBC correlation Assignments
186.20 - 7.80 (H2'/H6') co
156.73 9.02 (5H) 7.62 (H6) (o
9.65 (H7)
146.82 (C9)
147.60 — 2.21 (2-CH3) c2
146.82 — 9.02 (HS5) co
9.65 (H7)
138.81 — 7.62 (H3'/H5') c1
138.07 9.65 (7H) 7.62 (H6) c7
9.02 (H5)
146.82 (C9)
133.52 7.73 (H4) 7.62 (H3'/H5) c4
129.38 7.62 (H3'/H5') 138.81 (C1') c3'/cs’
129.27 7.80 (H2'/H6') 7.73 (H4') c2'/ce’
186.20 (CO)
119.67 — 2.21(2-CH,) c3
113.66 7.62 (6H) 9.65 (7H) ce
9.02 (5H)
15.44 2.21 (2-CH;) C2 (147.60) 2-CH,
C3 (119.67)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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aligns with the expected composition for the title compound
(C14H;,N;0).

In order to unambiguously assign the correct regioisomeric
structure to reaction product as 5 out of 5 and 6, multinuclear
2D NMR experiments [("H-'*C) HMBC, ("H-'*C) HSQC and
(*H-""N) HMBC] were carried out for compound 5a. The 2D
NMR correlation results and *H, *C and *°N chemical shifts for
compound 5a are shown in Fig. 2 and Table 3.

The (*H-"*C) HMBC spectrum of 5a displayed cross peak of
carbonyl carbon at 6 186.20 ppm with H2'/H6' (6 7.80) protons of
aryl ring confirming the presence of CO with aryl/heteroaryl
ring. Similarly ("H-"*C) HMBC spectrum showed cross peaks
of methyl protons (6 2.21 ppm) with C-2 (6 147.60 ppm) and C-3
(6 119.67 ppm) which indicated the presence of methyl
substituent at position-2 of imidazo[1,2-a]pyridine nucleus.
Further, ("H-">N) HMBC of compound 5a also showed a cross
peak of methyl protons (6 2.21) with N-1 (§ —215.9), thus con-
firming the presence of methyl substituent at position-2 of
imidazo[1,2-a]pyrimidinyl scaffold. Had the structure been 3-
acetyl-2-arylimidazo[1,2-a]pyrimidine 6a, then the correlation
between the methyl protons with N-1, C-3 and the cross peak of
carbonyl carbon with the H2'/H6' proton of the aryl part would
have been absent. Thus, the structure can certainly be assigned
as 1-phenyl-1-(2-methylimidazo[1,2-a]pyrimidin-3-yl)
methanone 5a. Similar correlation results of (*H-'*C) HMBC
and ("H-""N) HMBC were observed for the compound 5c¢ as
shown in Fig. 2.

The plausible mechanism for regioselective synthesis of
imidazo[1,2-a]pyrimidine is depicted in Scheme 3. In the first
step, ring nitrogen of 2-aminopyrimidine attacks nucleophili-
cally on a-bromo-1,3-diketones to give the intermediate that is
cyclized by nucleophilic addition of imine nitrogen to either of
the carbonyl carbons to form regioisomer 2-alkyl/arylimidazo

o /0
N
. | ) N Route 1

BB .

N NH,
3 4

N

N

O 0 | Route 2

B

<Br

+ N NH: (\l N and/or (\)N\ A\
SNTON 0 SN ON
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[1,2-a]pyrimidine 5 or 6 (Route 1). Due to more electrophilic
character and less steric hindrance on carbonyl carbon adjacent
to methyl, imine nitrogen underwent nucleophilic addition on
this carbonyl carbon (Path-a) followed by removal of water to
give 2-alkylimidazo[1,2-a]pyrimidine 5 as the final product.

2.2 Biological studies

2.2.1. Molecular docking studies. Molecular docking is
a computational tool that predicts the conformation and
orientation of organic molecules within the binding site of bio-
molecular targets (protein, nucleic acids, etc.) by studying the
root mean square deviances ranging from 1.5 to 2.0 A,
depending on the experimental poses. All novel synthesized
imidazo[1,2-a]pyrimidine derivatives 5a-h and phenylbutazone
(PBZ) and ibuprofen (IBP) as site-I and site-II markers, respec-
tively, were studied by in silico molecular docking studies in
order to better study the diverse non-covalent molecular inter-
action, calculation of binding free energy, and figuring out the
appropriate binding site between these compounds with BSA.

Outcomes from molecular docking simulation studies
showed that imidazo[1,2-a]pyrimidine derivatives 5a-h exhibi-
ted binding interactions with the BSA protein mainly through
hydrophobic interaction as well as through hydrogen bonding,
electrostatic and van der Waals interaction with binding free
energy in the range of —8.25 to —9.04 kcal mol™" (Table 4).
Among the synthesized imidazo[1,2-a]pyrimidine derivatives,
compound 5e with 4-methoxy substitution at phenyl ring binds
with the albumin protein (BSA, PDB ID: 4f5s) in AutoDock more
efficiently than other derivatives with a maximum docking score
of —9.04 kcal mol ' (Table 4). Results of docking analysis using
BIOVIA Discovery Studio Visualizer (DSV) have shown that 5e
interacts with BSA in the active pocket of chain A. Compound 5e

b -
o0, 0

o 5
N2 _NH
&Y N 0
N 1 Up

0]

Scheme 3 Plausible mechanism for regioselective synthesis of imidazol1,2-alpyrimidine.
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Table 4 Receptor-ligand interactions between binding pocket of BSA (PDB ID: 4f5s) and imidazo[1,2-alpyrimidines

Binding energy
Compounds  (kcal mol ) Interacted residues
5a —8.69 Tyr160%7% Tyr1377¢, Arg185°, Leu115°, 1le181%¢, Pro117%, Met184¢, Val188°, Lys136/, Glu140/, Ile147/, Leu122”
5b —8.51 Tyr160™7, Tyr137”¢, 1le181%, Met184%" Arg185%¢, Val188°, Pro117¢, Leu115°, Ile141’, Leu189
5¢ —8.50 Tyr137%%, Met184°", Arg185%°, Val188°, Tle181°, Leu115°, Pro117°, Lys114°%, Leu122/, Tyr160/, Tle141
5d —8.95 Tyr160>9, Met184%, Arg185%9¢ Tle181%°, Pro117¢, Leu115°, Tyr137, lle14¥/, vVal18¢/, Glu182/, Glu140/, Lys136"
5e —9.04 Tyr137%%, Lys136%, Pro117%, Tyr160”¢, Met184¢, Tle181%¢, Arg185¢, Val188°, Leu115°%, Phe133/
5f —8.76 Tyr160™7, Tyr137°, Met184¢, Tle181%°, Arg185%°5*, Pro117°, Glu14¢/, Lys136/, Leu115%/, Leu122?/, lle147/, Glu182"
5g —8.28 Tyr160%“%, Tyr137%, val188°, Met184°, Arg185°¢, 1le181%, Tle141, Pro117%°, Leu115%, Leu122/, Glu140’
5h —8.25 Tyr1607¢™! Arg185¢, 1le181%¢, Val188¢, Tyr1372", Met184", Leu115°, Pro117%*
PBZ —8.81 Tyr137%, Tyr160%, Pro117¢ Tle181¢, Val188°, Arg185°, Glu140/, Met184/, Leu178/, Glu182/, Leu115’, Tle141°
IBP —7.46 Leu115%°, Tle181%, Arg18598%, Lys114%/, Pro117°, Glu182/, Tyr160/, Tyr137#, Arg144’

“ r-donor hydrogen bonding. ” T-m T-shaped. ° -7 stacked. ¢ Alkyl. ¢ w-alkyl. /van der Waals. £ hydrogen bonding. * m-sulfur. ' 7t-sigma.

J carbon-hydrogen bond. * 7t—cation. ’ Amide 7-stacking.

interacts with various amino acids (Tyr137, Lys136, Prol17,
Tyr160, Met184, Ile181, Val188, Leu115, Phe133) through
hydrogen bonding and various hydrophobic interactions as
shown in the 2D and 3D plots (Fig. 3). Also, compound 5e
formed a conventional hydrogen bond with Arg185 via its
carbonyl group. The lowest binding free energy conformer of
compounds 5a-h, PBZ and IBP with BSA is shown in Fig. 4a-j.

Docking analysis showed that almost all the derivatives
exhibit strong interactions with the A chain of the protein with
few exceptions where derivatives 5a and 5b were found to
interact with the protein through chain B. Compound 5e was
selected for further in vitro analysis with BSA protein using
various spectroscopic techniques due to the best docking score.
To compare the results, two compounds bearing substituents of
different nature, 5c¢ with 4-chlorophenyl moiety and 5h with 2-
thienyl group, were chosen.

2.2.2. Binding studies of imidazo[1,2-a]pyrimidines with
BSA
2.2.2.1 UV-visible absorption spectroscopy studies. Recently

UV-visible spectroscopy has been a valuable and imperative tool
for studying the conformational changes of proteins during
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interactions between drugs and proteins due to its good sensi-
tivity, convenience of usage and versatility.** Furthermore, this
technique can also be used to investigate the type of quenching
(static/dynamic) between ligand and protein. When BSA inter-
acts with ligands, the biomolecule's electronic environment is
perturbed, which results in a wavelength shift or alteration in
the intensity in UV-visible spectra.** During static quenching,
a significant change in absorption spectra is observed on
subsequent addition of ligand, while the absorption spectra
remain unchanged in dynamic quenching.

Among the synthesized compounds, 5e having electron
donating 4-OMePh ring, 5h having 2-thienyl ring and 5c¢ having
electron withdrawing 4-ClPh ring were selected for UV-visible
spectral studies with BSA. Absorption spectra of BSA were
recorded in the absence and presence of 5e, 5h, and 5c at
a varying concentration ranging from 0 to 40, 0 to 28 and 0 to 36
uM, respectively, in the wavelength range of 250-350 nm at
room temperature. The UV-visible absorption spectra of BSA
display characteristic peaks at about 278 nm, which could result
from m-7* transition due to the presence of three aromatic
amino acids (tryptophan, tyrosine and phenylalanine) on the

roll7 ! Phel33

160
P

(@ and b) 2D and 3D poses of the interaction of ligand 5e with BSA protein.
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Fig. 4 (a—j) 2D diagram showing of the interaction of ligand 5a-h,

phenylbutazone (PBZ) and ibuprofen (IBP) with BSA protein.

protein chain surface.** In the presence of increasing concen-
tration of 5e, 5h and 5c, the intensity of the BSA spectra
continues to rise due to the changes in the environment
surrounding aromatic amino acids Trp, Phe and Tyr (Fig. 5a-c).
This perturbation in the absorption spectra of BSA indicates the
preferable interactions between BSA and compounds studied.
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The hyperchromic effect in the absorption spectra of BSA on
subsequent addition of 5e, 5h and 5c¢ indicated a possible static
interaction between BSA and imidazo[1,2-a]pyrimidine ligands.

The stoichiometric ratio in which BSA protein interacts with
a ligand was determined employing Job's method of continuous
variation. Ten different solutions were prepared with different
volumes of BSA and 5e fixed at a constant concentration of 15
uM. In Job's plot, the absorbance at Ama.c (278 nm) was
measured and absorbance versus mole fraction of ligand 5e was
plotted (Fig. 5d). The maxima in Job's plot was observed at 0.5
on the axis which indicates 1 : 1 binding stoichiometry between
BSA and ligand 5e.*

2.2.3. Fluorescence quenching studies. Fluorescence spec-
troscopy is a sensitive tool to explore the mode of interaction,
binding mechanism, binding constant and binding sites of
ligands with biomolecules. Binding studies of BSA and ligand
5e, 5h and 5c were also studied by steady state fluorescence.
Intrinsic fluorescence intensity was measured using a constant
concentration of BSA (15 uM) and varying concentration of
compounds 5e, 5h and 5c¢ (ranging from 0 to 56 uM) at room
temperature (25 °C). The emission spectra were recorded in the
spectral range of 300-430 nm by fixing the excitation wave-
length at 280 nm. A progressive decrease in the fluorescence
intensity of BSA spectra after the gradual addition of
compounds indicates that imidazolo[1,2-a]pyrimidines
quenched the fluorescence of BSA due to binding interactions.
Fig. 6 illustrates the fluorescence intensity of BSA at 343 nm,
exhibiting a slight red shift (for e.g. 10 nm in case of 5e) as
a result of quenching.

Further to understand the interaction between ligand 5e and
BSA, a fixed concentration of compound 5e (0.1 mM) was
titrated with increasing BSA concentration (0-40 M) at room
temperature (25 °C) and the effects on emission profiles was
monitored following excitation at 367 nm (Fig. 6d). Free ligand
(5e) exhibits maximum in absorption peak at 367 nm. There-
fore, the emission spectra were recorded in the spectral range of
387-700 nm by fixing the excitation wavelength at 367 nm.
Ligand 5e exhibited a strong fluorescence emission at 454 nm in
the absence of BSA. As expected, emission intensity increases at
481 nm as the concentration of BSA is increased (Fig. 6d). The
emission increases linearly as a function of BSA concentration
until about 28 uM, where it reaches a plateau that may be
attributed to a self-quenching phenomenon.** Red shift in
emission maxima was observed in the presence of BSA.

The static and dynamic quenching process can be identified
by calculating the quenching constant K, using the Stern-
Volmer equation® (eqn (1)).

% = 1 +KSV[Q} = 1 +KqTO[Q}' [1)

where F, denotes the fluorescence intensity of BSA, F refers to
the fluorescence intensity of BSA in the presence of ligands (5e,
5h and 5c¢) at the various concentrations (0-56 uM). [Q] is
a molar concentration of ligand. Ksy and K, are the Stern-
Volmer constant and quenching constant, respectively. 7,
denotes the average fluorescence lifetime of BSA. Quenching

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 UV-visible spectra of BSA-ligand complex system at increasing concentrations of ligand at constant BSA concentration of 15 uM in
physiological pH 7.2 of Tris—HCl buffer at room temperature. (a) BSA spectra at variable concentration of 5e (0—40 pM); (b) BSA spectra at variable
concentration of 5h (0—28 uM); (c) BSA spectra at variable concentration of 5¢ (0-36 uM). (d) Job's plot for BSA-5e complex system.

constant K, was calculated by employing average lifetime 7, =
10 % s.

In order to find the effectiveness of binding of compounds
with BSA, fluorescent data were utilized to compute quenching
constant (Kg) and Stern-Volmer constant (Ksy) by plotting
emission spectral data at A, (343 nm) at room temperature by
employing the Stern-Volmer equation (eqn (1)). Based on the
linear fit graph of fluorescence intensity (F,) of BSA in the
absence of ligand to the fluorescence intensity (¥) of BSA in the
presence of ligand at varying concentration was plotted against
increasing concentration of ligand [Q] (Fig. 7), quenching
constant (K;) and Stern-Volmer constant (Ky,) were calculated
and shown in Table 5. The values of quenching constant K, are
2.0 x 10", 4.9 x 10", and 5.0 x 10"> M~ " s~ for compounds
(5¢, 5e and 5h, respectively) which were found to be higher than

© 2025 The Author(s). Published by the Royal Society of Chemistry

maximum scatter collision quenching constant*® (2 x 10" M "
s~ 1), indicating the quenching of fluorophore (BSA) by our
compounds is initiated by the static mechanism with formation
complex at the ground state. According to K, values, the capa-
bility of the compounds to quench the emission intensity of BSA
follows the sequence 5h > 5e > 5c.

2.2.3.1 Identification of binding constant and number of
binding sites. Further, Modified Stern-Volmer equation*® (eqn
(2)) was used to calculate binding constant K;, and number of
binding sites (n).

Log(F, — F)

7 = nlog[Q] + log K. (2)

From the plot of log(F, — F)/F against log[Q] (Fig. 8), the
binding constant K, and the number of binding sites n have
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Fig. 7 (a) Stern—Volmer plot of BSA quenching by compounds 5e, 5h and 5c. (b) Double logarithmic plot employed to determine binding
parameters for compounds 5e, 5h and 5c.
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Table 5 Stern—Volmer constant, binding constant, quenching constant and number of binding sites for the interaction of BSA with compound

5c, 5e and 5h

Compd Ksy x 10* (M) Kqx 10 M s Log K K, (M) n AG° (keal mol ™)
5¢ 2.0 £ 0.03 2.0 £ 0.03 4.6 £0.1 4.7 x 10* 1.0 -6.27

5e 4.9 +0.07 4.9 +0.07 4.8 +0.1 6.4 x 10* 1.0 £ 0.02 —6.54

5h 5.0 £ 0.1 5.0 £ 0.1 6.6 + 0.1 4.2 x 10° 1.4 £ 0.03 —9.00

been obtained from the intercept and slope, respectively. The G = —-RTInK, (3)

results are mentioned in Table 5. The value of n unveils the
presence of a single binding site in BSA for imidazopyrimidines.
The desired value for binding constant is contemplated to be in
the range 10*-10° M~". The value of K, observed for 5c¢, 5e and
5h are in this range, suggesting that the ligand binding to BSA
protein is reversible and allows the transport and release of the
ligand to the target site. Results indicate that the compounds
bind to BSA in the order of 5h > 5e > 5c. Furthermore, the
negative value of standard Gibbs free energy change (AG°) from
eqn (3) suggests the spontaneity of the binding process that
resulted into BSA-imidazopyrimidine complex.
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2.2.4. Competitive displacement assay. Structural infor-
mation regarding different ligands' interactions with protein is
often investigated using site markers which are small molecules
with specific binding locations in the BSA structure. Ligands
can bind to BSA protein through two major sites of binding,
recognized as Sudlow's Site I and Sudlow's Site II which are
located in the hydrophobic cavities in subdomains ITA and IIIA,
respectively. Site-I is known to bind with markers like phenyl-
butazone, warfarin and dansylamide while site-II illustrates
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Fig. 8 Fluorescence spectra of (a) BSA-PBZ and (b) BSA-IBP complex in the absence and presence of increasing concentration of 5e (0-62 uM)
at 298 K. (c) Double logarithmic plot employed to determine binding constants for compound 5e the absence (DMSO) and presence of site

markers, ibuprofen and phenylbutazone.
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Table 6 Binding constants for the BSA-5e complex in the presence of
site markers at 298 K

System Log Ky K, (M
BSA + 5e 4.790 6.2 x 10*
BSA + PBZ + 5e 1.932 0.0085 x 10*
BSA + IBP + 5e 2.573 0.374 x 10*

binding towards markers like ibuprofen, diazepam, flufenamic
acid and dansylglycine.*” Thus, in order to identify the binding
site for ligand 5e on BSA, a displacement assay was performed
selecting phenylbutazone (PBZ) and ibuprofen (IBP) as the site
marker ligands.

In this experiment, the fluorescence spectra of BSA-PBZ and
BSA-IBP complexes (1:1) were recorded in the absence and
presence of the subsequent increasing amounts of ligand 5e (0-
52 uM) (Fig. 8a and b). A decrement in the emission intensity
was observed by the increase in the concentration of 5e, and the
data thus obtained was utilized to plot a graph of log(F, — F)/F
against log[Q] for complex 5e in the absence and presence of
site markers as shown in Fig. 8c. The binding constant Kj, for
phenylbutazone and ibuprofen was found to be 0.0085 x 10*
and 0.374 x 10*, respectively (Table 6). It can be observed that
the K;, and log K;, values of the compound 5e with BSA signifi-
cantly decrease in the presence of phenylbutazone and
ibuprofen, compared to the Kj, value in the absence of any site
markers, indicating that there are competitive interactions
between compound 5e and the two site makers with BSA.*®
Therefore, it can be inferred that the compound 5e may interact
with BSA at both site I and site II. Nevertheless, the value of K, is
much lower in the presence of phenylbutazone, suggesting
compound 5e mainly binds in Sudlow's Site I of BSA.

3. Conclusions

In summary, we have developed a simple and efficient approach
for the synthesis of 2,3-di substituted imidazo[1,2-a]pyr-
idimines from o-bromo-B-diketones and 2-aminopyrimidine
which could serve as promising scaffolds for the development of
novel bioactive molecules. The structure of regioisomeric
product was characterized by 'H, **C, HMBC, HMQC, IR spec-
tral, and mass spectrometric studies. The salient features of this
approach include catalyst-free mild reaction conditions, inex-
pensive reagents, broad substrate scope, high yields, and easy
workup procedure in a single synthetic operation. Spectroscopic
methods and molecular docking studies were used to explore
binding interaction of imidazo[1,2-a]pyridimines with BSA. UV-
visible study confirmed the interaction and 1:1 binding stoi-
chiometry. Fluorescence analyses revealed that compounds
bind moderately with BSA through static quenching mecha-
nism and binding constant revealed that compound 5h exhibits
greater binding affinity than 5c¢ and 5e. Negative AG° values
suggested that the binding process was spontaneous. Further-
more, site-marker competitive binding assay indicated that
compound 5e interacts with BSA at both site I and site IT and site
I is the main binding site. The present study illustrates that the
nature of substituents modifies binding properties of imidazo
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[1,2-a]pyrimidines to BSA and it is expected to influence design,
development and synthesis of novel imidazo[1,2-a]pyrimidine
derivatives with significant medical applications.

4. Experimental
4.1 General

All the chemicals and solvents used in the present study were
purchased from commercial suppliers of Hi-media and Avera,
India, and used without further purification. To monitor the
progress of the reaction and purity of the products, TLC
experiments were performed on 0.2 mm Merck precoated silica
gel 60 F254-coated aluminum plates. The mixture of ethyl
acetate and petroleum ether was used as the mobile phase and
spots were visualized under UV light at 254 nm. Melting points
were determined using an electrical digital Melting Point
Apparatus (MEPA) in an open capillary tube and were uncor-
rected. IR spectra were recorded on Buck Scientific IR M-500
instrument in KBr pellets (vmay in em™'). "H and C NMR
spectra were recorded on a Jeol ECZS-400 instrument at 400 and
100 MHz, respectively, using DMSO-d¢ as a solvent and tetra-
methylsilane (TMS) as an internal standard (the chemical shift
in ¢ scale and coupling constants () were expressed in parts per
million (ppm) and hertz, respectively). High-resolution mass
spectra (HRMS) were measured in the ESI+ mode at CIL GJU,
Hisar. 2D correlation spectroscopy, (‘H-"*C) gs-HSQC, (‘H-"°C)
gs-HMBC of the samples were carried out at Kurukshetra
University, Kurukshetra. The UV-vis spectra were recorded on
a UV-vis spectrophotometer 117 (Systronic, India) with 1 cm
path-length cell. Fluorescence spectra were recorded on the
Shimadzu-5301pc spectro-fluorophotometer (Kyoto, Japan).

4.1.1. General procedure for the synthesis of 3-aroyl-2-
methylimidazo[1,2-a]pyrimides (5a-h). A mixture of appropriate
unsymmetrical B-diketone 1a-h (1.0 mmol), NBS 2 (1.0 mmol)
and 2-aminopyrimidine 4 (1.0 mmol) in dichloromethane (10
mL) was taken in a conical flask and stirred at room temperature
for about 5-6 h. Progress of the reaction was monitored by TLC
(ethyl acetate: petroleum ether; 60 : 40, v/v). After the completion
of reaction (as indicated by TLC), the solvent was evaporated on
the rotary evaporator and the resulting mixture was neutralized
with a saturated solution of sodium bicarbonate and extracted
with ethyl acetate. The gummy mass obtained was triturated with
petroleum ether. Then acetone (5 mL) was added, stirred at room
temperature for 15-20 minutes and the residue thus obtained
was filtered, washed with cold ethanol, dried, and recrystallized
from ethanol to obtain the target 3-aroylimidazo[1,2-a]|pyrimi-
dine (5a-h).

4.1.1.1 1-Phenyl-1-(2-methylimidazo[1,2-aJpyrimidin-3-yl)
methanone (5a). White solid; m.p. 187 °C; yield: 0.190 g (80%);
IR (KBI) ¥max (cm™1): 1648 (C=0).

'H NMR (400 MHz, DMSO-d,): 6 9.64-9.66 (d, 1H, J = 6.8 Hz,
7 H), 9.02 (d, 1H, J = 4.0 Hz, 5-H), 7.79-7.81 (d, 2H, J = 7.6 Hz,
Ph-2/,6'-H), 7.73 (dd, 1H, J, = 6.8, J;m = 4.4 Hz, Ph-4’-H), 7.60-
7.64 (m, 3H, Ph-3',5/, 6-H), 2.21 (s, 3H, 2-CHj).

3C NMR (100 MHz, DMSO-dg): 6 186.20, 156.99, 147.59,
146.82, 138.81, 138.08, 133.52, 129.38, 129.27, 119.67, 113.66,
15.44.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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HRMS (ESI) m/z: 238.0890 [M + HJ".

Elemental analysis: caled. for C;,H;;N;O: C, 70.87; H,
4.67; N, 17.71% found: C, 70.65; H, 4.74; N, 17.48%.

4.1.1.2 1-(4'-Fluorophenyl)-1-(2-methylimidazo[1,2-a]
pyrimidin-3-yl)methanone (5b). White solid; m.p. 206 °C; yield:
0.202 g (79%); IR (KBI) 7max (cm™1): 1650 (C=0).

"H NMR (400 MHz, DMSO-dg): 6 9.60-9.62 (dd, 1H,J = 7.2, ]
= 2.0 Hz, 7-H), 8.99-9.01 (dd, 1H, J = 4.4, ] = 2.0 Hz, 5-H), 7.87-
7.91 (dt, 2H, J, = 8.8, Jimur = 5.6 Hz, Ph-2/,6’-H), 7.59-7.62 (dd,
1H, ] = 6.8 Hz, ] = 4.4 Hz, 6-H), 7.43-7.48 (t, 2H, ], = 8.8 Hz, Ph-
3',5'-H), 2.24 (s, 3H, 2-CHj;).

BC NMR (100 MHz, DMSO-ds): 6 184.85, 156.91, 147.04,
138.05, 135.44, 135.41, 132.48, 132.38, 119.67, 116.68, 116.46,
113.56, 15.65.

HRMS (ESI) m/z: 256.0836 [M + H]".

Elemental analysis: caled. for C;4H;0FN3;O: C, 65.88; H,
3.95; N, 16.46% found: C, 65.81; H, 3.81; N, 16.63%.

4.1.1.3 1-(4'-Chlorophenyl)-1-(2-methylimidazo[1,2-a]
pyrimidin-3-yl)methanone (5c). White solid; m.p. 224 °C; yield:
0.210 g (77%); IR (KBI) 7max (cm™'): 1650 (C=O0).

'H NMR (400 MHz, DMSO-d,): 6 9.61-9.63 (d, 1H, J = 6.8 Hz,
7-H), 9.01 (d, 1H, J = 3.2 Hz, 5-H), 7.81-7.83 (d, 2H, J = 8.4 Hz,
Ph-2',6'-H), 7.68-7.70 (d, 2H, J = 8.4 Hz, Ph-3',5"-H), 7.61-7.64
(dd, 1H, J = 6.4, ] = 4.4 Hz, 6-H), 2.24 (s, 3H, 2-CH,).

3C NMR (100 MHz, DMSO-dg): 0 184.96, 156.98, 147.98,
146.98, 138.31, 138.05, 137.50, 131.28, 129.53, 119.56, 113.63,
15.63.

HRMS (ESI) m/z: 272.0469 [M + H]"; 274.0463[M + 1 + 2]"; (3 :
1).
Elemental analysis: caled. for C;4H;,CIN;O: C, 61.89; H,
3.71; N, 15.47% found: C, 61.78; H, 3.63; N, 15.25%.

4.1.1.4 1-(4'-Bromophenyl)-1-(2-methylimidazo[1,2-a]
pyrimidin-3-yl)methanone (5d). White solid; m.p. 248 °C; yield:
0.227 g (72%); IR (KBI) #max (cm™): 1650 (C=0).

"H NMR (400 MHz, DMSO-dg): 6 9.61-9.63 (dd, 1H, ] = 6.8, ]
= 1.2 Hz, 7-H), 8.97 (dd, 1H, J = 4.0, ] = 1.2 Hz, 5-H), 7.82-7.84
(d, 2H,J = 8.4 Hz, Ph-2/,6'-H), 7.71-7.73 (d, 2H, J = 8.4 Hz, Ph-
3',5'-H), 7.56-7.58 (dd, 1H, J = 6.8, ] = 4.4 Hz, 6-H), 2.21 (s, 3H,
2-CH3).

BC NMR (100 MHz, DMSO-dg): 6 185.19, 156.39, 149.45,
147.70, 138.11, 137.81, 132.42, 131.27, 127.15, 119.54, 113.15,
16.14.

HRMS (ESI) m/z: 316.9978 [M + H]'; 318.9959[M + 1 + 2]; (1:
1).
Elemental analysis: caled. for Ci4H;oBrN;O: C, 53.19; H,
3.19; N, 13.29% found: C, 52.98; H, 3.24; N, 13.43%.

4.1.1.5 1-(4'-Methoxyphenyl)-1-(2-methylimidazo[1,2-a]
pyrimidin-3-yl)methanone (5e). White solid; m.p. 190 °C; yield:
0.230 g (86%); IR (KBI) 7y (cm ™ 1): 1645 (C=0).

"H NMR (400 MHz, DMSO-dg): 6 9.52-9.54 (dd, 1H, J = 7.0, J
= 2.4 Hz, 7-H), 9.01-9.03 (dd, 1H, J = 4.8, ] = 2.0 Hz, 5-H), 7.82—-
7.84 (d, 2H,J = 8.8 Hz, Ph-2/,6'-H), 7.61-7.64 (dd, 1H, /= 6.0, ] =
4.8 Hz, 6-H), 7.14-7.16 (d, 2H, J = 9.2 Hz, Ph-3/,5'-H), 3.90 (s, 3H,
Ph-4'-OMe), 2.31 (s, 3H, 2-CH3).

3C NMR (100 MHz, DMSO-ds): 0 184.54, 164.08, 157.17,
146.21, 138.12, 132.26, 130.82, 119.82, 114.78, 113.76, 56.23,
15.07.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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HRMS (ESI) m/z: 268.1003 [M + H]".

Elemental analysis: caled. for C;5H;3N3;0,: C, 67.40; H,
4.90; N, 15.72% found: C, 67.28; H, 4.74; N, 15.59%.

4.1.1.6  1-(3'-Methoxyphenyl)-1-(2-methylimidazo[1,2-a]
pyrimidin-3-yl)methanone (5f). White solid; m.p. 215 °C; yield:
0.220 g (82%); IR (KBI) vpay (cm™1): 1645 (C=0).

H NMR (400 MHz, DMSO-dq): 6 9.63-9.65 (dd, J = 6.8, ] =
1.2 Hz, 1H, 7-H), 9.03-9.04 (dd, 1H, J = 4.4, ] = 2.8 Hz, 5-H),
7.63-7.66 (dd, 1H, ] = 6.8, ] = 4.8 Hz, 6-H), 7.51-7.55 (t, 1H, J, =
7.6 Hz, Ph-5'-H), 7.36-7.38 (d, 1H, J, = 7.6 Hz, Ph-6'-H), 7.29-
7.31 (m, 2H, Ph-2',4’-H), 3.83 (s, 3H, Ph-3’-OMe), 2.23 (s, 3H, 2-
CH,).

3C NMR (100 MHz, DMSO-ds): 6 185.89, 159.88, 157.17,
147.31, 146.60, 140.15, 138.12, 130.67, 121.53, 119.66, 119.54,
113.83, 113.74, 55.99, 15.25.

HRMS (ESI) m/z: 268.1003 [M + H]".

Elemental analysis: caled. for C;5H;3N30,: C, 67.40; H,
4.90; N, 15.72% found: C, 67.52; H, 4.66; N, 15.97%.

4.1.1.7 1-(2'-Methoxyphenyl)-1-(2-methylimidazo[1,2-a]
pyrimidin-3-yl)methanone (5g). White solid; m.p. 229 °C; yield:
0.213 g (80%); IR (KBI) ¥max (cm™"): 1645 (C=0).

"H NMR (400 MHz, DMSO-dq): 6 9.64-9.66 (dd, 1H, J = 6.8, ]
= 2.0 Hz, 7-H), 9.06-9.07 (dd, 1H, J = 4.4, ] = 2.0 Hz, 5-H), 7.67-
7.70(dd, 1H, ] = 6.8, ] = 4.4 Hz, 6-H), 7.52-7.56 (t, 1H, ] = 8.0 Hz,
Ph-4'-H), 7.37-7.39 (d, 1H, J = 7.6 Hz, Ph-6"-H), 7.30-7.33 (m,
2H, Ph-3',5’-H), 3.84 (s, 3H, Ph-2’-OMe), 2.25 (s, 3H, 2-CHj).

3C NMR (100 MHz, DMSO-dg): 6 185.89, 159.92, 157.59,
146.23, 140.03, 138.34, 130.76, 130.71, 121.68, 119.75, 119.70,
114.17, 113.81, 56.05, 15.05.

HRMS (ESI) m/z: 268.1003 [M + H]".

Elemental analysis: caled. for C;5H;3N30,: C, 67.40; H,
4.90; N, 15.72% found: C, 67.71; H, 4.56; N, 15.46%.

4.1.1.8 1-(Thiophen-2'-yl)-1-(2-methylimidazo[1,2-aJpyridin-3-
yl)methanone (5h). White solid; m.p. 244 °C;yield: 0.193 g (79%);
IR (KBI) ¥ (cm™): 1654 (C=0).

"H NMR (400 MHz, DMSO-d,): 6 9.43-9.45 (dd, 1H, ] = 6.8, ]
= 1.2 Hz, 7-H), 9.02-9.03 (dd, 1H, J = 4.0, ] = 1.2 Hz, 5-H), 8.24-
8.25 (d, 1H, J = 4.4 Hz, thienyl-5'-H), 7.93-7.94 (d, 1H, ] = 3.2 Hz,
thienyl-3'-H), 7.61-7.64 (dd, 1H, J = 6.8, ] = 4.4 Hz, 6-H), 7.33-
7.35 (t, 1H, J = 4.4 Hz, thienyl-4'-H), 2.51 (s, 3H, 2-CH,).

3C NMR (100 MHz, DMSO-dg): 6 177.02, 157.36, 145.97,
144.53, 142.68, 138.04, 137.19, 136.61, 129.26, 119.49, 113.74,
14.97.

HRMS (EI) m/z: 244.0467 [M + H]'.

Elemental analysis: caled. for C;,HgN;OS: C, 59.24; H,
3.73; N, 17.27% found: C, 59.12; H, 3.62; N, 17.49%.

4.2 Binding studies

4.2.1.
tures were drawn using ChemDraw Professional 15.0 software
and the crystal structure of the BSA protein (PDB ID: 4f5s) was
attained from Protein Data Bank (https://www.rcsb.org/pdb).
The protein file was then prepared for docking by removing
water molecules and packing with polar hydrogen with

Molecular docking studies. Primarily ligand struc-

Kollman charges using Auto Dock Tools version 1.5.6. After
preparing the PDBQT files of protein and ligands, they are
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inputted in the determined grid boxes for docking. In order to
perform the molecular docking analysis Auto Dock software
was used with grid size (BSA grid; center_x = 37.823, center_y
= 23.992, center_z = 98.761; size_x = 126, size_y = 56, size_z
= 74; energy_range = 4, exhaustiveness = 10) using the
Lamarckian genetic algorithm for calculations, and the output
results were analyzed using the BIOVIA Discovery Studio
Visualizer (DSV).

4.2.2. BSA-binding experiments. Bovine serum albumin
was purchased directly from Sigma-Aldrich Company and
exploited without any absolution. For binding interaction
studies, analytical grade reagents were used. BSA stock solution
of 15 uM (1 mg mL™") concentration was prepared in 10 mM
phosphate buffer saline (prepared using Na,HPO, and
NaH,PO,) with pH 7.4, and then stored at 4 °C for further usage.
Stock solutions of imidazo[1,2-a]pyrimidines (5e, 5¢ and 5h) of
1 mM concentration were prepared in DMSO as a solvent and
further diluted with buffer as per requirement depending upon
the mode of interaction study.
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