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U-17-UR as a pillar-layered MOFs
as a hydrogen bonding catalyst for the preparation
of pyrazolo[3,4-b]quinolines†

Milad Mohammadi Rasooll,a Hassan Sepehrmansourie,*b

Mohammad Ali Zolfigol, *a Mojtaba Hosseinifard c and Hesam Al-Din Hojjat
Shamamia

In this report, TMU-17-URwas synthesized as a newH-bond catalyst. In the structure of TMU-17, carboxylic

acid and pyridine ligands were used for the formation of desired pillar-layered metal–organic frameworks

(MOFs). TMU-17-UR was created via a post-modification method by creating urea groups on TMU-17-NH2,

which turned it into a suitable H-bond catalyst. The structure of TMU-17-UR was characterized and

confirmed using various techniques. The catalytic ability of this structure was investigated in the

preparation of pyrazolo[3,4-b]quinolines as important biological compounds under environmentally

friendly and mild reaction conditions. The structure of the obtained products was confirmed using

techniques such as FT-IR, 1H-NMR, 13C-NMR and their melting point. The results obtained here have

shown that the development of task-specific heterogeneous catalysts can be continued.
Introduction

Pillar-layered MOFs are an important class of MOFs that
received attention recently. Pillar-layered MOFs in their struc-
ture have alternating layers with columns containing metal and
organic ligands.1–3 The pillars and ligands in their framework
are held together by coordination bonds and form a three-
dimensional porous structure with suitable surface area and
adjustable pore size. Pillar-layered MOFs have considerable
versatility, as they can be synthesized from different metals
such as copper, zinc, or cobalt. Also, various organic ligands can
be used in their structure, which gives various chemical prop-
erties to this type of MOFs.4,5 Due to the diversity of their
structure, these three-dimensional compounds have various
applications in various elds, such as gas storage, catalysts,
drug delivery, etc..6–8 One of the characteristics of pillar-layered
MOFs is that the structure of these compounds can be easily
changed by replacing the metal column or organic ligand
components, increasing their functional diversity.9

Urea derivatives are one of the most important studied
organic structures in the eld of catalysts. Urea derivatives have
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24999
been used as catalysts in many organic reactions such as
Strecker, Mannich, Friedel–Cras reactions, etc. The hydrogen
bonding agent activates the substrate for catalysis through
donor/acceptor acidic N–H bonds and nitrogen lone pairs.10–14

Combining H-bond catalysts with MOFs can lead to the devel-
opment of new heterogeneous catalysts with higher activity and
selectivity. In this case, metal–organic frameworks are designed
that will have the ability to give hydrogen bonding, which has
been considered in recent studies.15–18 It is worth noting that the
porous nature of MOFs allows the diffusion of reactive mole-
cules in the catalyst sites, which can increase the reaction effi-
ciency.19,20 Metal–organic frameworks, which have shown their
importance as a new generation of nanoreactors in recent years,
can act as a suitable bed with pendants such as urea or thiourea
groups as hydrogen bonding donors.21,22 H-bond donating MOF
catalysts are new-generation catalysts that can play a role as
catalysts for the production of pharmaceutical products and
organic compounds.23,24 These MOFs have good properties such
as high chemical and thermal stability as well as good activity.
The selectivity of this type of hydrogen bond catalyst is high,
which in turn can be effective in increasing product yield and
saving energy.25,26

In recent years, the importance of new and effective medic-
inal compounds has increased. Various research studies have
been conducted in this eld, which has been accompanied by
signicant progress.27,28 It should be considered that these
compounds need to be expanded. Heterocyclic compounds
have suitable medicinal properties and have been used in
various elds, such as antidepressants, antifungals, antimalar-
ials, anticancer, etc..29,30 Also, these compounds have been used
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Various properties of dimedone, pyrazole and pyrazoloquino-
line compounds.
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in various industries such as agriculture and paint production.
Heterocyclic compounds are formed from important nuclei.
Among the most important effective nuclei, we can mention
pyrazoles, pyrazoloquinoline, dimedone, etc., which give suit-
able properties to the synthesized compound. Fig. 1 shows the
most important properties of these cores that have been
proven.31–36 Pyrazolo[3,4-b]quinoline compounds have shown
important biological activities including anti-inammatory,
anti-cancer and antimicrobial properties. Also, the unique bio-
logical properties of these compounds have been conrmed in
the treatment of many neurological diseases.37–39

In continuation of the research on targeted catalysts, the
design of the catalyst based on the metal–organic framework is
the main goal of this research. In this report, a pillar-layered
MOFs containing acidic and pyridine ligands is used, and in
the next step, urea group is created on it by solvothermal
method. This method creates an efficient hydrogen bonding
catalyst based on metal–organic frameworks. The use of this
catalyst in the preparation of pyrazolo[3,4-b]quinoline deriva-
tives will be investigated to determine the importance of the
design of this catalyst. The created pyrazolo[3,4-b]quinoline
derivatives have effective medicinal cores. These derivatives are
Scheme 1 Schematic general strategy for preparation of TMU-17-UR as

© 2025 The Author(s). Published by the Royal Society of Chemistry
synthesized in solvent-free conditions with a mild and green
method.

Experimental section
Preparation of TMU-17-NH2

The preparation of TMU-17-NH2 was done through the sol-
vothermal method according to the method of the previous
report.40 Initially, NH2-BDC (1 mmol, 0.181 g), Zn(NO3)2$6H2O
(1 mmol, 0.298 g), and 1,4-bis(4-pyridyl)-2,3-diaza-2,3-butadiene
(4-bpdb) (1 mmol, 0.210 g) were dissolved in 15 mL of DMF. The
resulting mixture was transferred to a 60 mL Teon autoclave
and heated at 80 °C for 3 days. Aer this time, the autoclave was
allowed to cool down to room temperature, and the product was
formed. The crystals obtained were separated from the soluble
compounds by centrifugation (2 × 4000 rpm). Finally, the ob-
tained TMU-17-NH2 crystals were washed with ethanol (EtOH)
and DMF (2 × 10 mL). In the last step, it was immersed in
CHCl3 for 24 h and dried in a vacuum oven at 100 °C for 24 h.

Preparation of TMU-17-UR as an H-bond pillar-layered MOFs-
based catalyst

The solvothermal method was used for the synthesis of TMU-17-
NH2 and its functionalization through post-modication. A
mixture of phenyl isocyanate (5 mmol, 0.595 g), TMU-17-NH2

(0.2 g), and dry CH3CN (10 mL) as a solvent was stirred for
30 min at 25 °C. Then the reaction mixture was placed in
a 25mL Teon autoclave and heated at 120 °C for 12 h. Then the
precipitate obtained was separated using a centrifuge (2 × 4000
rpmmin−1) and washed with CH3CN and EtOH 3 times. Finally,
TMU-17-UR was dried at 80 °C for 12 h (Scheme 1).

Catalytic reaction

For the preparation of pyrazolo[3,4-b]quinoline derivatives, in
a 10 mL round-bottomed ask, a mixture of aromatic aldehydes
(0.5 mmol), dimedone (0.5 mmol, 0.07 g), 3-(1H-indol-3-yl)-1H-
pyrazol-5-amine and 3-(4-chlorophenyl)-1H-pyrazol-5-amine
(0.5 mmol), which has been synthesized according to previous
reports41,42 and TMU-17-UR as an H-bond pillar-layered MOFs-
based catalyst (15 mg) were stirred at 100 °C. Aer the
an efficient H-bond pillar-layered MOFs-based catalyst.

RSC Adv., 2025, 15, 24986–24999 | 24987
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Scheme 2 Synthesis of pyrazolo[3,4-b]quinoline derivatives using TMU-17-UR as an efficient H-bond pillar-layered MOFs-based catalyst.
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completion of the reaction that was monitored by the TLC
technique, the catalyst was isolated from the reaction mixture
by centrifugation (2 × 4000 rpm min−1) aer adding hot
ethanol (20 mL). Aer, the solvent evaporates to form a precip-
itate. Finally, in order to purify the synthesized products, the
resulting precipitate was washed several times with cold EtOH.
The pyrazolo[3,4-b]quinoline derivatives were obtained in high
yield (70–85%) (Scheme 2).
Spectral data of pyrazolo[3,4-b]quinoline derivatives

4-(4-Chlorophenyl)-3-(1H-indol-3-yl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FC1).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3406, 3253, 3167,
1657, 1614. 1H NMR (250 MHz, DMSO-d6) dppm 12.17 (s, 1H),
11.33 (s, 1H), 9.91 (s, 1H), 7.63 (d, J = 7.2 Hz, 1H), 7.38 (d, J =
7.5 Hz, 1H), 7.21 (s, 1H), 7.12–6.93 (m, 6H), 5.19 (s, 1H), 2.45–
2.27 (m, 2H), 2.13 (d, J = 16.1 Hz, 1H), 1.93 (d, J = 16.1 Hz, 1H),
0.98 (s, 3H), 0.84 (s, 3H). 13C NMR (63 MHz, DMSO-d6) dppm
193.2, 153.0, 147.4, 136.3, 134.7, 130.0, 129.6, 127.8, 125.2,
124.8, 122.2, 120.0, 112.2, 107.7, 105.0, 102.5, 50.9, 41.4, 35.2,
32.4, 29.3, 27.1.

4-(4-Chlorophenyl)-3-(1H-indol-3-yl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FC1)
(D2O exchange). 1H NMR (250 MHz, DMSO-d6) dppm 7.58 (d, J =
7.4 Hz, 1H), 7.39 (d, J = 7.7 Hz, 1H), 7.22 (s, 1H), 7.09–6.92 (m,
6H), 5.17 (s, 1H), 2.42 (d, J = 9.3 Hz, 2H), 2.13 (d, J = 16.3 Hz,
1H), 1.92 (d, J = 16.1 Hz, 1H), 0.96 (s, 3H), 0.81 (s, 3H).

4-(4-Bromophenyl)-3-(1H-indol-3-yl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FC2).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3320, 3248, 3158,
1655, 1501. 1H NMR (400 MHz, DMSO-d6) dppm 12.20 (s, 1H),
11.38 (s, 1H), 9.94 (s, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.41 (d, J =
8.1 Hz, 1H), 7.25 (d, J = 2.7 Hz, 2H), 7.23 (s, 1H), 7.15 (t, J =
24988 | RSC Adv., 2025, 15, 24986–24999
7.4 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 8.4 Hz, 2H), 5.21
(s, 1H), 2.50 (d, J= 8.0 Hz, 1H), 2.40 (d, J = 16.6 Hz, 1H), 2.16 (d,
J = 16.0 Hz, 1H), 1.97 (d, J = 16.0 Hz, 1H), 1.02 (s, 3H), 0.88 (s,
3H). 13C NMR (101 MHz, DMSO-d6) dppm 192.7, 162.3, 152.5,
147.4, 147.3, 135.8, 134.2, 130.3, 129.5, 124.7, 124.3, 121.7,
119.5, 119.4, 118.1, 111.8, 107.1, 104.4, 102.0, 50.4, 40.9, 34.8,
31.9, 28.9, 26.7.

4-(3,4-Dimethoxyphenyl)-3-(1H-indol-3-yl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FC3).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3249, 3060, 2964,
1561, 1500. 1H NMR (250 MHz, DMSO-d6) dppm 12.08 (s, 1H),
11.37 (s, 1H), 9.78 (s, 1H), 7.64 (d, J = 5.9 Hz, 1H), 7.40 (d, J =
7.2 Hz, 1H), 7.29 (s, 1H), 7.17–7.04 (m, 2H), 6.59 (d, J = 8.0 Hz,
1H), 6.50–6.38 (m, 2H), 5.16 (s, 1H), 3.55 (s, 3H), 3.25 (s, 3H),
2.77 (d, J = 38.6 Hz, 1H), 2.39 (d, J = 17.6 Hz, 1H), 2.15 (d, J =
15.9 Hz, 1H), 1.97 (d, J = 16.0 Hz, 1H), 1.01 (s, 3H), 0.93 (s, 3H).
13C NMR (63 MHz, DMSO-d6) dppm 193.3, 153.0, 148.0, 147.6,
146.7, 141.3, 136.4, 134.4, 125.4, 125.0, 122.1, 120.0, 118.9,
112.2, 111.9, 111.7, 107.8, 105.3, 103.5, 55.7, 55.1, 51.0, 41.4,
35.0, 32.3, 29.5, 27.2.

3-(1H-Indol-3-yl)-7,7-dimethyl-4-phenyl-1,4,6,7,8,9-hexahy-
dro-5H-pyrazolo[3,4-b]quinolin-5-one (FC4). Yellow solid; Mp:
>300 °C; FT-IR (KBr, cm−1): 3268, 3202, 3050, 1633, 1614. 1H
NMR (400 MHz, DMSO-d6) dppm 12.19 (s, 1H), 11.37 (s, 1H), 9.89
(s, 1H), 7.68 (d, J= 7.9 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.21 (d, J
= 2.4 Hz, 1H), 7.15 (t, J = 7.2 Hz, 1H), 7.09–7.05 (m, 2H), 7.05–
7.02 (m, 3H), 6.98–6.93 (m, 1H), 5.21 (s, 1H), 2.50–2.37 (m, 2H),
2.16 (d, J = 16.0 Hz, 1H), 1.97 (d, J = 16.0 Hz, 1H), 1.02 (s, 3H),
0.88 (s, 3H). 13C NMR (101 MHz, DMSO-d6) dppm 192.7, 162.3,
152.4, 148.1, 135.8, 128.1, 127.5, 127.3, 125.1, 124.8, 124.2,
121.6, 119.6, 119.5, 111.7, 107.7, 102.6, 50.5, 41.0, 35.1, 31.9,
28.9, 26.6.

3-(1H-Indol-3-yl)-7,7-dimethyl-4-(pyridin-3-yl)-1,4,6,7,8,9-
hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FC5). Yellow
© 2025 The Author(s). Published by the Royal Society of Chemistry
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solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3241, 2955, 1614, 1594,
1561. 1H NMR (400 MHz, DMSO-d6) dppm 12.23 (s, 1H), 11.39 (s,
1H), 10.00 (s, 1H), 8.20 (s, 1H), 8.11 (dd, J= 4.7, 1.5 Hz, 1H), 7.64
(d, J = 7.9 Hz, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.33 (d, J = 2.5 Hz,
1H), 7.29 (d, J = 7.8 Hz, 1H), 7.15 (t, J = 7.3 Hz, 1H), 7.09–7.04
(m, 2H), 5.26 (s, 1H), 2.53 (d, J = 13.7 Hz, 1H), 2.44 (d, J =
16.6 Hz, 1H), 2.17 (d, J = 16.0 Hz, 1H), 1.98 (d, J = 16.0 Hz, 1H),
1.03 (s, 3H), 0.89 (s, 3H). 13C NMR (101 MHz, DMSO-d6) dppm
192.7, 152.9, 148.5, 147.1, 146.3, 143.0, 135.8, 134.4, 134.3,
124.8, 124.4, 123.0, 121.7, 119.5, 119.4, 111.8, 106.6, 104.2,
101.8, 50.3, 40.9, 33.1, 31.9, 28.8, 26.7.

3-(1H-Indol-3-yl)-4-(4-isopropylphenyl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FC6).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3347, 3274, 3055,
1675,1627, 1609. 1H NMR (400 MHz, DMSO-d6) dppm 12.13 (s,
1H), 11.38 (s, 1H), 9.84 (s, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.41 (d, J
= 8.1 Hz, 1H), 7.24 (d, J = 2.4 Hz, 1H), 7.15 (t, J = 7.4 Hz, 1H),
7.06 (t, J = 7.4 Hz, 1H), 6.97–6.88 (m, 4H), 5.18 (s, 1H), 2.72 (p,
1H), 2.49–2.39 (m, 2H), 2.15 (d, J = 16.0 Hz, 1H), 1.99 (d, J =
16.0 Hz, 1H), 1.09 (s, 3H), 1.08 (s, 3H), 1.02 (s, 3H), 0.91 (s, 3H).
13C NMR (101 MHz, DMSO-d6) dppm 192.7, 152.5, 147.5, 145.6,
144.9, 135.8, 133.8, 128.1, 127.1, 125.4, 124.7, 124.2, 121.7,
119.6, 119.5, 111.7, 107.8, 104.7, 102.8, 50.5, 41.0, 32.8, 31.9,
28.8, 26.9, 23.9, 23.7.

4-(4-Hydroxy-3-methoxyphenyl)-3-(1H-indol-3-yl)-7,7-
dimethyl-1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-
one (FC7). Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3253,
3162, 3068, 1658, 1599. 1H NMR (400 MHz, DMSO-d6) dppm

12.10 (s, 1H), 11.40 (s, 1H), 9.79 (s, 1H), 8.46 (s, 1H), 7.67 (d, J =
7.9 Hz, 1H), 7.43 (d, J= 8.1 Hz, 1H), 7.30 (d, J= 2.5 Hz, 1H), 7.17
(t, J= 7.5 Hz, 1H), 7.10 (t, J= 7.4 Hz, 1H), 6.49–6.43 (m, 2H), 6.33
(d, J = 8.1 Hz, 1H), 5.14 (s, 1H), 3.32 (s, 3H), 2.50–2.39 (m, 2H),
2.17 (d, J = 16.0 Hz, 1H), 2.00 (d, J = 15.9 Hz, 1H), 1.04 (s, 3H),
0.96 (s, 3H). 13C NMR (101 MHz, DMSO-d6) dppm 192.8, 162.3,
152.4, 147.2, 146.4, 143.8, 139.4, 135.9, 133.8, 124.9, 124.5,
121.6, 119.5, 118.9, 114.7, 111.7, 107.6, 104.9, 103.2, 54.9, 50.6,
41.0, 34.4, 31.9, 29.0, 26.8.

4-(2-Hydroxy-3-methoxyphenyl)-3-(1H-indol-3-yl)-7,7-
dimethyl-1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-
one (FC8). Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3308,
3213, 3054, 1670, 1611. 1H NMR (400 MHz, DMSO-d6) dppm

12.38 (s, 1H), 11.50 (s, 1H), 10.52 (s, 1H), 10.08 (s, 1H), 7.86 (d, J
= 7.9 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H),
7.10 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 2.1 Hz, 1H), 6.70–6.65 (m,
2H), 6.38 (dd, J= 7.2, 2.1 Hz, 1H), 5.31 (s, 1H), 3.77 (s, 3H), 2.55–
2.46 (m, 2H), 2.33 (d, J = 16.5 Hz, 1H), 2.17 (d, J = 16.4 Hz, 1H),
1.07 (s, 3H), 0.89 (s, 3H). 13C NMR (101 MHz, DMSO-d6) dppm
195.5, 156.0, 149.0, 147.4, 142.3, 136.0, 135.7, 134.1, 124.1,
123.7, 121.8, 120.6, 119.9, 119.6, 111.6, 109.6, 107.3, 104.5,
102.1, 55.3, 49.5, 41.1, 32.0, 28.5, 28.3, 26.6.

4-(4-Fluorophenyl)-3-(1H-indol-3-yl)-7,7-dimethyl-1,4,6,7,8,9-
hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FC9). Yellow
solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3250, 2956, 1657, 1600,
1564. 1H NMR (400 MHz, DMSO-d6) dppm 12.19 (s, 1H), 11.37 (s,
1H), 9.92 (s, 1H), 7.66 (d, J= 7.8 Hz, 1H), 7.41 (d, J= 8.1 Hz, 1H),
7.23 (d, J = 2.3 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.08 (d, J =
7.4 Hz, 1H), 7.05–7.01 (m, 2H), 6.87 (t, J = 8.8 Hz, 2H), 5.23 (s,
© 2025 The Author(s). Published by the Royal Society of Chemistry
1H), 2.50–2.36 (m, 2H), 2.16 (d, J = 16.0 Hz, 1H), 1.98 (d, J =
16.0 Hz, 1H), 1.02 (s, 3H), 0.88 (s, 3H). 13C NMR (101 MHz,
DMSO-d6) dppm 192.7, 162.3, 161.1, 158.7, 152.4, 147.3, 144.2,
135.8, 134.1, 128.9, 128.8, 124.7, 124.3, 121.7, 119.5, 114.2,
111.8, 107.5, 104.5, 102.4, 50.4, 40.9, 34.5, 31.9, 28.9, 26.6.

4-(4-Hydroxyphenyl)-3-(1H-indol-3-yl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FC10).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3275, 3165, 2956,
1594, 1553. 1H NMR (400 MHz, DMSO-d6) dppm 12.11 (s, 1H),
11.35 (s, 1H), 9.79 (s, 1H), 8.95 (s, 1H), 7.70 (d, J = 7.8 Hz, 1H),
7.41 (d, J = 8.1 Hz, 1H), 7.18 (d, J = 2.4 Hz, 1H), 7.14 (d, J =
7.6 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 8.2 Hz, 2H),
6.46 (d, J = 8.4 Hz, 2H), 5.09 (s, 1H), 2.46–2.35 (m, 2H), 2.14 (d,
J = 16.0 Hz, 1H), 1.96 (d, J = 16.0 Hz, 1H), 1.02 (s, 3H), 0.88 (s,
3H). 13C NMR (101 MHz, DMSO-d6) dppm 192.7, 154.7, 152.0,
147.5, 138.8, 135.8, 133.8, 128.2, 124.7, 124.2, 121.7, 119.5,
114.2, 111.7, 108.2, 104.7, 102.9, 50.5, 40.9, 34.1, 31.9, 28.9,
26.6.

3-(4-Chlorophenyl)-4-(2-methoxyphenyl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD1).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3254, 3126, 1662,
1627, 1583. 1H NMR (400 MHz, DMSO-d6) dppm 12.44 (s, 1H),
9.86 (s, 1H), 7.57 (d, J= 8.6 Hz, 2H), 7.46 (d, J= 8.6 Hz, 2H), 7.04
(dd, J = 7.5, 1.6 Hz, 1H), 6.97–6.92 (m, 1H), 6.73 (d, J = 7.7 Hz,
1H), 6.69 (t, J = 7.4 Hz, 1H), 5.61 (s, 1H), 3.61 (s, 3H), 2.49 (s,
1H), 2.38 (d, J = 16.4 Hz, 1H), 2.13 (d, J = 16.0 Hz, 1H), 1.90 (d, J
= 15.9 Hz, 1H), 1.02 (s, 3H), 0.89 (s, 3H). 13C NMR (101 MHz,
DMSO-d6) dppm 192.3, 155.4, 152.5, 148.3, 136.1, 135.8, 132.2,
129.5, 128.4, 128.3, 128.1, 126.6, 119.8, 110.7, 107.4, 104.0, 55.0,
50.5, 40.9, 31.9, 29.4, 29.1, 26.4.

3-(4-Chlorophenyl)-4-(4-methoxyphenyl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD2).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3179, 2956, 1583,
1561, 1539. 1H NMR (250 MHz, DMSO-d6) dppm 12.60 (s, 1H),
9.87 (s, 1H), 7.53 (d, J= 5.8 Hz, 2H), 7.43 (d, J= 7.8 Hz, 2H), 6.99
(d, J = 7.9 Hz, 2H), 6.62 (d, J = 8.1 Hz, 2H), 5.25 (s, 1H), 3.58 (s,
3H), 2.45–2.27 (m, 2H), 2.12 (d, J = 16.1 Hz, 1H), 1.92 (d, J =
15.8 Hz, 1H), 0.97 (s, 3H), 0.81 (s, 3H). 13C NMR (63 MHz,
DMSO-d6) dppm 193.3, 157.4, 152.3, 148.6, 140.1, 136.5, 132.8,
129.2, 128.8, 128.3, 128.0, 113.4, 108.4, 104.4, 55.2, 50.8, 41.3,
34.7, 32.3, 29.4, 27.0.

3-(4-Chlorophenyl)-4-(4-methoxyphenyl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD2)
(D2O exchange). 1H NMR (250 MHz, DMSO-d6) dppm 7.46 (d, J =
8.2 Hz, 2H), 7.36 (d, J= 7.4 Hz, 2H), 6.95 (d, J= 8.0 Hz, 2H), 6.57
(d, J = 7.7 Hz, 2H), 5.21 (s, 1H), 3.52 (s, 3H), 2.45–2.26 (m, 2H),
2.12 (d, J = 16.4 Hz, 1H), 1.91 (d, J = 16.3 Hz, 1H), 0.93 (s, 3H),
0.78 (s, 3H).

3-(4-Chlorophenyl)-7,7-dimethyl-4-(4-nitrophenyl)-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD3).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3415, 3276, 2951,
1514, 1350. 1H NMR (400 MHz, DMSO-d6) dppm 12.76 (s, 1H),
10.15 (s, 1H), 8.00 (s, 1H), 7.97 (d, J = 6.3 Hz, 1H), 7.55 (d, J =
8.6 Hz, 2H), 7.46 (d, J= 8.6 Hz, 2H), 7.37 (d, J= 8.8 Hz, 2H), 5.50
(s, 1H), 2.55 (s, 1H), 2.41 (d, J= 16.5 Hz, 1H), 2.17 (d, J= 16.1 Hz,
1H), 1.96 (d, J = 16.0 Hz, 1H), 1.02 (s, 3H), 0.85 (s, 3H).
RSC Adv., 2025, 15, 24986–24999 | 24989
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3-(4-Chlorophenyl)-7,7-dimethyl-4-(3-nitrophenyl)-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD4).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3251, 3185, 1627,
1530, 1350. 1H NMR (400 MHz, DMSO-d6) dppm 12.76 (s, 1H),
10.15 (s, 1H), 7.92 (s, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.60–7.52 (m,
3H), 7.45 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.9 Hz, 1H), 5.53 (s, 1H),
2.55 (s, 1H), 2.43 (d, J = 16.6 Hz, 1H), 2.18 (d, J = 16.1 Hz, 1H),
1.98 (d, J = 16.1 Hz, 1H), 1.02 (s, 3H), 0.86 (s, 3H). 13C NMR (101
MHz, DMSO-d6) dppm 192.8, 152.7, 149.3, 147.2, 134.1, 132.7,
129.1, 128.7, 127.9, 121.8, 120.6, 106.5, 102.5, 50.2, 40.8, 35.3,
32.0, 28.8, 26.5.

4-(2-Chlorophenyl)-3-(4-chlorophenyl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD5).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3202, 3047, 1625,
1577, 1561. 1H NMR (400 MHz, DMSO-d6) dppm 12.54 (s, 1H),
10.03 (s, 1H), 7.45 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H),
7.23 (d, J = 7.3 Hz, 1H), 7.12–7.05 (m, 2H), 6.97 (td, J = 7.7,
1.5 Hz, 1H), 5.62 (s, 1H), 2.50–2.32 (m, 2H), 2.14 (d, J = 16.1 Hz,
1H), 1.92 (d, J = 16.0 Hz, 1H), 1.02 (s, 3H), 0.90 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) dppm 192.5, 152.6, 147.8, 144.2, 137.2,
132.6, 131.7, 131.5, 129.1, 128.7, 128.3, 128.2, 127.0, 126.3,
106.6, 102.7, 50.4, 40.9, 33.9, 31.8, 28.9, 26.5.

3-(4-Chlorophenyl)-7,7-dimethyl-4-(2-nitrophenyl)-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD6).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3246, 3187, 1584,
1531, 1357. 1H NMR (400 MHz, DMSO-d6) dppm 12.76 (s, 1H),
10.15 (s, 1H), 7.69–7.65 (m, 1H), 7.51 (d, J = 8.5 Hz, 2H), 7.47 (d,
J = 7.3 Hz, 1H), 7.37 (d, J = 8.6 Hz, 2H), 7.26–7.21 (m, 1H), 7.18–
7.14 (m, 1H), 6.06 (s, 1H), 2.46–2.29 (m, 2H), 2.07 (d, J= 16.1 Hz,
1H), 1.86 (d, J = 16.3 Hz, 1H), 0.97 (s, 3H), 0.74 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) dppm 192.7, 152.1, 148.3, 147.9, 141.2,
137.4, 132.8, 132.7, 131.2, 130.9, 128.4, 128.4, 126.6, 123.3,
107.0, 101.8, 50.0, 40.8, 31.9, 30.3, 28.6, 26.3.

3-(4-Chlorophenyl)-7,7-dimethyl-4-(pyridin-3-yl)-1,4,6,7,8,9-
hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD7). Yellow
solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3427, 3170, 1619, 1584,
1538. 1H NMR (400 MHz, DMSO-d6) dppm 12.72 (s, 1H), 10.08 (s,
1H), 8.35 (s, 1H), 8.16 (d, J= 3.5 Hz, 1H), 7.56 (d, J= 8.5 Hz, 2H),
7.48 (d, J= 8.5 Hz, 2H), 7.40 (d, J = 7.9 Hz, 1H), 7.12 (dd, J= 7.8,
4.8 Hz, 1H), 5.38 (s, 1H), 2.50–2.37 (m, 2H), 2.17 (d, J = 16.1 Hz,
1H), 1.97 (d, J = 16.0 Hz, 1H), 1.02 (s, 3H), 0.86 (s, 3H). 13C NMR
(101 MHz, DMSO-d6) dppm 192.7, 152.5, 148.6, 147.8, 146.6,
142.4, 136.5, 134.66, 132.5, 130.9, 129.3, 128.8, 127.7, 123.1,
106.7, 102.8, 50.3, 40.8, 33.2, 31.9, 28.8, 26.5.

3-(4-Chlorophenyl)-4-(3,4-dimethoxyphenyl)-7,7-dimethyl-
1,4,6,7,8,9-hexahydro-5H-pyrazolo[3,4-b]quinolin-5-one (FD8).
Yellow solid; Mp: >300 °C; FT-IR (KBr, cm−1): 3267, 3195, 1585,
1506, 1420. 1H NMR (400 MHz, DMSO-d6) dppm 12.61 (s, 1H),
9.91 (s, 1H), 7.60 (d, J= 8.6 Hz, 2H), 7.50 (d, J= 8.6 Hz, 2H), 6.74
(d, J = 1.8 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 6.52 (dd, J = 8.3,
1.9 Hz, 1H), 5.30 (s, 1H), 3.61 (s, 3H), 3.54 (s, 3H), 2.50–2.34 (m,
2H), 2.18 (d, J = 16.1 Hz, 1H), 1.99 (d, J = 15.9 Hz, 1H), 1.02 (s,
3H), 0.91 (s, 3H). 13C NMR (101 MHz, DMSO-d6) dppm 192.8,
152.1, 147.9, 147.7, 146.5, 140.3, 136.2, 132.4, 128.7, 128.4,
127.9, 118.9, 111.7, 111.3, 107.6, 104.0, 55.3, 55.1, 50.4, 40.8,
34.5, 31.9, 29.0, 26.5.
24990 | RSC Adv., 2025, 15, 24986–24999
Result and discussion

Nowadays, international researchers have attempted to eluci-
date important roles of the catalytic power of biologically
enzymatic processes through hydrogen bonding via in vivo and
in vitro.43–57 In this regard, the design, synthesis, and application
of the H-bond catalyst are our research interests. On the other
hand, our experiences led us to develop pillar-layered metal–
organic frameworks (MOFs) containing pending H-bond donor/
acceptor functional groups. With this aim, we decided to
synthesize TMU-17-UR as a new H-bond catalyst in the prepa-
ration of pyrazolo[3,4-b]quinolines as an important biological
compound. The required starting materials were synthesized
according to our recently reported educational synthetic
organic theory.58

Catalyst preparation strategy

With the ever-increasing advances in science and technology,
addressing environmental concerns should be prioritized.
Efforts to preserve environmental resources have attracted the
attention of researchers in recent years. As mentioned above,
our research group has been working on the design and crea-
tion of various catalysts for catalytic and photocatalytic
applications.59–69 Here, the aim is to design and synthesize
a new heterogeneous catalyst that will increase the range of
existing catalysts. Accordingly, TMU-17-NH2 was created as
a pillar-layered MOF. In the following, through the post-
modication method, urea groups were created on the
desired framework. For this purpose, the NH2 groups of the
structure react with the isocyanate compound, and the urea
group is created. In both stages, the solvothermal method has
been used to create TMU-17-UR as an H-bond pillar-layered
MOFs-based catalyst (Scheme 1).

The urea groups created on TMU-17-UR act as hydrogen
bond donors/acceptors that activate the target bonds in the
structure of the raw materials to perform the desired reaction.
The proof of catalytic application of TMU-17-UR in the synthesis
of pyrazolo[3,4-b]quinoline derivatives was investigated to
reveal its performance. For this synthesis, raw materials
synthesized with dimedone and various derivatives of aromatic
aldehydes were used in a multicomponent reaction under
solvent-free, mild, and green conditions. Purication of the
products was done easily. Methods such as melting point, FT-
IR, 1H-NMR, and 13C-NMR were used to prove the structure of
the synthesized products (Scheme 2) (details are in ESI†).

Characterization

Aer the design and synthesis of the target catalyst, the chem-
ical structure of TMU-17-UR was conrmed using FT-IR, XRD,
SEM, BET/BJH, 13C-NMR (See in ESI) and TGA/DTG techniques.
The Fourier-transform infrared spectroscopy (FT-IR) was used
to investigate the functional groups present in the initial and
nal catalyst structures. The results are comparatively shown in
Fig. 2. The FT-IR spectrum of TMU-17-NH2 is consistent with
previous reports.40 The peak of two branches, 3461 cm−1 and
3361 cm−1, represents the NH2 group. Also, the peak area of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 FT-IR spectrum of TMU-17-NH2 and TMU-17-UR as an efficient
H-bond pillar-layered MOFs-based catalyst.

Fig. 3 XRD spectra of simulated TMU-17-NH2, TMU-17-NH2 and
TMU-17-UR as an efficient H-bond pillar-layered MOFs-based
catalyst.
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1679 cm−1 shows the presence of the carbonyl group in reso-
nance, which is bonded with Zn metal. Aer the reaction of this
structure with phenyl isocyanate, the urea group was created.
The presence of peaks in the area of 3192–3457 cm−1 indicates
the NH group in the urea moiety, and the peak in the area of
1650 cm−1 indicates its amidic carbonyl group in urea. The
presence of these peaks in both structures indicates the
formation of the desired structures (Fig. 2).

The XRD analysis is generally used to show the growth
pattern of crystal plates. Metal–organic frameworks have
a unique crystal pattern. Investigating the growth of crystalline
© 2025 The Author(s). Published by the Royal Society of Chemistry
plates of structure TMU-17-NH2 showed close agreement with
the simulation previous reports.40 Aer the post-modication
method at the TMU-17-NH2 by creating urea groups on it, the
crystal structure has been preserved and remained stable
(Fig. 3). In another study, the SEM technique was used to
determine the morphology of the designed catalyst (Fig. S1,
identication details are given in the ESI le†). SEM images of
TMU-17-UR show uniform lumpy, and plate-like morphologies.
This type of morphology may be effective in increasing its effi-
ciency in the direction of the target catalytic application.

In another exploration, N2 adsorption–desorption isotherms
(BET) were used to investigate the surface area and pore size of
TMU-17-UR as a hydrogen bonding catalyst (Fig. 4a). Based on
the obtained results, the surface area based on the BET equa-
tion for TMU-17-UR was calculated at 75m2 g−1. In addition, the
total pore volume for TMU-17-UR was calculated to be 0.599 cm3

g−1. Also, the corresponding pores diameter distribution of the
nal catalyst is also shown in Fig. 4b. The mean pore diameter
of the nal catalyst is 31.7 nm. It should be noted that pillar-
layered MOFs do not have a large surface area and pore size.
Thus, the most previous reports did not have N2 adsorption–
desorption isotherms for this structure.40,70

One of the most important parameters and properties of
catalysts that will be used in various organic reactions is their
appropriate chemical and thermal stability. Thermogravimetry/
derivative thermal gravimetric (TGA/DTG) and
thermogravimetry/differential thermal analysis (TGA/DTA)
analyses were used to prove the stability of the initial catalyst
(TMU-17-NH2) and its corresponding nal catalyst (TMU-17-
UR). The obtained results are shown in Fig. 5. The presented
results show that TMU-17-UR has stability of up to 250 °C so
that it can catalyze reactions up to this temperature. The reac-
tion for the preparation of pyrazolo[3,4-b]quinoline derivatives
in this report is at 100 °C. Due to the stability of this catalyst up
to 250 °C, the proper stability of the catalyst is proven. There-
fore, in the course of the desired reactions, the catalyst is not
destroyed.

Aer the complete analysis of the synthesized catalyst and
approving its structure, the use of TMU-17-UR as an efficient H-
bond pillar-layered MOFs-based catalyst in the synthesis of
pyrazolo[3,4-b]quinoline derivatives was evaluated. At rst, the
reaction conditions were optimized to determine the optimal
synthesis conditions. For this purpose, the reaction between
3-(1H-indol-3-yl)-1H-pyrazol-5-amine (0.5 mmol, 0.099 g),
4-chlorobenzaldehyde (0.5 mmol, 0.07 g) and dimedone
(0.5 mmol, 0.07 g), was chosen as the model reaction. First,
solvent optimization was done, and the reaction was investi-
gated in the presence of different organic solvents as well as
solvent-free conditions (Fig. 6a). Solvent-free conditions were
chosen as the best choice. Next, in the solvent-free conditions,
the above reaction was carried out at different temperatures and
with different amounts of catalyst. Based on the results
obtained (Fig. 6b and c), performing the reaction at 100 °C
and in the presence of 15 mg of TMU-17-UR yielded the best
results.
RSC Adv., 2025, 15, 24986–24999 | 24991
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Fig. 4 (a) N2 adsorption–desorption isotherms and (b) BJH plot TMU-17-UR as an efficient H-bond pillar-layered MOFs-based catalyst.

Fig. 5 (a) Thermogravimetry/derivative thermal gravimetric (TGA/DTG) analysis of TMU-17-NH2 and (b) thermogravimetry/differential thermal
analysis (TGA/DTA) analysis of TMU-17-UR as an efficient H-bond pillar-layered MOFs-based catalyst.
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Aer determining the optimal reaction conditions (Fig. 6),
a wide range of compounds pyrazolo[3,4-b]quinoline were
synthesized with the help of the catalyst TMU-17-UR. As shown
in Table 1, performing the model reaction in the presence of
TMU-17-UR as an H-bond catalyst leads to the preparation
of products in high yields (70–82%) and reduced reaction
time (20–35 min). It should be noted that all the synthesized
desired derivatives were fully identied, and their molecular
structures were conrmed (identication details are given in
the ESI le†).

To conrm how the synthesized products are formed,
a proposed mechanism is presented in Scheme 3. According to
the proposed mechanism, at rst, the catalyst activates the
dimedone carbonyl bond with its urea part, which acts as
a hydrogen donor, and turns it into an enolic form. In a simul-
taneous process, the carbonyl aldehyde group is also activated
by the catalyst and reacts with dimedone. From the condensa-
tion between these two, an intermediate (I) is created by
removing one H2O molecule. Next, 3-(1H-indol-3-yl)-1H-pyrazol-
24992 | RSC Adv., 2025, 15, 24986–24999
5-amine or 3-(4-chlorophenyl)-1H-pyrazol-5-amine performs
a nucleophilic attack on intermediate (I), and intermediate (II)
is formed via a Michael addition reaction. Intermediate (II)
undergoes tautomerization by the catalyst to form intermediate
(III). In the next step, intermediate (III) undergoes catalytic
intramolecular cyclization. Finally, by removing another H2O
molecule, the target product is created.59,60

Following the process of investigating the catalytic capabil-
ities of TMU-17-UR as an efficient H-bond pillar-layered MOF-
based catalyst, a comparative study was done on the synthesis
of pyrazolo[3,4-b]quinolines using other catalysts. For this
purpose, a wide range of organic and inorganic catalysts con-
taining acidic, basic, and H-bond groups are used under the
model reaction conditions. The results are shown in Table 2.
According to the obtained results, the reaction in the presence
of TMU-17-UR has better efficiency and a shorter reaction time
in compared to other catalysts. One of the most important
advantages of the presented heterogeneous catalysts is their
recovery capability. Due to the heterogeneous nature of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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designed catalyst, its recyclability was also investigated. The
results are shown in Fig. 7c. The results show that TMU-17-UR
can be recycled and reused 5 times without much change in
its catalytic activity. In order to check the stability of the
recovered catalyst structure, FT-IR and XRD analyses were taken
Fig. 6 Optimization of some model reaction parameters using TMU-17

© 2025 The Author(s). Published by the Royal Society of Chemistry
from the recovered catalyst (Fig. 7a and b). The obtained results
show that aer recovery, the catalyst has good stability, and the
above catalyst can be used and recycled several times without
signicant changes in the efficiency and reaction time.
-UR as an efficient H-bond pillar-layered MOFs-based catalyst.
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Table 1 The molecular structures of the desired synthesized pyrazolo[3,4-b]quinolines were obtained by using TMU-17-UR as an efficient H-
bond pillar-layered MOF-based catalyst under solvent-free conditions
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Table 2 Synthesis of pyrazolo[3,4-b]quinoline derivatives in the presence of various catalysts

Entry Catalyst (Mol%) Time (min) Yield (%)

1 MIL-100(Cr)/NHEtN(CH2PO3H2)2 (ref. 71) 15 mg 75 35
2 GTBSA72 15 mg 6 65
3 p-TSA 15 120 40
4 NaOH 15 65 40
5 Pipyridine 15 180 30
6 [PVI-SO3H]Cl73 15 mg 90 36
7 H2SO4 15 50 35
8 Et3N 15 20 30
9 CQDs-N(CH2PO3H2)2/SBA-15 (ref. 74) 15 mg 50 45
10 CQDs-N(CH2PO3H2)2 (ref. 75) 15 mg 60 40
11 Ti-MOF-UR24 15 mg 45 50
12 SSA76 15 mg 80 25
13 TMU-17-NH2 (ref. 40) 15 mg 60 40
14 TMU-17-UR 15 mg 20 80

Scheme 3 The proposed mechanism for the synthesis of pyrazolo[3,4-b]quinolines using TMU-17-UR as an efficient H-bond pillar-layered
MOFs-based catalyst.

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 24986–24999 | 24995
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Fig. 7 (a) XRD analysis, (b) FT-IR spectra and (c) recyclability of TMU-17-UR as an efficient H-bond pillar-layered MOFs-based catalyst in the
synthesis of pyrazolo[3,4-b]quinoline derivatives.
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Conclusion

The design and development of hydrogen bond catalysts
occurred. In this regard, the TMU-17-UR catalyst was designed
and synthesized as the target catalyst using a post-modication
method to create urea fragments with hydrogen bond donors/
acceptor's ability. The structure of the catalyst was evaluated to
prove the correctness of its formation using various techniques.
In the next step, the application of TMU-17-UR as an efficient H-
bond pillar-layered MOFs-based catalyst in the preparation of
a wide range of pyrazolo[3,4-b]quinoline derivatives was evalu-
ated, and good results were obtained. Among the features of
this work, we can mention performing the reaction under mild
and green conditions, high speed of production of the desired
products, high efficiency, and the ability to recycle and reuse the
catalyst. The synthesis of a task-specic H-bond catalyst
successfully occurred using suitable starting materials for
creating ureamoieties on the surface of the desired catalyst. The
H-bond ability of the presented catalyst acts as an important
factor in obtaining the desired results.
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