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The performance of sulfur-based cathodes is restricted by the poor conductivity of sulfur and the shuttle

effect of lithium polysulfides (LiPSs). Herein, an effective N-doped carbon/Ti3C2Tx (NC/Ti3C2Tx) free-

standing architecture was designed as a sulfur host for achieving high sulfur loadings, considerable

electronic conductivity and good LiPS trapping ability to suppress the shuttle effect. Consequently, an

excellent electrochemical performance was achieved for the NC-S/Ti3C2Tx freestanding structure with

a 38% increase in capacity compared with the counterpart electrode of slurry-coated NC-S/Ti3C2Tx.

Moreover, the NC-S/Ti3C2Tx freestanding structure exhibits a high capacity of 1156 mA h g−1 at 0.1C and

a high capacity retention of 79.5% after 100 cycles. Moreover, this architecture enabled high sulfur

loadings, and thus, a high areal capacity of 3.41 mA h cm−2 was obtained.
Introduction

Rapidly growing demands for efficient and economical energy
storage devices promote the development of rechargeable
batteries. The state-of-the-art lithium-ion batteries (LIBs) are
approaching the energy-density limitation and are not suffi-
ciently powerful for next-generation devices. Lithium–sulfur
batteries, with pollution-free and low-cost sulfur-based cath-
odes, have been attracting increasing interests in recent years
owing to their high theoretical specic capacity of up to
1675 mA h g−1 and a theoretical specic energy density of
2600 W h kg−1.1,2 However, the low conductivity of sulfur, the
shuttle effect of lithium polysuldes (LiPSs) and the volume
expansion during charge/discharge have greatly restricted the
electrochemical performance of lithium–sulfur batteries.3–6

Ideally, effective hosts for sulfur loading should be electro-
chemically and mechanically stable to resist the volume
expansion and should be conductive. Moreover, strong polar
sites should be introduced for anchoring LiPSs during the
charge–discharge process to alleviate the shuttle effect.
Frameworks based on graphenes,7–9 carbon nanotubes,10–12 and
metal–organic frameworks (MOFs)13 have been extensively
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reported. However, the weak interaction between LiPSs and
carbon materials results in a severe shuttle effect. Nitrogen-
doped carbon materials with relatively strong polar sites can
be used as sulfur hosts for preventing the LiPS diffusion.14–18

However, their short-range and long-range electronic conduc-
tivities are relatively low.

MXenes (Mn+1XnTx, where T represents the surface groups
including = O, –F and –OH), a family of 2D materials, have
attracted great interest in energy storage elds.19–24 Ti3C2Tx,
which is the rst reported and most studied MXene, has been
extensively reported as a sulfur host owing to its high electrical
conductivity (>15 000 S cm−1), considerable mechanical
strength and tunable surface terminations.25–31 To fully utilize
the advantages of the high conductivity of Ti3C2Tx and the
strong polar sites of carbon nitrides, herein, a free-standing lm
electrode comprising sulfur-infused nitrogen-doped carbon
embedded in Ti3C2Tx nanosheets (NC–S/Ti3C2Tx) is reported.32

On the one hand, the highly conductive Ti3C2Tx network
provided electronic conduction “highways”, which ensured the
full utilization and enabled the fast electrochemical reaction of
sulfur electrodes.33–36 On the other hand, nitrogen doping
introduced local strong polar regions in carbon materials.
These polar sites interacted strongly with S−or Li+ in LiPSs to
form S–N or Li–N bonds, which enhanced the adsorption
capacity and effectively avoided the shuttle effect compared
with undoped materials.37–41 Moreover, NC-S was wrapped
between Ti3C2Tx nanosheets, which further prevented the
diffusion of LiPSs and adapted to the volume expansion.
Compared to reported strategies, this strategy avoided the
preparation of slurry for scraping, and the preparation process
was simpler. Furthermore, as this strategy does not require
additional conductive carbon black and binders (such as PVDF),
RSC Adv., 2025, 15, 15443–15449 | 15443
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compared with the traditional slurry process, this approach
ensured the conductivity of the electrode along with improving
the proportion of sulfur.42,43 Accordingly, the NC-S/Ti3C2Tx free-
standing cathode exhibited signicantly improved electro-
chemical performances in terms of cycling life, rate capability,
and charge transfer resistance, with high sulfur loadings.
Fig. 2 SEM images of (a) NC and (b) NC-S, (c) TG curves of S andNC-S.
SEM images of (d) NC-S/Ti3C2Tx slurry and (e) free-standing NC-S/
Ti3C2Tx film. (f) XRD patterns of sulfur, NC, Ti3C2Tx MXene and free-
standing NC-S/Ti3C2Tx.
Results and discussion

The preparation of a free-standing NC-S/Ti3C2Tx lm is sche-
matically illustrated in Fig. 1 (experimental details are provided
in the ESI†). Hydrothermally synthesized NC spheres were used
as hosts for sulfur loading due to their porous structure formed
during the carbonization process.44,45 Besides, nitrogen doping
in the cracks of NC by the pyrogenic decomposition of mela-
mine created strong C–N polar anchoring sites.46 At 155 °C, the
molten sulfur diffused into the defects of the as-obtained NC to
form NC-S.47 The NC spheres were small in diameter (2 to 10
mm, shown in Fig. S1†), and hence, they were easily encapsu-
lated in free-standing hybrids formed by the Ti3C2Tx intersect-
ing sheets, ensuring the structural stability as the sulfur
reservoir. Upon vacuum ltration of the solution of monolayer
Ti3C2Tx MXene colloidal and NC-Ss, followed by a freeze-drying
procedure, a free-standing NC-S/Ti3C2Tx lm was obtained.

In order to indicate the surface morphology of the free-
standing NC-S/Ti3C2Tx lm, SEM characterizations were per-
formed. In the microscopic view, the as-obtained NCs exhibited
very rough surfaces and inner sections aer the hydrothermal
reaction and annealing (Fig. 2a and S2a†), which is benecial to
a higher sulfur loading and abundant adhesion sites. Aer
sulfur loading, the sulfur infusion leveled some of the trenches
that made the NC-S surface smoother than NC (Fig. 2b). Due to
the relatively weak sulfur xation by NC alone, a duplicate
protection mechanism is needed outside of the NC-S.48 That is,
nitrogen-doped porous carbon is used as a sulfur carrier (NC-S),
MXene nanosheets are used to wrap NC-S, and LiPSs are
adsorbed by the rich surface groups of MXenes to achieve
further sulfur xation. Fig. S2b and S2c† reveal how NC-S was
Fig. 1 Schematic of the fabrication of slurry coating and free-standing
NC-S/Ti3C2Tx MXene hybrids.

15444 | RSC Adv., 2025, 15, 15443–15449
locked in Ti3C2Tx MXene cross-bedding structures. Compared
with the NC-S/Ti3C2Tx slurry, more homogeneous Ti3C2Tx

MXene sheets on the lm surface (shown in Fig. 2d and e)
provide a stronger encapsulation of NC-S. On the one hand, the
dense MXene sheet can physically block the shuttle of lithium
polysuldes; on the other hand, it can also rely on the rich
surface groups of MXenes to chemically adsorb lithium poly-
suldes. Compared with NC alone, the sulfur xation effect is
more signicant.

Nitrogen adsorption/desorption isotherm measurements
were implemented to analyze the surface properties and the
pore size distribution. As shown in Fig. S3a,† The NC owns
a type IV isotherm with a small hysteresis loop, showing
numerous macro- and micro-pores on NCs. The BET measure-
ments presented in Table S1† illustrate that NCs have a large
specic surface area up to 489 m2 g−1 and a high pore volume of
1.69 cm3 g−1 that guarantee a high sulfur loading. The HK
model was employed to calculate the pore size distribution of
the slit voids on the NC surface. The plot shown in Fig. S3b†
indicates that the slit diameters are mostly between 0.5 and 0.8
nanometers in size, proving the existence of abundant nano-
scaled micropores, which are benecial for strengthening the
restraining of LiPSs.49 Thermogravimetric Analysis shown in
Fig. 2c reveals that the sulfur loading factor of NC-S is 80.4%,
which is at a high level compared with the traditional carbon-
based host (generally 70%),50 and consequently, the sulfur
weight content of the prepared free-standing NC-S/Ti3C2Tx lm
is 60.5%. In addition, due to the xation of sulfur, the sulfur in
NC-S has a higher initial decomposition temperature and end
temperature, and shows better thermal stability as a whole.

The as-prepared material crystal structure was investigated
by XRD. As shown in Fig. 2f, the peaks at 7.9°, 23.7°, 31.6° and
39.5° display the restacking 2D nature of the Ti3C2Tx MXene
(corresponding to the crystal faces of (002), (006), (008), and
(0010), respectively).51 However, the peaks that refer to sulfur
are quite grading because the original crystalline sulfur (S8)
became amorphous during the melt infusion penetration
process. This plot also indicates that there is almost no residual
sulfur on the lm surface.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Electrochemical characterization of the as-prepared Li–S cells.
(a) CV profiles of lithium–sulfur cells with NC-S/Ti3C2Tx slurry/free-
standing NC-S/Ti3C2Tx cathodes. (b) Cycling performance at 0.1C of
lithium–sulfur cells with the NC-S/Ti3C2Tx slurry and free-standing
NC-S/Ti3C2Tx cathodes at 1.2 mg cm−2 sulfur loading. (c) Nyquist plots
of the lithium–sulfur cells with the NC-S/Ti3C2Tx slurry and NC-S/
Ti3C2Tx free-standing cathodes. (d) Rate performance of the lithium–
sulfur cells with the NC-S/Ti3C2Tx slurry and free-standing NC-S/
Ti3C2Tx cathodes.
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The corresponding EDS elemental mapping of NC (Fig. S4†)
illustrates the uniform nitrogen doping of NC. Moreover, the
EDS elemental mapping indicates the uniform sulfur attach-
ment to the shallow voids, as shown in Fig. 3f. Similar to what
SEM displayed, weaker signals shown in Fig. 3l than in Fig. 3i
conrm that fewer sulfur-containing particles exist on the free-
standing lm surface owing to better sulfur immobilization.52

To exclusively evaluate the electrochemical performance of
the prepared NC-S/Ti3C2Tx cathodes, a series of tests were
conducted. Fig. 4a presents the cyclic voltammetry results of
lithium–sulfur batteries with the NC-S/Ti3C2Tx slurry cathode
and free-standing NC-S/Ti3C2Tx cathode. For the simple mixture
slurry cathode, two evident reduction peaks can be found at
1.95 V and 2.25 V that are attributed to the reduction from S8 to
LiPSs (Li2Sn, 4# n# 8) and a second reduction to Li2S or Li2S2.53

Inversely, the oxidation peak at about 2.48 V corresponds to the
multi-stage oxidation of Li2S/Li2S2 to LiPSs and sulfur. The
reduction peaks of the free-standing cathode slightly increase
(0.03 V), while the oxidation peak decreases (0.01 V) compared
with the NC-S/Ti3C2Tx slurry cathode.54 This is due to the
addition of large-area MXene nanosheets and there is no need
to use insulating materials such as binders. The conductivity of
the electrode is greatly improved compared to the traditional
slurry, thereby improving the kinetics of the redox reaction and
improving the reversibility of the reaction.

Fig. 4b shows the cycling performance between NC-S/Ti3C2Tx

slurry and free-standing NC-S/Ti3C2Tx cathodes. Their initial
reversible specic capacities are 1240 mA h g−1 and
1156 mA h g−1 (because the NC-S/Ti3C2Tx slurry cathode owns
lower sulfur percentage caused by the addition of conductive
carbon and PVDF, at 48.4%). Aer 100 charge and discharge
cycles at 0.1C, 57.7% and 79.5% of capacities at 715 mA h g−1

and 919 mA h g−1 were retained, respectively. The free-standing
NC-S/Ti3C2Tx cathode, with a fading rate at 0.21% represents
Fig. 3 SEM images and EDS mappings of C and S of (a–c) NC before
sulfur infusion, (d–f) NC-S, (g–i) NC-S/Ti3C2Tx slurry and (j–l) the free-
standing NC-S/Ti3C2Tx film.

© 2025 The Author(s). Published by the Royal Society of Chemistry
better cycling performance, demonstrating its excellent cycling
stability. These results match the charge and discharge plateaus
well in Fig. S5,† and the free-standing one shows more distinct
and atter plateaus during the cycles. In Fig. S6,† the coulombic
efficiency shows a slight increase during the rst ten cycles due
to the unstable LiPS dissolution aer original cycles, and
through comparison, the free-standing network does not affect
the coulombic efficiency.55 Fig. 4c shows the Electrochemical
Impedance Spectroscopy (EIS) test plots. According to the
gure, the charge transfer resistance (Rct) values of the free-
standing cathodes (25.6 U) are lower than those of the slurry
cathodes (29.5 U) because of the excellent conductivity of the
more regular free-standing NC/Ti3C2Tx network. In addition,
the smaller arc area at high frequencies accounts for a more
robust redox reaction and the curve with a higher slope in the
low-frequency zones indicates easier ion diffusion into the free-
standing cathode, which strengthens the rate capacities of
batteries.50

The rate capabilities of the NC-S/Ti3C2Tx slurry and free-
standing lm cathodes are shown in Fig. 4d. Better reversible
capacities of 1150, 985, 856, 791 and 746 mA h g−1 were ob-
tained at 0.1C, 0.2C, 0.5C, 1C and 2C with the free-standing
cathode. In contrast, the capacity drop of the NC-S/Ti3C2Tx

slurry cathode-based cell is more pronounced, especially under
a heavy current. Therefore, the capacity reservation of the free-
standing NC-S/Ti3C2Tx cathode during the current density
switch to 2C (64.9%) and back to 0.1C (82.4%) was larger than
what NC-S/Ti3C2Tx slurry cathode possesses (47.0% and 64.2%).
At the same time, the electrochemical performance of the two
electrodes is better than that of the previous electrode with only
a single variable (i.e., only adding nitrogen-doped porous
carbon or only adding Ti3C2Tx MXene), which proves the
RSC Adv., 2025, 15, 15443–15449 | 15445
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Fig. 6 Comparison of the free-standing NC-S/Ti3C2Tx cathodes
before and after 200 charge–discharge cycles. (a) Photographs of the
cathode films before and after 200 cycles at 2C. SEM image of (b)
uncycled and (c) cycled free-standing NC-S/Ti3C2Tx films. XPS (d) S 2p
spectrum, (e) C 1s spectrum and (f) Ti 2p spectrum of the pristine
Ti3C2Tx and free-standing NC-S/Ti3C2Tx films before and after 200
cycles at 2C.
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synergistic effect of the two materials.56,57 As shown in Fig. 5a
and b, the plateaus drop less for free-standing NC-S/Ti3C2Tx

cathodes. It means that the two-stage redox reaction continued
steadily even at high rates with better rened LiPS shuttle
restriction.

Under heavy current and high sulfur loading, the free-
standing NC-S/Ti3C2Tx electrode still shows excellent cycling
performance. At a 2C measurement, as shown in Fig. 5c, the cell
delivers a capacity of 624 mA h g−1 aer 200 cycles, resulting in
an average capacity depletion rate of 0.12%. The charge/
discharge proles at 2C of the 1st, 50th, 100th, 150th and
200th cycle shown in Fig. S7† conrm the great capacity
reversibility because of the stable charge/discharge plateaus.36

When the cathodes were fabricated with a sulfur loading of
5 mg cm−2, the initial areal capacity was 3.41 mA h cm−2 at 0.5C
with a capacity degradation rate of 0.09% over 200 cycles
(Fig. 5d). As summarized in Table S2,† the stable LiPS
restraining by polar nitrogen and Ti3C2Tx network provides
a possibility for the preparation of batteries balancing consid-
erable energy density and cycle rate well.

To verify the outstanding chemical durability of the free-
standing NC-S/Ti3C2Tx structure, electrodes aer 200 charge/
discharge cycles at 2C were analyzed. In Fig. 6a, there is
almost no macroscopic injury on the lm surface, and the
cathode can still be removed nondestructively from the sepa-
rator. The SEM view (Fig. 6c) of the cycled cathode shows that
the surface of the lm remains undamaged, with no NC-Ss
scattered, compared with the uncycled lms.

The XPS investigations were performed to analyze the
surface chemistry change of the NC-S/Ti3C2Tx lm. The overall
Fig. 5 First discharge and charge curves of (a) NC-S/Ti3C2Tx slurry and
(b) free-standing NC-S/Ti3C2Tx cathodes at different rates. Cycling
performance and coulombic efficiency of the free-standing NC-S/
Ti3C2Tx cathode-based cells (c) at 2C and (d) at 0.5C (5.0 mg cm−2

sulfur loading).

15446 | RSC Adv., 2025, 15, 15443–15449
spectrum indicates that the free-standing lm contains mainly
C, O, Ti and S (Fig. S8†), and their atomic percentages are
32.36%, 22.93%, 30.99%, and 2.71%, respectively (Table S3†).
There are two main peaks: S 2p3/2 (164.7 eV) and S 2p1/2 (163.3
eV) in the S 2p high-resolution spectra shown in Fig. 6d. The
resolved C 1s and Ti 2p spectra of free-standing NC-S/Ti3C2Tx

are displayed in Fig. 6eii and fii, The C 1s core level was matched
with four peaks at 281.8, 284.8, 285.9 and 288.7 eV that could be
assigned to C–Ti, C–C, C–O, and O]C–O in the pristine Ti3C2Tx

MXene. Besides, the Ti 2p plot was tted with three doublets (Ti
2p3/2 to Ti 2p1/2) with a 5.6 eV peak gap and an area ratio of
approximately 2 : 1. Signals at 455.5 eV and 461.4 eV are related
to Ti–C bonds. Peaks located at 462.7 eV, 461.9 eV, 457.1 eV and
456.0 eV correspond to Ti2+ and Ti3+ states that are associated
with the existence of Ti3C2(OH)x and Ti3C2Ox. All these factors
demonstrate the unoxidized states and chemical interaction of
NC-S and Ti3C2Tx sheets. Aer comparing the S 2p XPS surveys
before and aer cycles in Fig. 6d, the new Ti–S peak (162.8 eV)
formation reveals the strong trapping effect (S–Ti–C interaction)
between LiPSs and the protective network. The resolved spectra
of Ti 2p and C 1s conrm that the free-standing lms are
preserved well aer 200 cycles. We can observe all 4 signals
corresponding to carbon-contained bonds in both Fig. 6eii and
eiii. Similarly, the Ti 2p spectrum of the cycled free-standing lm
shown in Fig. 6fiii also contains all initial peaks. In addition, the
relative decrease proportion of C–Ti in the C 1s spectra indicates
the breakage of C–Ti bonds aer cycles and the increase
contribution of titanium oxide due to electrochemical oxidation
can also be observed. Furthermore, the cycled Ti 2p spectrum
shows an extra signal indicative of Ti–S bonds exactly corre-
sponding to the variation in the S 2p spectra. In conclusion, the
almost undamaged free-standing hybrids prove their reliability
for sulfur reservoirs.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The superior cycling and rate performances of the free-
standing NC-S/Ti3C2Tx Li–S batteries are ascribed to the free-
standing encapsulation. First, the high electronic conductivity
of the NC/Ti3C2Tx network remarkably lower the electron
transfer resistance, thus improving the sulfur utilization.
Second, abundant polar sites of NC and Ti3C2Tx MXene can trap
the polysuldes well to restrict the shuttle effect. Third, the tight
free-standing stacks provide powerful barriers against volu-
metric expansion, further enhancing the stability performance.

Conclusions

In summary, we have developed a method to fabricate a free-
standing NC-S/Ti3C2Tx MXene lm for Li–S batteries. During
synthesis, the nanoscale pores of NC were infused with sulfur,
forming a close adhesion. MXene monolayers then wrapped
these NC-Ss to constitute an interlaced free-standing composite.
The good electronic conductivity of the NC and Ti3C2Tx network
reduced the electron transfer impedance, thus enhanced the
reaction kinetics. With the strong interaction between LiPSs,
NC and Ti3C2Tx sheets, the free-standing hybrid effectively
lowered the lithium polysulde shuttle in the electrolyte. With
these merits, the free-standing NC-S/Ti3C2Tx cathodes exhibited
outstanding cyclic and rate capacities. This study reported the
application of the free-standing NC-S/Ti3C2Tx lms in Li–S
batteries, and they can also be applied in other energy storage
devices such as sodium–sulfur batteries.
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