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Scandium-substituted Nay x4, Sc,Zr,_,Si,P3s_O1> NaSICONs have emerged as promising electrolyte
materials for all-solid-state sodium batteries. However, the comprehensive investigation of these multi-
element structures is challenging due to their vast compositional space, leading to a limited number of
compositions explored thus far. In this study, we address this issue by employing low-cost, yet high-
precision force field molecular dynamics simulations based on density functional theory to investigate
the Na™ mobility and resulting conductivity in Nayx1,SCyZrs_,SixPs_ O, (0 = x = 3, 0 =y = 2). Our
findings show that the incorporation of Sc3*- and Si**-substituents enhances the conductivity, achieving
values of 1072 S cm™* at room temperature for moderate to high substitution degrees. Moreover, our
study demonstrates the efficacy of the applied methodology for large-scale screening, enabling the
exploration of extensive configurational spaces of NaSICONs and other materials for potential use as

rsc.li/rsc-advances solid-state electrolytes.

1. Introduction

Sodium-based energy storage systems have a longstanding
history, but it is only in recent years that they stepped into the
spotlight as concerns about limited resource availability of the
market-dominating lithium-ion batteries prompted exploration
of alternative solutions."* Sodium-ion batteries (NIBs) hold
great promise as they provide a broad range of new possibilities,
particularly for large-scale energy storage applications owing to
the similar chemical properties of sodium and lithium, the
abundance of sodium resources, and potential cost
reduction.’™ Meanwhile, all-solid-state batteries (ASS) are
being considered as the next generation of batteries due to their
prolonged lifetimes, wide temperature ranges, and high energy
and power densities.'*>*

The performance of ASS batteries depends crucially on the
applied solid-state electrolyte (SSE), which must provide high
conductivity at ambient temperatures. Among Na'-based SSEs,
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sodium superionic conductors (NaSICONs) have garnered
significant attention, given their good thermal and (electro-)
chemical stability, high ionic conductivity, and promising
performance for ASS-NIBs."”>>*”*° Several articles provide an
overview of the developments of NaSICONs.** The parent
NaSICON composition Na,,Zr,Si,P;_,Oq, (NZSP) exhibits the
rhombohedral (R3c) structure above 150 °C, but undergoes
a monoclinic (C2/c) phase transformation for 1.6 < x < 2.4 at
room temperature.’*>®* As shown in Fig. 1a, the structure
consists of a rigid three-dimensional framework composed of
corner-sharing ZrOg-octahedra and PO,-tetrahedra, between
which Na1 (6b) and Na2 (18e) sodium ion sites are located. In
the non-substituted structure (x = 0), the energetically more

7

Fig. 1 (a) The primitive rhombohedral structure of NaSICONs with
composition Nay,,Zr»SiPz_,O1,. (b) The correlated Na* pushing-out
conduction mechanism, indicated by arrows. One Na2 ion jumps onto
an occupied Nal site pushing the Nal ion onto an adjacent unoccu-
pied Na2 site. Key: Nal (dark green), Na2 (light green), ZrOg (yellow),
PO4/SiO4 (blue).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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favorable Nal sites are fully occupied. As the P° sites are
substituted by Si**, the Na2 site occupation increases to satisfy
the overall charge neutrality.’>*"**%57°¢” The diffusion of the
Na' charge carriers is based on the correlated knock-off mech-
anism which involves the potential energy transfer from higher
energy Na2 ions to lower energy Nal ions.®® This diffusion
mechanism has already been proposed and studied in detail for
various Na® and Li* conductors, such as NaSICONs,®7°
garnets,®” and Li,CO;.”* As illustrated in Fig. 1b, a Na2 ion
jumps onto an adjacent occupied Nal site and pushes the Nal
ion onto a neighboring unoccupied Na2 site. The bottlenecks of
the migration are formed by opposing ZrOs-octahedra and PO,-
tetrahedra adjacent to the pathway,3%51,35:60:61,63,65,72-79

The three-dimensional Na' mobility results in high ionic
conductivities, e.g. up to 5.2 x 10°* S cm™* for Naj 4Zr,Si; 4
P, 601, at room temperature.*> However, NZSP is associated
with a number of challenges. First, obtaining stoichiometric
pure compositions is difficult due to the formation of secondary
phases, such as ZrO,. Second, the microstructure depends
strongly on the sample preparation method. Both aspects have
significant impact on the ionic conductivity.>**>*

Thus, numerous efforts in the past have been made to
further improve NaSICONSs in competition with liquid electro-
lytes. An outstanding feature of NaSICONs with the general
formula NaM,(A0,); is the ability of accommodating a wide
range of M and A cations in the structural framework,** making
multi-element substitution a feasible strategy for enhancing the
performance of NaSICONs. For example, the substitution of Zr**
by Sc** in NZSP leads to the suppression of secondary phases,
optimization of the microstructure, and thus high Na*
conductivities.®** Ma et al reported a remarkable total
conductivity of 4.0 x 107> S em ™" for Naz 4Sc 4Z1; ¢Si,P101, at
room temperature.®* In addition, Sc**-substituted structures
exhibit a wide electrochemical stability window, suggesting
both the application of high voltage cathode materials and the
direct utilization of sodium metal anodes to boost the energy
density.*>*

However, the multi-element substitution of NaSICONs
results in a vast compositional search space that requires fast,
low-cost methods for investigating Na" mobility and resulting
conductivity. In this regard, computational techniques, such as
molecular dynamics (MD) simulations, have proven as
a powerful tool. MD provides comprehensive structural infor-
mation and the dynamic evolution of conducting systems
without relying on prior assumptions about the migration
mechanism and pathways. Ionic jump events are directly
observed from the modelled real-time dynamics and trajecto-
ries of the ions are used to identify the diffusion mechanism
and quantify the diffusion properties. However, MD does
require the accurate description of interatomic interactions, i.e.
the potential energy surface (PES).*>*°

In ab initio MD (AIMD) simulations, the interactions between
atoms are described by first-principles methods such as density
functional theory (DFT), providing high reliability and accuracy
as well as great transferability. However, due to its high
computational expenses, AIMD is only feasible for small
systems in terms of length scale (<1000 atoms) and timescale

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

(~100 ps) limiting the number of diffusion events.”*** As
a result, diffusion properties estimated from AIMD simulations
are often compromised by poor statistics and require high
simulation temperatures to ensure a sufficient number of ion
jumps.”'”

In contrast, classical force field MD (FFMD) simulations
employ interatomic potentials to model the interactions
between the ions. The PES is described as a function of the atom
positions rather than a variational ground state energy as in
AIMD, which significantly reduces computational demands.
Consequently, FFMD simulations are amenable for larger
systems with up to millions of ions and longer simulation times
(>1 ns), resulting in lower statistical variances in the determined
diffusion properties. However, the accuracy of FFMD simula-
tions depends on the availability and suitability of the FF
parameter sets, which are usually restricted to a limited number
of compounds and properties.®*®

To tackle the trade-off between accuracy and efficiency in MD
simulations, Kobayashi et al. introduced a high-throughput
method for producing reliable FFs using a metaheuristic
Cuckoo Search (CS) approach based on structure information
from first-principles calculations. In this way, low-cost and
accurate FFMD simulations are ensured.*®*

It should be noted that data-driven machine learning
potentials (MLP) has emerged as a powerful tool for materials
exploration and development, providing an alternative to AIMD
and classical FFMD simulations.®"* In particular, Neural
Network Potentials (NNPs) have been demonstrated to repro-
duce AIMD results with high accuracy.'®'*® However, NNPs
evaluate energy and forces in a purely empirical manner, which
requires large amounts of training data. Additionally, their use
in extrapolated spaces, beyond the training set, presents chal-
lenges. In contrast, the FF employed in this study, based on
a physical model, is expected to maintain a higher degree of
consistency even in extrapolated spaces. Moreover, NNPs face
limitations in terms of computational time. For instance, in this
study, the simulation of 1 ns (10° steps) of a system with
approximately 3500 atoms requires about 12 hours on 2 CPU
cores. By comparison, performing the same calculation using
M3GNet.py,"*”'*® which is known for its relatively fast perfor-
mance,'*'"® along with the Atomic Simulation Environment
(ASE)"* on 16 CPU cores, requires 458 hours. Thus, FFMD
simulations are considered advantageous for studies that
comprehensively evaluate a large number of compositions at
multiple temperatures.

Here, DFT based FFMD simulations of
Nay4x4,S¢)Zr, SiyP; 015 (0 = x = 3; 0 = y < 2), an example of
a promising NaSICON compound, are performed to compre-
hensively investigate the Na“ transport behavior in multi-
substituted NaSICONs. Initially, the FF parameters are opti-
mized with the CS algorithm leveraging structural information
acquired from short AIMD simulations of a training system. We
show that the FF parameters obtained for the training system
with a specific composition can be transferred to target systems
with arbitrary compositions. The optimized potential parameters
are then employed in the subsequent FFMD simulations across
the entire compositional range of Nay,,Sc,Zr,_,Si,P;_4O». Na*
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diffusion coefficients are derived from the collective diffusion
events described by their mean squared displacement. In addi-
tion, estimated radial distribution functions are analyzed to
understand the influence of Sc**- and Si**-substitutions on the
Na" transport behavior.

On the one hand, this study aims to deepen the under-
standing of the influences of multi-element substitution on the
transport of Na' in NaSICONS, all in pursuit of achieving high
ionic conductivity for ASS-NIBs applications. On the other hand,
this study showcases the efficacy of the applied methodology for
large-scale screening, enabling the exploration of extensive
configurational spaces of NaSICONs and other materials
promising as SSEs.

2. Methods
2.1 Force field model

FFMD simulations of Na* diffusion in Nay ,y,S¢,Zr,_,Si,P;_,01,
require an FF model that describes the ion pair interactions and
structural framework of NaSICONs. Thus, the FF model
proposed by Kobayashi et al.* is applied, which consists of two-
body potentials**'** and three-body angular potentials.***

The Morse potential is applied to describe the attractive
interactions and short-range repulsions of cation-anion
pairs,'*?

P<(3) = Dogfelulur ] et} gy

where D, ; is the equilibrium well depth defined by dissociation
energy, «;; describes the width of the potential associated to the
bond softness, r; is the distance and r,; the equilibrium
distance between the /™ and j™

The screened Coulomb potential is added to account for the
repulsive interactions among cations or anions. Since the
Coulomb potential prevents cation or anion pairs with a small
distance, their short-range repulsion can be neglected,"*

erfe (;—) @)

where ¢, is the permittivity of the vacuum, ¢; and g;, are the
formal charges of ions i; and i, and r;;, is their ionic distance.

1 449,

Coul
@iy (Finiy) =
iiy 102 47'5'60 Fii

The included complementary error function erfc< 1”2) is
Piyi,
a function of the ion distances over the screening length p; ; =

[ri, + 1), which is determined by the sum of the effective radii r;,
and r;, of the ions 7; and i, and the screening factor f defining
the radius of the Coulomb potential.

To avoid discontinuities in the potential energy and force,
the following smoothing function with the cutoff radius r.*” is
applied to both the Morse and Coulomb pair potential:

2b an do(r
—o) = (=)0

r=re

(3)

In addition, the Stillinger-Weber (SW) angular potential is
applied to describe the framework of the non-migrating cations

and oxygen anions,"**
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Pijkc (Vz;/w Fik s 9:;/k) = Jojne (COS O + 70.ijk)
(4)

where r; and 1y, are the ionic distances and 0, is the angle
between the i, /", and " ion. 4 s is the equilibrium depth of
the potential well and v, j is the equilibrium angle between the
i j™ and k™ ion. The cutoff radius r.*” ensures that only
nearest neighbor configurations are considered.

In previous studies, this FF model has been successfully
applied to other solid state materials, such as LiZr,(PO,);3,”"*
Lag; _y3Li,NbO;, 1" LiAl;04,"” LizMCle,"® and La;  MF; .,
demonstrating rapid FF production with sufficient accuracy, as
described below.

2.2 Force field parameterization

The FF parameters D, ;, a;; and r, ;; of the Morse potential, p; ;, of
the Coulomb potential, and A5 and v, of the SW potential
must be determined for the Naj,,,ScyZr, ,Si,P; 1Oy, system.
Thus, FF parametrization was conducted using a training
system with 120 atoms according to the following steps:

(i) AIMD simulations were performed to obtain the equilib-
rium volume (V;), the radial distribution function (RDF) and the
bond angular distribution function (ADF) by averaging the ionic
configurations of every 10™ step, omitting the first 800 steps to
ensure that the system is in equilibrium.

The RDF g;(r) describes the particle density as a function of
the distance r from the reference atom i to a surrounding atom j
according to eqn (5),

LSt S potr- ®)

i j>i

g (r) 4TCi2 N;
with N; and N; being the numbers of the ions i and j,
respectively.

The ADF h,;(f) describes the particle density as a function of
the bond angle 6, between the reference atom i/ and two other
atoms j and k within a given distance (2.8 A) according to eqn (6),

Nic
/’l,jk N Z Z Z 0 et]k (6)
i j>i k>j>i

with N;, N; and N being the numbers of the ion {, j and &,
respectively.

Both RDF and ADF are determined by averaging the same
element combinations, such as Sc-O, Zr-O, Si-O, P-O, and O-
Sc-0, 0-Zr-0, O-Si-0, O-P-O for Naj,Sc,Zr, ,Si,P;_,04,.
The RDF, ADF and V, are used as reference data in the subse-
quent FF fitting process.

(i) The metaheuristic optimization of the FF parameters was
performed by the CS algorithm™**** employing the AIMD
reference data obtained in step (i).”**° The hyperparameters in
the CS algorithm are the number of individuals (nests) in each
generation (N,,) and the fraction of individuals replaced in the
next generation by nests with new random solution (P,)."**

(iii) To evaluate the optimization process, FFMD simulations
were performed using the obtained FF parameters. The results

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of the simulations were analyzed in the same way as for AIMD in
step (i). The optimization process was checked for consistency
using the loss function L assessing the differences between the
RDF, ADF, and V, values obtained by FFMD and AIMD simu-
lations (eqn (S1)-(S4) in ESIt)."*

Step (ii) and (iii) were repeated until the loss function value
met the defined convergence criteria.’®*®

2.3 Force field molecular dynamics simulations and analysis

With the optimized FF parameters, FFMD simulations were
performed for a total of 119 compositions of
Nayix1yZr5 ySC,SiyP; 01, (0 = x = 3; 0 = y = 2) in the
temperature range of 298 = T/K = 798 in 100 K steps.

From the FFMD simulations, the mean squared displace-
ment MSD of the migrating Na" (eqn (7)) is obtained, which is
used to determine the tracer diffusion coefficient D* (eqn (8)):

v (Ir(t) = r(O)F)

MSD = - 7
S Z; ¥ ()
1 MSD
S s
D= 2d[1LI£10 t (8)

where r{t) and r,(0) represent the position of ion i at time ¢ and
at t = 0, respectively, N is the number of mobile ions, d is the
dimension of diffusion. D* describes the macroscopic ion
transport and is related to the long-range diffusion coefficient
D, by the Haven ratio Hg, which indicates the correlation of the
trajectories of the migrating ions:***®

D* = HyD, (9)

D, is described by the Nernst-Einstein relation:
u,-kB T
qi

D; = (10)
where u; is the mobility and g; is the charge of ion i, T is the
temperature, and kg is the Boltzmann constant. The mobility of
the ion i characterizes its conductivity o; = u,q;c; with ¢; being
the ion concentration.

Assuming Hy = 1, which is expected to have minimal impact
on the results, the ionic conductivity is determined using the
MSD, and the activation energy E, is derived from the Arrhenius
relationship:

2
qi Ci

By
D*=Ae kT
ks ’

;T = (11)

Hereafter, D* will be referred to as D for simplicity.

2.4 Computational details

2.4.1 Ab initio molecular dynamics. NpT-AIMD simula-
tions of the training system Na;ScZrSiP,0;,, containing 120
atoms, were performed for 7 ps with 1 fs time steps at 298 K to
collect the data for the FF parameter fitting. The calculations
were conducted based on Kohn-Sham DFT***** using the
Vienna Ab initio Simulation Package (VASP)."*>**® In the AIMD

© 2025 The Author(s). Published by the Royal Society of Chemistry
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simulations the Parrinello-Rahman method with the Langevin
thermostat was employed.”®*** The generalized gradient
approximation (GGA) functional parametrized by Perdew-
Burke-Ernzerhof (PBEsol)*** was used. The projected
augmented wave method (PAW)“>'** was applied and plane
waves'® with an energy cut-off of 520 eV were employed. The
electronic convergence criterion was set to 10> eV. To sample
the Brillouin zone, a 2 x 2 x 2 gamma centered k-point mesh
was used, following the Monkhorst and Pack scheme.”* The
2p°®3s’ electrons of sodium, 2s”2p® electrons of oxygen,
3s%3p°®3d'4s? electrons for scandium, 4s”4p®4d>5s” electrons of
zirconium, 3s*3p” electrons of silicon and 3s*3p® electrons of
phosphorus were treated as valence electrons.

2.4.2 CS optimization. FF parameters of the Morse,
Coulomb and SW potentials were determined using the Nagoya
Atomistic Simulation Package (NAP).”**° The two- and three-
body cutoff radii were set to 72> = 7.0 A and r.*? = 3.0 A,
respectively. The hyperparameters of the CS optimization were
set to N, = 36 and P, = 0.25.

2.4.3 Force field molecular dynamics. All FFMD simula-
tions were performed in cells with random Sc/Zr and Si/P
arrangement using NAP.?**° Initial NpT-FFMD simulations of
the training system Naz;ScZrSiP,0;,, containing 120 atoms, were
performed for 20 ps with 2 fs time steps at 298 K to validate the
CS-derived FF parameters.

With the optimized FF parameters, FFMD simulations of
supercells with composition Nay.,,Zr,_,S¢,Si,P;_ 01, (0=x=
3; 0 = y = 2) with up to 4013 atoms were performed in the
temperature range of 298 = T/K = 798 in 100 K increments.
First, NpT-FFMD simulations were conducted for 10 ps with 1 fs
time steps to optimize the cell volume. Subsequently, NVT-
FFMD simulations were performed for 1 ns with 1 fs time steps.

The Langevin thermostat, with a relaxation time of 50 fs, was
used to control the temperature in both the NpT and NVT
ensembles. For pressure regulation in the NpT ensemble, the
Berendsen barostat with isotropic coupling and a relaxation of
50 fs was employed. To evaluate the influence of the thermostat
on ionic diffusion, additional FFMD simulations were con-
ducted under the NVE ensemble, omitting a heat bath. These
simulations show that the diffusion coefficients increase by
approximately a factor of 1.4 on average (Fig. S11). Nevertheless,
the overall trend of concentration-dependent diffusion behavior
remains largely unchanged.

3. Results

3.1 Validation of optimized force field parameters

The optimization of the FF parameters of the six-component
NaSICON structure Nay1,4,S¢yZ1, SiP3_xO1, follows
a multiple-step process detailed in Section 2 of the ESL.f The FF
parameters were optimized using the training system Na,-
ScZrSiP,0;,. For further validation, the obtained FF parameters
are applied in FFMD simulations across the entire composi-
tional range of Nay.,Zr,Si,P;_,O1, (0 = x = 3) at 598 K and the
resulting conductivities are compared with literature values.
These compositions and temperature are chosen due to the
data available in the literature,

extensive allowing
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Fig.2 Comparison of Na* conductivity of Na;,,Zr»SixPz_O15 (0 = x <
3) at 598 K obtained by FFMD simulations using FF parameters derived
from the CS optimization in the NasScZrSiP,0O;, training system with
literature data obtained from experimental studies®+5255¢¢ and KMC
simulations®*** at 573 K.

a comprehensive comparison. Fig. 2 shows the comparison of
the resulting conductivities with literature data from experi-
ments and KMC simulations.**>°%¢%6135 Although, the data in
the literature exhibit significant variation that exceed the
uncertainty of the simulation, the conductivities obtained from
FFMD simulations in this work and the literature data show
similar dependence on the substitution degree x. This indicates
that the FF parameters not only adequately describe the NaSI-
CON structure but also capture the interactions between the
migrating Na“ and both the structural framework and the
neighboring Na', which are crucial for the Na* transport in
NaSICONs, as highlighted in our previous studies.’>'*¢ It is
shown that the parameters originally obtained for the training
system with the specific composition Na;ScZrSiP,0;, can be
applied to the entire compositional range of
Nayy4,SCyZr, ,Si,P;_O1s.

3.2 Microscopic Na" diffusion

Since the optimized FF parameter adequately describe the
NaSICON system, NVI-MD simulations are conducted using
this FF parameter set (Table S31) to investigate the Na' diffusion
behavior in Nay 4,21, ,Sc,Si,P; 04, (0 = x = 3; 0 <y =< 2) over
the temperatures range of 298 = T/K =< 798. Information about
the microscopic Na* diffusion behavior can be directly obtained
from the MD simulations.

Fig. 3 depicts the resulting density plot of the accumulated
trajectories of the Na' in NazScy 5Zrg5Sig3P,70,, over the
simulation time, revealing the well-connected three-
dimensional Na* diffusion pathways between the Nal and
Na2 sites that enable the long-range Na' transport. This
conduction pathway is in excellent agreement with the findings
of Deng et al.,"” who used a combination of FFMD simulations
with parameters of the interatomic potentials developed by

18228 | RSC Adv, 2025, 15, 18224-18236
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Fig. 3 The density plot of the accumulated trajectories of Na* ions in
NazScy5Zrg5Sig.3P2701, over the MD simulation time. The close-up
view shows the well-connected diffusion pathways between the Nal
(light green) and the Na2 (dark green) sites.

Pedone et al,” bond valence energy landscape method,
maximum-entropy method/Rietveld analysis method.

Fig. 4a depicts the resulting MSDs of the Na* in Na;Sc, 5-
Zr, 5Sip.3P, 7,04, at all simulation temperatures. In Fig. 4b, the
MSDs of all other ions in the same compound are shown for 698
K. As anticipated, solely the Na* diffuse in the cell, whereas 0>~
Sc**, zr**, Si**, P°* vibrate around their initial equilibrium sites.

3.3 Exploration of the configurational space

The microscopic Na* diffusion behavior is accurately captured
using the optimized FF parameter set. Consequently, the
diffusion coefficient, conductivity, and activation energy are
predicted across the entire configurational space of
Nayix4ySeyZr, Si,P; 01, (0 = x = 3; 0 = y = 2). As most
current studies focus on only a few compositions, this
comprehensive prediction offers a broader picture of Na'
diffusion in the Sc**- and Si**-substituted NaSICON system.

The Na" tracer diffusion coefficients D are calculated using
the MSDs according to eqn (8). Following the approach
proposed by Usler et al.,**® the error (D) in D is estimated,
indicating that (D) is two orders of magnitude smaller than D
for temperatures above 498 K. Fig. S91 illustrates the Arrhenius
plots for various compositions with different substitution ratios
and Na' concentrations, showing the anticipated linear rela-
tionship between D and temperatures above 498 K. Below this
temperature, however, deviations from the linearity are
observed, probably due to insufficient statistics of Na" hopping
events. The Na' conductivities ¢ and activation energies E, are
derived from eqn (11). For the determination of E,, only diffu-
sion coefficients obtained at temperatures between 498 < T/K <
798 are considered to ensure a statistically significant number
of Na' jumps. The calculated values of D and ¢ at 598 K, E, and
the cell volumes V of Na; ,,ScyZr, ,Si,P; 01, (0=x=3;0=}
= 2) are depicted in Fig. 5. Note that the Na" diffusion coeffi-
cients and conductivities are shown for 598 K rather than room
temperature because the conductivity values below 498 K fall
within the extrapolated range. Additionally, 598 K is particularly
relevant for practical applications, as it corresponds to the
operating temperature of NAS batteries.**

© 2025 The Author(s). Published by the Royal Society of Chemistry
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It is noted that in this study, the Sc/Zr and Si/P arrangements
were randomly configured, and thus the impact of such cation
arrangements on the diffusion coefficient of Na* are investi-
gated. For ten randomly selected compositions, four random
initial arrangements were created and the relative deviation of
the diffusion coefficient among these was evaluated. The
distribution of the obtained diffusion coefficients is shown in
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-content y and Si**-content x in

Fig. S10.1 The variation in diffusion coefficients due to differ-
ences in arrangement are very small, with the relative standard
error being a maximum of 5.6% and an average of 2.6% across
the 10 compositions. Therefore, it is concluded that the
supercell size and simulation time (1 ns) applied in this study
are sufficiently large.
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In our previous studies on Na;,M,Si,P; ,O;,, we have
revealed the dependence of the Na" mobility in NaSICONs on
both the local ionic environment of the Na" lattice sites and the
Na" migration energy.’*>'** The introduction of Si*'-substitu-
ents on P°" sites corresponds to a charged defect of —1, leading
to favorable Na*-Si** pair interactions which influence the Na*
mobility. Three compositional ranges in Na,,M,Si,P;_,0;, can
be distinguished:

(i) At small substitution concentrations (x < 0.5), there are
only a few Na* charge carriers, that are trapped in low energy
states near the introduced Si** due to the attractive Na*-Si**
interactions. The depth and number of traps increases with the
number of Si**, resulting in low conductivities and an increase
of the activation energies.

(if) At intermediate to high substitution concentrations (0.5
=< x = 2.0), Na" percolation pathways form between favorable
Si**-rich positions. The Na" mobility is thus determined by the
migration energy. As a result, the conductivity increases, and
the activation energy decreases with substitution content.

(iii) At high substitution concentrations (x > 2.0), the insuf-
ficient number of vacant Na" lattice sites lead to a decrease in
ionic conductivity while the activation energy is the lowest due
to the low migration energy. However, strong unfavorable Na'-
Na' repulsion may lead to an increase in activation energy.

Accordingly, the behavior of D (Fig. 5a), o (Fig. 5b), and E,
(Fig. 5¢) can be described as a function of the substitution
degree in Nay,,,Sc,Zr,_,Si,P;_,O4,. In this system, the substi-
tution of Sc** for Zr** and Si** for P°* creates charged defects of
—1. At minor substituents concentrations, both D and ¢ remain
low, while E, increases, although less pronounced than previ-
ously observed in Naj,,M,Si,P; ,O;,."*> This behavior can be
attributed to the limited number of Na* charge carriers being
trapped in low energy states near the introduced Sc** and Si**
ions. With increasing substitution level, percolation pathways
form between Sc*'- and Si**-rich environments, leading to an
increase in both D and ¢ and a decrease in E,. At high substi-
tution concentrations, D and ¢ decrease due to the lack of
available vacant Na" sites. But the activation energy is lowest,
particularly in the single-substituted structures, as previously
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observed in Naj,Zr,Si,P; ,O;,. Though, at high sc**- and
intermediate Si**-content, the activation energy is elevated. This
can be attributed to strong Na“-Na' repulsive interactions that
prevent the occupation of Na* sites, as found in
Na;+,Sn,Si,P;_,01,."* In summary, the simulations reveal that
the region of high diffusivity and conductivity follows a diag-
onal pattern, with increasing values observed at high Sc content
(1.3 = y = 1.9) and medium to high Si content (1.3 =< x =< 2.7).

The comparison of o (Fig. 5b) and E, (Fig. 5c) with cell
volume V (Fig. 5d) shows that there is no clear relation, sug-
gesting that the enlargement of the bottleneck area with
increased cell volume has a less pronounced impact on
conductivity and activation energy than previously proposed in
the literature.49,50,55,65,74776,78,79

Earlier studies have already experimentally investigated
some compositions of Nayy,Sc,Zr,_,Si,P;_xO1,. For example,
Lunghammer et al. employed time-domain nuclear magnetic
resonance (NMR) and broadband conductivity spectroscopy to
investigate the Na* motion in the Si**-rich composition Naj 4-
Sco.4Z11 6Si,PO;, on both short- and long-range scales revealing
activation energies of 0.13 eV to 0.15 eV and 0.29 eV to 0.31 eV,
respectively.®? Rapid Na" exchange leads to ionic conductivities
of 2 x 107* S em ™" at 25 °C.* For the same composition, Ma
et al. reported bulk conductivities of 6.2 x 107> S cm ™" at 298
K.** For the Sc*'-rich composition Naj 4Sc,Sig 4P, 6012, Kaus
et al. observed values of E, = 0.2 eVando =4 x 10 > Scm ™' at
350 K using NMR relaxometry.*® In a separate study, Guin et al.
conducted impedance measurements on the same composi-
tion, reporting an activation energy of 0.14 eV, which corre-
sponds to the bulk transport.** In comparison, MD simulations
of this study yield values of E, = 0.11 eV and ¢ = 2.6 X
1072 S em ™' at 298 K for the Si**-rich composition Naj 4Scg 4-
71, Si,PO,,, and Ex = 0.08eVand 6 =1 x 10 ' Sem ™ at 350 K
for the Sc**-rich composition Na, 4S¢,Sig4P2.6012. The values
obtained for E, in this study are consistent with the values for
short-range bulk Na® transport, capturing the elementary
diffusion processes involving local, correlated motions influ-
enced by Coulomb interactions and structural disorder.*
However, the obtained values for ¢ are one to two orders of

.
20 25 30 35 40 45 50 55 60 65 7.0
r(A)

Fig.6 Comparison of (a) RDFs of Si**~Na* (solid line) and P°*~Na™ (dashed line) in Nay 5Zr»Sig 5P» 5012 and (b) RDFs of Sc**~Na™ (solid line) and

Zr*"—Na* (dash line) in Naj 35¢o 3Zr1 7P3012.
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magnitude higher than those reported in previously cited
studies.**"** Nevertheless, our findings are in good agreement
with the conductivities determined by Subramanian et al. at 573
K, using impedance measurements for various compositions,
such as ¢ = 1.35 x 10" ' Scem ™" versus ¢ = 1.07 x 107 Sem ™!
for NajScgs5Zry 5Si1.5P1.501,."° Moreover, similar general
behavior of conductivity and activation energy as a function of
the substitution concentration have been reported in the liter-
ature for Naj,Sc,Zr, \Si,PO;, (0 = y = 0.6) and of
Naj,Sc,Si,P;_ 05, (0.05 = x < 0.8).51849¢

The effect of S¢**- and Si**-substitution on the Na* diffusion
behavior in NaSICONS is further clarified by estimating RDFs of
cations adjacent to the Na' sites. Fig. 6a illustrates der RDFs of
Si*'-Na" and P°'-Na’ in Na;sZr,SipsP,50:,. At smaller
distances, the peak of the RDF of Si*'-Na' pairs is larger
compared to that of P>*~Na™ pairs, which indicates that more
Na" are adjacent to Si*" than to P°", suggesting the Na* trapping
by the Si**-substituents.

Similarly, Fig. 6b shows the comparison of the RDFs of S¢**~
Na" and Zr**-Na* pairs in Na, ;Scq 3Zr; ;P;04,. The RDF of Sc**-
Na' pairs exhibit larger peak than that of Zr*'-Na" pairs at small
distances, indicating that the Na* are trapped by Sc**
substituents.

4. Conclusion

The Na' transport properties in NaSICONs were exhaustively
investigated in Na;,,ScyZr, ,Si,P; 01, (0 =x=3;0=y=2)
using FFMD simulations. For this purpose, FF parameters were
determined based on the structural information of the training
system Na;zScZrSiP,0;, obtained from short AIMD simulations.
The obtained FF parameters can be applied to target systems
with arbitrary compositions, which they describe with perfor-
mance comparable to DFT calculations. This underscores the
effectiveness of the FF model in characterizing the structure
and interactions in NaSICONs and in describing the Na®
transport behavior without necessitating explicit consideration
of the ion migration and transition state structure. In this way,
the exhaustive exploration of the Na' transport in NaSICONs
across a broad spectrum of compositions is feasible using fast,
low-cost, and yet accurate FFMD simulations.

NVT-MD simulations revealed the three-dimensional diffu-
sion pathways of Na" ions between the Nal and Na2 sites. The
resulting Na" diffusion coefficients D, ionic conductivities o,
and activation energies E, show similar dependence on the
substitution concentration as previously observed for the
single-substituted structures Nay.,M,Si,P; ,O;,. The Na’
transport behavior is primarily governed by the effects of Na*
trapping and percolation caused by the introduced substitu-
ents. At minor substitution concentrations, Na" are trapped in
low energy states near the substituents, resulting in low values
of D and ¢ and high values of E,. At intermediate substitution
levels, Na* percolation pathways are formed, leading to an
increase in D and ¢ and decrease in E,. However, at very high
substitution levels, D and ¢ decrease due to the lack of available
Na' sites. Overall, the simulations indicate that the highest
diffusivity and conductivity occur along a diagonal

© 2025 The Author(s). Published by the Royal Society of Chemistry
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compositional trend, corresponding to elevated Sc contents (1.3
=y = 1.9) and moderate to high Si contents (1.3 =< x < 2.7). The
activation energies are found to be in good agreement with
experimental values describing short-range Na* ion motions.

In addition, the Na* trapping effects of the introduced Sc*'-
and Si**-substitution was verified by estimating RDFs,
providing further insights into the Na" migration behavior.

This study demonstrates the efficacy of the applied method-
ology in exploring large configurational spaces of NaSICONs and
predicting promising materials for use in ASS-NIBs. The FFMD
simulations, applying FF parameters optimized for the particular
system under investigation, offer a computationally efficient way
to identify substitution levels that lead to the highest conduc-
tivities. This allows further investigations to focus on this
optimal range instead of exploring large compositional spaces.
The key advantage of the applied method is its simplicity and
versatility, making it applicable to a wide range of compounds
and structures. In addition, the crucial impact of substitution in
NaSICONs is further elucidated, indicating the high potential of
these materials, especially Nay,,1,Sc,Zr,_,Si,P;_,O,.
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