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binding mechanism of AML
inhibitors based on panobinostat with HDAC3
proteins using Gaussian accelerated molecular
dynamics†

Xia Yu, ‡*a Hengzheng Yang,‡b Baiji Xue,a Tong Liu,a Xue Zhang,a Yang Xu,a

Xueliang Zhaoa and Xianwen Yue*a

Class I histone deacetylases (HDACs) play a crucial role in the transformation and survival of myeloid and

lymphoid malignancies, with HDAC1, 2, and 3 (Class I HDACs) being potential molecular targets for acute

myelogenous leukemia (AML) treatment. Among them, HDAC3 depletion or inhibition significantly

reduces proliferation and promotes differentiation in leukemia, with inhibitors like Panobinostat and

compound 13a showing promise in suppressing its activity. In this study, we utilized Gaussian

accelerated molecular dynamics (GaMD) simulations to compare the inhibitory potency of 13a and

Panobinostat against HDAC3. Our findings suggest that the superior inhibitory activity of 13a may be

attributed to its stronger interactions with HDAC3. Distance analysis demonstrated that 13a maintains

a closer and more consistent coordination with the zinc ion in the catalytic pocket, resulting in a more

stable interaction compared to Panobinostat. Additionally, interaction analysis revealed that 13a forms

more p-alkyl interactions, along with additional attractive charge and metal–acceptor interactions with

HDAC3. Principal component analysis (PCA) further showed that the binding of 13a stabilizes HDAC3 in

multiple distinct conformational states, suggesting that a more substantial conformational rearrangement

is required upon 13a binding. This structural complexity may explain why 13a behaves as a slow-on/

slow-off inhibitor and exhibits a superior IC50 compared to Panobinostat. Alanine scanning identified

residues such as PRO23, HIS125, and PHE144 as potential sites for inhibitor binding, making significant

contributions to binding affinity. These combined findings suggest that 13a not only has a higher

inhibitory potency but also holds potential for further optimization, making it a promising candidate for

targeted cancer therapy.
Introduction

Epigenetic dysregulation is a crucial factor in the onset and
progression of cancer, as it can lead to the activation of onco-
genes and the suppression of tumor suppressor genes.1 These
epigenetic changes are intricately involved in cancer develop-
ment and metastasis.2 A key aspect of epigenetic regulation is
the post-translational acetylation of lysine residues on histone
tails, a process mediated by histone acetyltransferases. This
acetylation results in chromatin remodeling, which facilitates
transcriptional activation.2 On the other hand, the removal of
these acetyl groups by histone deacetylases (HDACs) causes
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26252
chromatin to becomemore compact, leading to changes in gene
expression that can promote cancer progression.3,4 As a result,
HDACs have become attractive targets for the development of
new anticancer therapies.

HDACs comprise a family of zinc-dependent metal-
loenzymes that are deeply involved in regulating cell migration
and invasion in various types of cancer. The 18 isoforms of
mammalian HDACs are categorized based on their structural,
functional, and evolutionary characteristics into four classes:
Class I (HDAC 1, 2, 3, and 8), Class II (HDAC 4, 5, 6, 7, 9, and 10),
Class III (Sirtuins 1–7), and Class IV (HDAC 11).5 Among these,
HDAC3, a member of Class I, is oen overexpressed in a variety
of cancers, such as acute myeloid leukemia (AML), prostate
cancer, melanoma, breast cancer, and others.6–10 As a key
epigenetic regulator of multiple cellular signaling pathways, it
plays a central role in cancer progression.11,12

Acute myeloid leukemia (AML) is the most common form of
adult leukemia and has the highest mortality rate among all
types of leukemia in the United States.13 In the context of acute
© 2025 The Author(s). Published by the Royal Society of Chemistry
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leukemia, HDAC3 activity is particularly important, as it is
essential for the initiation of leukemia development and
contributes to chemotherapy resistance by regulating DNA
damage repair mechanisms.14,15 Previous research has demon-
strated that HDAC3 inhibitors can induce apoptosis in AML
cells by indirectly inhibiting the FLT3/STAT5 signaling pathway
and downregulating key anti-apoptotic proteins such as c-FLIP
and XIAP.16 These ndings underscore the potential of
HDAC3 as a therapeutic target in AML and possibly other
malignancies.

The FDA has approved four histone deacetylase inhibitors
(HDACIs): Vorinostat,17 Romidepsin,18 Belinostat,19 and Pan-
obinostat.20 Among them, Panobinostat is the most potent
HDACI in both in vitro and in vivo studies. The structural domains
and pharmacophore model of HDACIs typically consist of three
key components: a cap group (which interacts with the enzyme
surface), a linker group (which occupies the long hydrophobic
channel), and a zinc-binding group (ZBG, which acts at the
catalytic site),21,22 as shown in Fig. S1.† Hydroxamic acid is the
most commonly used ZBG but has drawbacks such as structural
instability, poor isomer selectivity, and mutagenicity. In recent
years, hydrazide-based ZBG-HDACIs have emerged, aiming to
explore new ZBGs that align with the geometry of physiological
substrates as new scaffolds for HDACIs. However, their pharma-
cological effects, structural stability, and off-target toxicity still
require further investigation.23,24

C. James Chou and colleagues developed a series of HDAC
inhibitors derived from Panobinostat's structure.25 The lead
compound, 13a, exhibited potent and selective inhibition of
HDAC3 with an IC50 of 0.28 nM, and displayed a unique
noncompetitive binding mode. In wt-p53 FLT3-ITD MV4-11
leukemia cells, 13a downregulated FLT3, STAT5, and pERK,
suppressed anti-apoptotic proteins such as XIAP and c-FLIP, and
activated pro-caspase3, inducing apoptosis rather than auto-
phagy. Its activity was p53- and FLT3-dependent, showing limited
efficacy in p53-null or FLT3-wild-type cells. Compared to Pan-
obinostat, 13a was non-mutagenic, did not induce Hsp70, and
demonstrated improved pharmacokinetics including enhanced
bioavailability, longer half-life, and a slow-on/slow-off inhibition
prole, highlighting its potential as a selective and durable
therapeutic agent for AML.25 Despite these promising results, the
precise inhibitory mechanism of 13a remains to be elucidated.

Gaussian accelerated molecular dynamics (GaMD) is an
enhanced sampling method that accelerates conformational
transitions by adding a harmonic boost potential to smooth the
energy landscape. Considering the widespread application of
GaMD in studying cancer-related protein–inhibitor
interactions,26–29 and given that 13a is a slow-on/slow-off
inhibitor, we employed this enhanced sampling technique to
investigate its binding mechanism with HDAC3. Specically, we
conducted simulations on three systems: HDAC3 alone, HDAC3
in complex with Panobinostat (HDAC3–Pan), and HDAC3 in
complex with compound 13a (HDAC3–13a). Our goal was to
elucidate the conformational changes induced in HDAC3 upon
ligand binding and to explore the inhibitory mechanisms of di-
N-substituted hydrazide-based HDACIs. The ndings from this
study may provide valuable insights into the dynamics of
© 2025 The Author(s). Published by the Royal Society of Chemistry
HDAC3 and contribute to the rational design of drugs for cancer
therapy, ultimately improving therapeutic outcomes.

Results
Molecular docking analysis and system setup

We obtained the HDAC3 protein structure (PDB ID: 4A69) from
the Protein Data Bank30 and performed molecular docking with
two inhibitors using AutoDock Vina.31 Similar to the study by C.
James Chou et al.,25 we retained the nuclear receptor core-
pressor 2 (NCoR2) chain from the 4A69 structure in the docking
process. The 2D structures of Panobinostat (Pan) and 13a are
shown in Fig. S2,† and the docking results are presented in
Fig. 1. As shown in Fig. 1, both Pan and 13a exhibit similar
binding modes, consistent with the typical binding pattern of
HDAC inhibitors: the cap group interacts with the enzyme
surface, the linker occupies the hydrophobic channel, and the
zinc-binding group coordinates at the catalytic site.

Docking results revealed that the binding energy of HDAC3–
Pan was −10.99 kcal mol−1, while that of HDAC3–13a was
−14.87 kcal mol−1, indicating that 13a has a stronger binding
affinity for HDAC3 than Pan. Fig. S3 and S4† illustrates the
interactions of HDAC3–Pan and HDAC3–13a. Pan forms
hydrogen bonds with GLY21, ASP93, HIS134, HIS135, and
ASP170, pi–pi interactions with PHE144 and PHE200, pi–cation
interaction with HIS22, and pi–alkyl interactions with PRO23
and LEU266. Additionally, it engages in metal–acceptor inter-
actions with zinc ion and van der Waals interactions with
nearby residues such as ASP92, GLY143, and GLY296. 13a forms
hydrogen bonds with ASP92, ASP93, HIS135, pi–pi interaction
with PHE144, pi–cation interaction with HIS22, and pi–alkyl
interactions with LEU266. Additionally, it engages in van der
Waals interactions with nearby residues such as PRO23,
GLY143, and GLY296. The stronger binding affinity of 13a may
be attributed to the shorter and more stable hydrogen bonds it
forms with HDAC3. Furthermore, 13a forms van der Waals
interactions with more residues compared to Pan.

Aer determining the docking positions as the initial
conformations, a 50 ns conventional MD (cMD) simulation was
performed to pre-equilibrate the systems. As shown in Fig. S5,†
aer the initial equilibration period, all three systems—HDAC3,
HDAC3–Pan, and HDAC3–13a—gradually stabilize in their
respective conformations. The root mean square deviation
(RMSD) values initially show greater variation but gradually
converge to a more consistent and lower uctuation pattern
over time. This trend suggests that the proteins achieved a more
stable structure, likely reecting successful adaptation of the
protein–ligand complexes to the simulation environment.
Based on these results, further GaMD simulations were con-
ducted. To validate the docking results, the representative
structures obtained from k-means clustering of the GaMD
trajectories were subsequently used for molecular docking with
the inhibitors Pan and 13a. The binding energy results showed
that HDAC3–Pan had a binding energy of −9.95 kcal mol−1,
whereas HDAC3–13a exhibited a lower binding energy of
−12.34 kcal mol−1. Consistent with the initial docking results,
13a maintained a stronger binding affinity.
RSC Adv., 2025, 15, 26240–26252 | 26241
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Fig. 1 (A) The results of molecular docking correspond to system HDAC3–Pan. (B) The results of molecular docking correspond to system
HDAC3–13a.
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Dynamic properties of the three systems

RMSD, which measures the average distance between protein
atoms and their reference state aer superposition, is widely
used to assess the stability and conformational changes of
molecular structures during simulations.32,33 We calculated the
RMSD for all three systems, as illustrated in Fig. 2A.

For the apo HDAC3 system (gray line), representing the
unbound form of HDAC3, the RMSD gradually increases during
the rst 250 ns, starting at approximately 1 Å and reaching
around 2 Å. Subsequently, it uctuates between 1.5 and 2 Å.

In contrast, the HDAC3–Pan system (orange line) shows
a rapid increase in RMSD within the rst 50 ns. Aer this initial
Fig. 2 (A) The RMSD diagrams of HADC3 and HDAC3–Pan, HDAC3–13a
SASA diagrams of HADC3 and HDAC3–Pan, HDAC3–13a.

26242 | RSC Adv., 2025, 15, 26240–26252
rise, the RMSD uctuates between 1 and 2 Å, maintaining lower
and more consistent values throughout the simulation. This
indicates that the complex exhibits greater conformational
stability compared to the apo form.

The HDAC3–13a system (blue line) displays the highest and
most variable RMSD values, pointing to signicant conforma-
tional changes throughout the simulation. The RMSD peaks
multiple times, suggesting that the molecule frequently adopts
different conformations. This pattern may indicate a more
exible structure or instability in its interaction with the 13a
ligand.

Radius of gyration (Rg) serves as an important measure of
a biomolecule's folding state, with lower values indicating
. (B) The Rg diagrams of HADC3 and HDAC3–Pan, HDAC3–13a. (C) The

© 2025 The Author(s). Published by the Royal Society of Chemistry
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greater compactness and higher values suggesting increased
unfolding or irregularity in structure. By calculating Rg, we can
observe the changes in compactness of the three systems during
the simulation process.

As shown in Fig. 2B, both HDAC3–Pan and HDAC3–13a
exhibit noticeably lower Rg values compared to the apo HDAC3
system, indicating that inhibitor binding induces a more
compact protein conformation. These results suggest that 13a
acts similarly to Pan, with both compounds promoting struc-
tural tightening of HDAC3. However, HDAC3–13a displays an
even lower Rg than HDAC3–Pan, suggesting a greater degree of
compaction.

The solvent-accessible surface area (SASA) is a key parameter
used to evaluate the extent to which a molecule's surface is
exposed to the surrounding solvent. It reects the protein's
interaction with its external environment and is sensitive to
dynamic structural changes. Analyzing SASA changes during the
simulation helps assess conformational shis and surface
exposure across the three systems.

As shown in Fig. 2C, the SASA values for the HDAC3 system
remain relatively high throughout the 500 ns simulation, indi-
cating greater surface exposure to solvent. In contrast, the SASA
values of HDAC3–Pan and HDAC3–13a are noticeably lower
than those of HDAC3, with HDAC3–13a showing the most
substantial reduction throughout the simulation.
Flexibility and conformational dynamics analysis

Root Mean Square Fluctuation (RMSF) is a widely usedmetric to
assess the exibility of a system over time. It measures the
average deviation of atomic positions from their equilibrium
positions, providing insight into the mobility and stability of
individual atoms or regions within a molecule. To compare the
impact of Pan and 13a on HDAC3, we assessed the RMSF of Ca
atoms.

As shown in Fig. 3A, the RMSF of the apo HDAC3 system
differs from those of the HDAC3–Pan and HDAC3–13a systems.
Overall, most residues in apo HDAC3 exhibit lower dynamicity,
indicating a relatively stable structure, with RMSF values
ranging from a minimum of 1.69 Å (residue 132) to a maximum
of 15.28 Å (residue 398). However, elevated RMSF values are
observed in the 71–101 and 391–426 regions, reecting greater
structural exibility. These ndings suggest that these regions
may serve as exible segments potentially involved in confor-
mational changes, ligand binding, or interactions with regula-
tory proteins.

In the HDAC3–Pan system, the RMSF values are generally
higher than those in the apo HDAC3 system, particularly in the
351–401 region, where the maximum value reaches 24.23 Å at
residue 398. This indicates that the binding of Pan increases the
dynamicity and conformational changes of HDAC3, particularly
in the 351–401 region. Additionally, the 71–101 region of the
HDAC3–Pan system also shows higher uctuations compared to
the apo HDAC3, which may be related to the binding of Pan and
may further enhance structural exibility in this region.

The HDAC3–13a system also exhibits noticeable uctuations
in several key regions, especially the 351–401 region, where the
© 2025 The Author(s). Published by the Royal Society of Chemistry
maximum value reaches 28.12 Å at residue 398, which is
signicantly higher than the corresponding value in the apo
HDAC3 system. Similar to Pan, 13a also leads to higher uctu-
ations in the 71–101 region. This suggests that the binding of
the 13a ligand induces greater conformational changes and
increased dynamicity in these regions.

Dene Secondary Structure of Proteins (DSSP) analysis is
a method for determining the secondary structure of proteins
by evaluating the geometric properties of backbone hydrogen
bonds. Residues are classied into different secondary structure
types based on these calculations. In Fig. 3B and C, different
colors are used to represent various structural elements. In the
DSSP analysis of the apo HDAC3, HDAC3–Pan, and HDAC3–13a
systems, we focused on secondary structure changes in the 71–
101 region and the 391–426 region.

As shown in Fig. 3B, in the apo HDAC3 system, the 79–87
region primarily adopts a relatively stable a-helix structure.
Aer the binding of the Pan, disruption of the helical structure
is observed, particularly around residues 78–80, where a 3–10
helix primarily forms, connecting to the a-helix spanning resi-
dues 82–87. Similarly, the binding of the 13a ligand induces
comparable structural changes, with the formation of a 3–10
helix linking to the adjacent a-helix. Additionally, in the 91–94
region, the apo HDAC3 system adopts a relatively stable anti-
parallel conformation between 350 and 400 ns. However, in
both the Pan and 13a systems, no long-lasting anti-parallel
conformation is observed.

As shown in Fig. 3C, in the 391–426 region, all three systems
exhibit similar secondary structures, with only a few areas
showing differences. In the apo HDAC3 system, the 422–423
region transitions from a relatively stable bend conformation to
a more stable turn structure aer 230 ns. In both the HDAC3–
Pan and HDAC3–13a systems, the 422–423 region predomi-
nantly consists of a turn structure. Pan and 13a induce similar
structural alterations in HDAC3. Additionally, in the HDAC3–
13a system, unlike in the other systems, the a-helix near residue
391 is disrupted, leading to a long-lasting bend structure.
Dynamic cross-correlation matrix analysis

Dynamic Cross-Correlation Matrix (DCCM) analysis is a power-
ful method for investigating the internal dynamic correlations
of protein residues. By computing the displacement correla-
tions between different residues, DCCM provides insights into
the cooperative or anticorrelated motions within a protein. The
correlation values range from −1 to 1, where values approach-
ing 1 indicate a strong positive correlation (coordinated
motion), values near −1 suggest strong anticorrelation
(motions in opposite directions), and values close to 0 imply
little to no correlation, signifying independent movements.

Through DCCM analysis of the apo HDAC3, HDAC3–Pan,
and HDAC3–13a systems (Fig. 4), we can assess how ligand
binding inuences the protein's internal dynamics.

In the apo HDAC3 system, a certain degree of positive
correlation is observed along the diagonal, while correlations in
regions further from the diagonal are weaker. Additionally,
several regions of negative correlation are observed between the
RSC Adv., 2025, 15, 26240–26252 | 26243

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra01129a


Fig. 3 (A) The RMSF diagrams of HADC3, HDAC3-17, HDAC3-11h. (B) The secondary structure changes of HADC3, HDAC3–Pan, HDAC3–13a in
residues 71–101. (C) The secondary structure changes of HADC3, HDAC3–Pan, HDAC3–13a in residues 391–426. Docking results of Pan. The
amino acid sequence of the nuclear receptor corepressor 2 (NCoR2) chain was renumbered to follow HDAC3 (residues 2–370), with residues
408–476 becoming residues 371–439.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 6
:2

5:
03

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
NCoR2 chain (residues $ 371) and the HDAC3 (residues < 371)
chain. This observed negative correlation suggests the presence
of inter-chain dynamic coupling. Such anti-correlated motions
may reect allosteric communication between the two proteins,
where conformational changes in NCoR2 could inuence the
structural dynamics or functional state of HDAC3, possibly
contributing to the regulation of its enzymatic activity.

In the HDAC3–Pan system, the positive correlations in
regions further from the diagonal are weaker compared to the
apo HDAC3 system, suggesting that ligand binding dampens
long-range coordinated motions. This reduction in distal
correlated dynamics implies that the presence of Pan stabilizes
Fig. 4 The dynamical cross-correlation matrix diagrams of (A) HADC3 a
NCoR2 chain was renumbered to follow HDAC3 (residues 2–370), with

26244 | RSC Adv., 2025, 15, 26240–26252
the overall structure by restricting large-scale conformational
exibility. In addition, the reduced extent of negative correla-
tion between the NCoR2 and HDAC3 chains in the HDAC3–Pan
system implies a weakened inter-chain dynamic coupling,
suggesting that ligand binding reduces the allosteric commu-
nication between the two proteins.

Similar to the HDAC3–Pan system, the HDAC3–13a system
also exhibits a weaker negative correlation between the NCoR2
and HDAC3 chains compared to the apo HDAC3 system. This
suggests that 13a, like Pan, reduces the allosteric communica-
tion between the two proteins. However, unlike Pan, the
binding of 13a does not lead to weaker positive correlations in
nd (B) HDAC3–Pan, (C) HDAC3–13a. The amino acid sequence of the
residues 408–476 becoming residues 371–439.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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regions further from the diagonal. Instead, the HDAC3–13a
system retains positive correlations between residues within the
HDAC3 chain (residues < 371) that are comparable to those
observed in the apo HDAC3 system, with slightly stronger
correlations in regions 100–150.

Distance analysis

The carbonyl oxygen atoms of the inhibitors Pan and 13a may
coordinate with the zinc ion in the catalytic pocket, potentially
inuencing their binding interactions with the protein. To
assess the likelihood of such coordination, we monitored the
distances between the carbonyl oxygen atoms of both inhibitors
and the catalytic zinc ion throughout the 500 ns GaMD
simulation.

As shown in Fig. 5, the distance between the carbonyl oxygen
atom of Pan and the zinc ion in the HDAC3 catalytic pocket
exhibited greater uctuations throughout the simulation.
During the initial phase, the distance typically ranged from 2 to
5 Å, which is relatively long and suggests an unstable or weak
coordination interaction. As the simulation progressed, the
Fig. 5 (A) Distance between carbonyl oxygen of ligand and zinc ion
during the 500 ns simulations for HDAC3–Pan and HDAC3–13a. (B)
The representative structure of HDAC3–Pan. (C) The representative
structure of HDAC3–13a.

© 2025 The Author(s). Published by the Royal Society of Chemistry
distance became somewhat more stabilized, mostly uctuating
between 2 and 4 Å. This range implies that Pan may form
a transient or weak coordination bond with the zinc ion.
However, the persistent uctuations suggest that the interac-
tion is not stably maintained throughout the simulation,
possibly reecting dynamic binding behavior or suboptimal
positioning of the coordinating group.

In contrast, the distance between the carbonyl oxygen atom
of the 13a inhibitor and the zinc ion in the HDAC3 catalytic
pocket remained relatively stable throughout the simulation.
During the rst 150 ns, the distance mostly uctuated between
2 and 4 Å. As the simulation progressed, it gradually converged
to a narrower range around 2–2.5 Å. This consistent proximity
suggests a favorable positioning of the carbonyl group for stable
coordination with the zinc ion. The stable and short distance
implies that 13a is more likely to form and maintain a strong
coordination bond with the zinc ion, potentially contributing to
its enhanced inhibitory effect on HDAC3 compared to Pan.
PCA analysis

To determine how ligand binding affects the conformational
distribution of HDAC3 and to identify the lowest-energy
conformations in the HDAC3–Pan and HDAC3–13a systems,
principal component analysis (PCA) and free energy landscape
(FEL) construction were performed.

As shown in Fig. 6, in the HDAC3–Pan system, the low-energy
states are structurally similar and can be categorized as a single
cluster. We extracted the representative structure (lowest-energy
conformation) from this cluster for further analysis. Consistent
with our previous secondary structure analysis, the originally
Fig. 6 Free energy landscape (FEL) and representative conformation
of HDAC3–Pan system. The amino acid sequence of the NCoR2 chain
was renumbered to follow HDAC3 (residues 2–370), with residues
408–476 becoming residues 371–439.

RSC Adv., 2025, 15, 26240–26252 | 26245
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continuous a-helix in the 78–83 region is disrupted, forming
two connected helical segments. Additionally, residues 175–180
exhibit a transition between an a-helix and a random coil, while
residues 208–213 adopt a well-dened b-sheet conformation.

Fig. S6† shows the evolution of interactions between Pan and
the surrounding residues of HDAC3 over the course of the
simulation. Fig. S7† illustrates the interactions observed in the
representative structure.

Pan forms hydrogen bonds with HIS135, GLY143, and
TYR298, pi–pi interactions with PHE144 and PHE200, and a pi–
alkyl interaction with PRO23. Additionally, it engages in van der
Waals interactions with nearby residues such as ASP92, ASP93,
ASP170, and LEU266.
Fig. 7 Free energy landscape (FEL) and representative conformation
of HDAC3–13a system. The lowest-energy conformation of each
cluster is shown in (A)–(C), respectively. The amino acid sequence of
the NCoR2 chain was renumbered to follow HDAC3 (residues 2–370),
with residues 408–476 becoming residues 371–439.

26246 | RSC Adv., 2025, 15, 26240–26252
Compared to the docking results, the low-energy conforma-
tion of the MD simulation reveals both preserved and altered
interactions. The pi–pi interactions with PHE144 and PHE200
and the pi–alkyl interaction with PRO23 remains intact, sug-
gesting that these key interactions play a dominant role in Pan
binding to HDAC3. However, GLY21 and ASP93, which initially
formed a hydrogen bond in the docking model, instead engages
in van der Waals interactions. Similarly, the hydrogen bond
between Pan and HIS134 is lost, while new hydrogen bonds
form with GLY143 and TYR298. This indicates that Pan
undergoes subtle conformational adjustments within the
binding pocket while maintaining hydrogen bond interactions
with surrounding residues. Notably, in the low-energy confor-
mation, no metal–acceptor interaction is detected between the
zinc ion and the carbonyl oxygen atom, likely due to their
relatively large separation distance, which is consistent with our
previous distance analysis.

As shown in Fig. 7, in the HDAC3–13a system, the low-energy
states can be categorized into three clusters. We extracted
representative structures (the lowest-energy conformations)
from each cluster for further analysis. Unlike the HDAC3–Pan
system, all three representative conformations exhibit a well-
preserved a-helix in the 175–180 region. Notably, in State A,
the b-sheet spanning residues 218–233 is disrupted, whereas
this structural alteration is not observed in State B or State C.
Additionally, in State C, the 78–83 region adopts a combination
of random coil and a-helix, similar to what is observed in the
HDAC3–Pan system, whereas in States A and B, this segment
maintains a continuous helical structure.

Fig. S8† shows the evolution of interactions between 13a and
the surrounding residues of HDAC3 over the course of the
simulation. Fig. S9–S11† illustrates the interactions observed in
the representative structures.

In State A (Fig. S9†), 13a forms hydrogen bonds with HIS135,
ASP170, ASP259, and TYR298, pi–pi interactions with PHE144
and PHE200, and pi–alkyl interactions with PRO23, MET24,
LEU133, and CYS145. Additionally, it engages in attractive
charge interactions with ASP170 and ASP259, as well as a metal–
acceptor interaction with the zinc ion. It also forms van der
Waals interactions with nearby residues such as ASP92, ASP93,
GLY132, and LEU266.

In State B (Fig. S10†), 13a forms hydrogen bonds with
HIS135, ASP170, and TYR298, pi–pi interactions with PHE144
and PHE200, and pi–alkyl interactions with MET24, LEU133,
PHE144, and CYS145. It also engages in an attractive charge
interaction with ASP170 and a metal–acceptor interaction with
the zinc ion. Additionally, van der Waals interactions are
observed with ASP93, ASP259, GLY132, LEU266, etc.

In State C (Fig. S11†), 13a forms hydrogen bonds with
ASP170 and TYR298, pi–pi interactions with PHE144 and
PHE200, and pi–alkyl interactions with MET24, LEU133,
CYS145, and LEU266. It also engages in an attractive charge
interaction with ASP170 and a metal–acceptor interaction with
the zinc ion. van der Waals interactions are observed with
ASP93, ASP259, GLY143, GLY296, etc.

Compared to the docking results, the three representative low-
energy conformations of the HDAC3–13a system exhibit both
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Alanine mutation of HDAC3–13a

Mutation
Mutation energy
(kcal mol−1) Effect

GLY21 −0.05 Neutral
HIS22 0.14 Neutral
PRO23 1.06 Destabilizing
MET24 0.3 Neutral
ARG28 −0.68 Stabilizing
ASP92 0.27 Neutral
ASP93 0.23 Neutral
GLY132 0.08 Neutral
LEU133 1.02 Destabilizing
HIS134 −0.03 Neutral
HIS135 1.76 Destabilizing
GLY143 −0.03 Neutral
PHE144 1.76 Destabilizing
CYS145 0.03 Neutral
ILE150 −0.15 Neutral
PHE200 1.07 Destabilizing
GLN255 0.62 Destabilizing
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preserved and altered interactions. The pi–pi interactions
between 13a and PHE144 remain intact across all three confor-
mations. Additionally, the hydrogen bond with HIS135 is
preserved in two of the three representative conformations, sug-
gesting that these key interactions play a dominant role in 13a
binding to HDAC3. However, other hydrogen bond interactions
undergo rearrangements in the low-energy conformations.
Notably, in all three representative structures, 13a forms
hydrogen bonds with ASP170 and TYR298. Furthermore, 13a
engages in attractive charge interactions with ASP170, high-
lighting its strong electrostatic contributions to binding. Addi-
tionally, the interaction between 13a and the zinc ion shis from
a van der Waals interaction in the docking model to a metal–
acceptor interaction in the low-energy conformations, which
aligns with our previous distance analysis. Throughout the
HDAC3–13a system simulation, the distance between the zinc ion
and the carbonyl oxygen atom remains relatively short and
exhibits lower uctuations compared to the HDAC3–Pan system.
ARG265 −0.26 Neutral
LEU266 1.17 Destabilizing
GLY295 1.05 Destabilizing
GLY296 0.1 Neutral
GLY297 0.05 Neutral
TYR298 −1.31 Stabilizing
Alanine mutation analysis

In this analysis, we mutated the residues surrounding the
inhibitors (Pan and 13a) to alanine, effectively replacing active
residues with alanine and removing the active functional
groups from the side chains, substituting them with methyl
groups that have a relatively minor impact on the protein
structure. The objective was to investigate the inuence of these
active residues on the structural stability of the protein. The test
results are presented in Tables 1 and 2.

In the HDAC3–Pan system, most of mutations showed
minimal impact on the overall binding energy (mutation energy
between −0.5 and 0.5 kcal mol−1), suggesting that these resi-
dues are not essential for maintaining the stability of the
complex. Notably, three mutations—PHE144 (1.75 kcal mol−1),
PHE200 (1.11 kcal mol−1), and GLY296 (0.77 kcal mol−1)—were
Table 1 Alanine mutation of HDAC3–Pan

Mutation
Mutation energy
(kcal mol−1) Effect

GLY21 −0.05 Neutral
HIS22 0.5 Neutral
PRO23 0.52 Destabilizing
MET24 −0.12 Neutral
ASP92 0.33 Neutral
ASP93 0.23 Neutral
CYS94 −0.01 Neutral
PRO95 0.04 Neutral
LEU133 −0.04 Neutral
HIS134 −0.88 Stabilizing
HIS135 0.2 Neutral
GLY143 −0.56 Stabilizing
PHE144 1.75 Destabilizing
PHE200 1.11 Destabilizing
LEU266 0.02 Neutral
GLY295 −0.05 Neutral
GLY296 0.77 Destabilizing
GLY297 −0.08 Neutral
TYR298 0.2 Neutral

© 2025 The Author(s). Published by the Royal Society of Chemistry
classied as destabilizing, indicating that these residues may
play key roles in maintaining local structural integrity or facil-
itating ligand interaction. The relatively high mutation energies
suggest that substituting these residues with alanine disrupts
favorable interactions, possibly through the loss of hydrophobic
contacts or structural constraints. Conversely, mutations at
HIS134 (−0.88 kcal mol−1) and GLY143 (−0.56 kcal mol−1)
resulted in negative mutation energies, indicating a stabilizing
effect. This may suggest that these residues contribute to local
exibility or unfavorable steric hindrance in the wild-type
structure, which is alleviated upon alanine substitution.

In the HDAC3–13a system, mutations at PRO23, LEU133,
HIS135, PHE144, PHE200, GLN255, LEU266, and GLY295 were
predicted to be destabilizing, each showing mutation energies
greater than 1.0 kcal mol−1. These results suggest that these
residues play critical roles in maintaining the structural integ-
rity of the protein–ligand complex. In particular, HIS135 and
PHE144 each exhibited a mutation energy of 1.76 kcal mol−1,
indicating that they are essential for stable binding with the 13a
inhibitor. Conversely, ARG28 and TYR298 mutations were pre-
dicted to be stabilizing, with mutation energies of −0.68 and
−1.31 kcal mol−1, respectively. The stabilizing effect of the
TYR298 mutation suggests it may help anchor the inhibitor in
a favorable binding orientation, potentially enhancing interac-
tion specicity or strength.
Discussion

This study provides a comprehensive comparison of the dynamic
and structural consequences of HDAC3 inhibition by two
compounds: Pan and 13a. Through a range of simulation
RSC Adv., 2025, 15, 26240–26252 | 26247
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analyses, we demonstrate that although both ligands target the
same protein, they inuence its behavior in notably different ways.

Structural stability: RMSD analyses

RMSD analysis reveals that Pan induces moderate conforma-
tional changes early in the simulation, aer which the HDAC3–
Pan complex reaches a relatively stable state. In contrast, 13a
binding results in more sustained and pronounced uctua-
tions, suggesting a higher degree of exibility or structural
rearrangement. This observation is consistent with 13a's known
slow-on/slow-off binding kinetics and implies a distinct mode
of action compared to Pan.

Structural compactness: Rg and SASA analyses

Both inhibitors lead to a reduction in the Rg and SASA, indi-
cating increased structural compactness of the HDAC3
complex. However, the HDAC3–13a complex undergoes a more
marked compaction than the HDAC3–Pan complex. This
suggests that 13a binding triggers certain regions of the protein
to close or undergo structural rearrangement. This compacti-
cation of the structure may contribute to the protein's stability
and functionality in specic biological environments.

Flexibility and local conformational dynamics: RMSF and
DSSP analyses

RMSF analysis shows increased exibility in both ligand–bound
complexes compared to apo HDAC3. Among them, the HDAC3–
13a complex exhibits the highest degree of uctuation, indi-
cating a more dynamic interaction between HDAC3 and 13a.
This heightened exibility may be associated with its slow-on/
slow-off binding kinetics and distinct inhibitory mechanism.

Furthermore, only the 13a–bound complex exhibits a persis-
tent disruption of the a-helix near residue 391, leading to
a stable bent structure. This conformational change may be
linked to the therapeutic mechanism of 13a, as the loss of a-
helical integrity could affect HDAC3's interactions with other
proteins, potentially inuencing its therapeutic efficacy in AML
treatment.

Allosteric and intra-protein communication: DCCM analysis

Dynamical cross-correlation matrix (DCCM) analysis shows that
both inhibitors disrupt negative inter-chain correlations
between HDAC3 and NCoR2, indicating interference with allo-
steric communication. Interestingly, Pan binding also dampens
long-range intra-protein correlations within HDAC3, suggesting
a rigidication of the protein structure that may lock it in an
inactive conformation. In contrast, 13a maintains the large-
scale exibility characteristic of apo HDAC3, reecting its
potentially unique regulatory mechanism.

Zinc ion coordination: distance analysis

Distance measurements between the inhibitors and the cata-
lytic zinc ion highlight that 13a maintains a consistently short
and stable distance, indicative of a robust coordination bond.
Although Pan sometimes came into close proximity with the
26248 | RSC Adv., 2025, 15, 26240–26252
zinc ion, its interaction remained more variable and less stable
overall. This difference in binding stability likely contributes to
13a's greater inhibitory potency.

Principal component analysis (PCA) and binding mode

Unlike Pan, which stabilizes HDAC3 into relatively uniform low-
energy conformations, 13a binding leads to multiple distinct
conformational states. This observation aligns with the RMSD
results and reects the structural complexity introduced by 13a.
The presence of several low-energy conformations and the
potential transitions among themmay explain why 13a behaves
as a slow-on/slow-off inhibitor.

Analysis of low-energy structures further shows that both
Pan and 13a induce similar secondary structural changes in
HDAC3 to some extent, but key differences are also evident. In
particular, 13a appears to promote more substantial confor-
mational rearrangements upon binding—such as those
observed in Fig. 7A—which may contribute to its unique
inhibitory mechanism.

In addition, in the low-energy conformations of both
HDAC3–13a and HDAC3–Pan complexes, the inhibitors form
key interactions with residues such as HIS135, PHE144,
PHE200, and TYR298, highlighting the importance of these
residues for ligand binding. Compared to Pan, 13a forms more
p–alkyl interactions, along with additional attractive charge and
metal–acceptor interactions. These enhanced interactions may
underlie 13a's superior inhibitory potency against HDAC3.

Binding energy contributions: alanine scanning mutagenesis

Alanine scanning underscores the differential binding depen-
dencies of the two inhibitors. The HDAC3–Pan complex appears
less affected by single-point mutations, indicating a more tolerant
and exible interaction network. In contrast, the HDAC3–13a
complex is highly sensitive to mutations at specic residues,
notably HIS135, PHE144, and PHE200, reinforcing the idea that
13a relies on more precise and critical contacts for stable binding.

Concluding Remarks

Collectively, these results highlight how distinct inhibitors
modulate HDAC3 dynamics and structure through different
mechanisms. Pan tends to stabilize HDAC3 in a more rigid, less
exible conformation, potentially favoring immediate but
transient inhibition. Conversely, 13a induces signicant
conformational changes, enhances protein compactness, and
maintains dynamic exibility, characteristics that may underlie
its slow-on/slow-off kinetics and stronger inhibitory perfor-
mance. These insights offer valuable implications for the
rational design of HDAC3-targeted therapeutics, particularly in
the context of diseases such as AML where selective and sus-
tained inhibition is desired.

Materials and methods
System preparation

The 3D structure of HDAC3 (PDB: 4A69) was obtained from the
Protein Data Bank.30 Since 4A69 contains two identical HDAC3
© 2025 The Author(s). Published by the Royal Society of Chemistry
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chains, one of them was removed during protein preparation in
UCSF Chimera.34 The NCoR2 chain, which interacts with the
retained HDAC3 chain, was preserved. Additionally, all ligands
and water molecules were removed. The structures of Pan-
obinostat and compound 13a were modeled and optimized
using Discovery Studio.35 AutoDock Vina v1.2.6 (ref. 31) was
then employed to dock Panobinostat and 13a to HDAC3,
resulting in the HDAC3–Pan and HDAC3–13a complexes. The
docking grid was dened based on the active site information
from the HDAC3 crystal structure (PDB ID: 4A69), including the
zinc ion and surrounding key residues: HIS134, HIS135,
GLY143, ASP170, HIS172, ASP259, GLY296, and TYR298. Vina
simplies the process by eliminating the need to manually
select atomic types and predict grid maps for ligands and
receptors, thereby improving the overall accuracy of binding
predictions and accelerating the search process with more
straightforward scoring functions. The structure with the lowest
binding affinity from the docking results was selected as the
starting point for molecular dynamics (MD) simulations.

To parameterize the Zn2+ coordination center in HDAC3, we
used the MCPB.py36 module provided by AMBER. The metal site
and its directly coordinated residues/ligands were extracted
from the crystal structure to build a small model. This model
was then optimized using Gaussian 16 at the B3LYP/6-31G*
level of theory. Following geometry optimization, electrostatic
potential (ESP) data were generated and RESP charges were
tted. Using these results, MCPB.py produced the correspond-
ing force eld parameters (frcmod) and library (mol2/lib) les.
The nal metal center model was integrated into the full protein
topology for subsequent molecular dynamics simulations. The
ligand was treated in the same manner, with geometry optimi-
zation and RESP charge tting performed using Gaussian.

The protein–inhibitor complex was prepared using LEaP
module in AMBER 22.37 The ff19SB38 force eld was applied to
the protein, and the ligand was parameterized using the GAFF2
force eld. The Zn2+ metal center and its coordinating residues
were treated using parameters generated from the MCPB.py
module. The resulting complex was solvated in a truncated
octahedral box of OPC water39 molecules with a 12 Å buffer. To
neutralize the net charge of the system, 6 Na+ counterions were
added. The nal system was composed of the protein, the metal
center, the bound ligand, solvent molecules, and counterions.
Three systems were constructed: HDAC3 (86 206 atoms),
HDAC3–Pan (80 875 atoms), and HDAC3–13a (80 853 atoms).
Equilibrium simulation

Prior to the GaMD production runs, a series of conventional
molecular dynamics simulations were performed using the
AMBER 22 simulation package. This process was taken to
prevent incorrect positioning of certain atoms from docking
and to provide a more reasonable and stable starting structure
for the subsequent GaMD simulations. The protocol consisted
of the following steps:

Minimization. The system was subjected to energy minimi-
zation consisting of a total of 10 000 cycles, including 5000 steps
of the steepest descent algorithm followed by 5000 steps of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
conjugate gradient algorithm. This step aimed to remove
unfavorable contacts and relax the initial structure.

Heating. Velocities were assigned to all atoms according to
a Boltzmann distribution, and the system was gradually heated
from 0.1 K to 310 K using a linear temperature ramp. The
heating phase was conducted under the NVT ensemble for 25
000 steps with a 2 fs time step, corresponding to a total simu-
lation time of 50 ps. Langevin dynamics with a collision
frequency of 2.0 ps−1 was used to regulate temperature. The
gradual temperature increase was designed to ensure a smooth
and stable transition to the target temperature.

Density equilibration. Following the heating step, the system
was equilibrated under isothermal-isobaric (NPT) conditions
for 50 ps to stabilize the density. This phase consisted of 25 000
steps with a 2 fs time step at a constant temperature of 310 K
using Langevin dynamics (collision frequency = 2.0 ps−1).
Pressure was maintained at 1 atm using an isotropic Berendsen
barostat with a relaxation time of 1.0 ps.

Throughout the minimization, heating, and density equili-
bration steps, positional restraints were applied to all protein
atoms using harmonic potentials with a force constant of
2.0 kcal mol−1$Å−2 to preserve the structural integrity of the
protein.

Final equilibration. Aer the initial density equilibration,
a nal equilibration phase was conducted under NPT condi-
tions for 500 ps (250 000 steps, 2 fs time step) to ensure the
stability of temperature, pressure, and volume. Langevin
dynamics with a collision frequency of 2.0 ps−1 was employed
for temperature control, and pressure was maintained at 1 atm
using an isotropic Berendsen barostat with a relaxation time of
2.0 ps. During this stage, positional restraints were removed,
allowing the protein and solvent to equilibrate freely within
a thermodynamically relevant ensemble.

Production MD simulation. Following equilibration, the
production MD simulations were performed under NPT
conditions at 310 K and 1 atm pressure. The simulations were
conducted using a 2 fs time step. Langevin dynamics with
a collision frequency of 2.0 ps−1 was employed for temperature
regulation, while pressure was controlled using a Monte Carlo
barostat with a relaxation time of 5.0 ps. Periodic boundary
conditions were applied to mimic bulk solvent behavior.

All simulations were conducted using the pmemd.cuda
module in AMBER for GPU-accelerated performance. A
nonbonded cutoff of 8.0 Å was applied, and long-range elec-
trostatic interactions were treated using the Particle Mesh
Ewald (PME40) method. The SHAKE41 algorithm was used to
constrain all covalent bonds involving hydrogen atoms, allow-
ing the use of a 2 fs integration time step.
Gaussian accelerated molecular dynamics simulation

Gaussian accelerated molecular dynamics (GaMD)42 enhances
the conformational sampling of biomolecules. It works by
adding a harmonic boost potential to smooth the biomolecular
potential energy surface and reduce energy barriers, thereby
accelerating transitions between different low-energy states. For
a system with N atoms located at~r = {~r1,/~rN},when the system
RSC Adv., 2025, 15, 26240–26252 | 26249
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potential V(~r) is below the threshold energy E, a liing potential
is added as:

DVð~rÞ ¼ 1

2
kðE � Vð~rÞÞ2; Vð~rÞ\E (1)

Among them, k is the harmonic force constant. The revised
system potential is:

V*ð~rÞ ¼ Vð~rÞ þ 1

2
kðE � Vð~rÞÞ2; Vð~rÞ\E (2)

when the system potential energy is higher than the threshold
value, that is, Vr $ E, the boost potential is set to zero, in which
case V*(~r) = V(~r).

In order to smooth the potential energy surface of enhanced
sampling, the following conditions need to bemet: First, for any
two potential values V1(~r) and V2(~r) on the original energy
surface, if V1(~r) < V2(~r), DV should be a monotone function that
does not change the relative order of the bias potential values.
By bringing V*(~r) into (2) we get:

E\
1

2
½V1ð~rÞ þ V2ð~rÞ� þ 1

k
(3)

Second, if V1(~r) < V2(~r), the potential difference observed on
a smooth energy surface should be smaller than the original
potential difference. Similarly, bringing V*(~r) into (2), we can
derive:

E.
1

2
½V1ð~rÞ þ V2ð~rÞ� (4)

We need to combine eqn (3) and (4) to set the threshold
energy E to the following range:

Vmax #E#Vmin þ 1

k
(5)

Among them, Vmin and Vmax are the minimum and
maximum potential energy of the system, respectively. In order
for eqn (5) to be valid, k needs to satisfy:

k#
1

Vmax � Vmin

(6)

k0 is dened to determine the magnitude of the applied boost
potential. Specically, kh k0(1/(Vmax− Vmin)); then 0 < k0# 1.

Third, the standard deviation of DV needs to be small
enough (i.e. narrow distribution) to ensure accurate reweighting
using second-order cumulative extension:

sDV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
vDV

vV

����
V¼Vavg

�2

vuut sV
2 ¼ k

�
E � Vavg

�
sV # s0 (7)

Among them, Vavg and sV are the mean and standard devi-
ation of the potential energy of the system, sDV is the standard
deviation ofDV, and s0 is the upper limit specied by the user so
that the weights can be adjusted accurately.
26250 | RSC Adv., 2025, 15, 26240–26252
The setting formula (5) gives the value range of the threshold
energy E. When E is set to E = Vmax, E and k are substituted to
get:

k0 #
s0

sV

� Vmax � Vmin

Vmax � Vavg

(8)

k0 ¼ min

�
1:0;

s0

sV

� Vmax � Vmin

Vmax � Vavg

�
(9)

The larger sDV is obtained from the original potential energy
surface (especially for large biomolecules). When the threshold
energy E = Vmin + 1/k is set as its upper bound according to eqn
(5) n, E and k are substituted into eqn (7), thus:

k0 $

�
1� s0

sV

�
� Vmax � Vmin

Vavg � Vmin

(10)

From given E and k0, we can calculate the boost potential as:

DVð~rÞ ¼ 1

2
k0

1

Vmax � Vmin

ðE � Vð~rÞÞ2; Vð~rÞ\E: (11)

Similar to aMD, GaMD offers the option to add only the total
potential boost DVp, only the dihedral potential boost DVD, or
the bipotential boost (DVp and DVD). For enhanced sampling,
dual-boost simulations generally provide higher acceleration
than the other two types of simulations. The simulation
parameters are composed of threshold energy value and effec-
tive harmonic force constants k0P and k0D.

Analysis of MD trajectories

All trajectory analyses were performed using the cpptraj module
of the AMBER soware suite.

Principal component analysis (PCA) was performed to
capture the major conformational motions sampled during
accelerated molecular dynamics (aMD) simulations. The PCA
was performed on the atomic Cartesian coordinates of residues
1–438 (covering the full protein) excluding hydrogens, as
extracted from the GaMD trajectory. Prior to PCA, the trajectory
was aligned to the rst frame, and the average structure was
used for covariance matrix calculation. The covariance matrix
was subsequently diagonalized to obtain eigenvectors (principal
components, PCs) and their corresponding eigenvalues, which
describe the dominant modes of collective motion. The rst two
principal components (PC1 and PC2) were selected as reaction
coordinates for reconstructing the conformational free energy
surfaces, as they capture the dominant collective motions and
account for a signicant proportion of the total variance—
30.33% for the HDAC3–Pan system and 40.08% for the HDAC3–
13a system.

To correct for the bias introduced by aMD and recover the
canonical ensemble distribution, energetic reweighting was
applied using the PyReweighting toolkit43 (Miao et al.). In this
study, the second-order cumulant expansion (CE2) method was
used. The boost potential values extracted from the aMD
simulation log were combined with the PC1–PC2 projections to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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calculate a reweighted two-dimensional free energy surface. The
resulting landscape provides insights into the conformational
preferences and energetics of the system under study.

We used Discovery Studio and the Python packages MDA-
nalysis44 and ProLIF45 to analyze protein–small molecule inter-
actions during the MD simulations.

Alanine scanning

Using Discovery Studio 2021, we conducted an alanine scanning
mutagenesis study to investigate the active sites of both the
HDAC3–Pan and HDAC3–13a complexes. This technique was
employed to systematically replace specic amino acids near
the active sites with alanine. The rationale behind this approach
is that alanine, being a small and non-reactive amino acid, can
be used to evaluate the importance of side-chain interactions in
inhibitor binding. By replacing key residues with alanine, we
aimed to identify which amino acids play a critical role in
stabilizing the inhibitor within the binding pocket. This process
allowed us to pinpoint the residues that contribute signicantly
to the binding affinity and overall inhibitory effect of the
compounds on HDAC3. The results from the alanine scanning
provided valuable insights into the molecular interactions that
are crucial for inhibitor binding, thereby highlighting potential
targets for enhancing the efficacy of HDAC3 inhibitors.

The mutation energy (DDGmut), which reects the impact of
each mutation on binding affinity, is determined by subtracting
the binding free energy of the wild-type protein from that of the
mutated structure:

DDGmut = DGbind(mutant) − DGbind(wild type) (12)

The binding free energy, DGbind, represents the difference
between the free energy of the complex and the unbound state.
All energy components are evaluated using CHARMm, with the
electrostatic energy computed via a Generalized Born implicit
solvent model. The overall energy is derived as an empirically
weighted combination of van der Waals interactions (EvdW),
electrostatic contributions (DGelec), an entropy term (–TSsc)
associated with alterations in side-chain exibility, and a non-
polar, surface-area-dependent solvation energy component
(DGnp).

Conclusions

This study utilized Gaussian accelerated molecular dynamics
simulations to compare the binding mechanisms of Pan-
obinostat and compound 13a with HDAC3, a key target in
cancer therapy. Our results demonstrate that 13a exhibits
superior inhibitory activity due to its stronger and more stable
interactions with HDAC3, including enhanced coordination
with the catalytic zinc ion and a greater number of hydrogen
bonds and electrostatic interactions. Notably, 13a induces
signicant conformational exibility in HDAC3, stabilizing the
enzyme in multiple distinct states, which likely contributes to
its slow-on/slow-off binding kinetics. These ndings provide
a molecular basis for the enhanced potency of 13a and under-
score its potential as a therapeutic agent for acute myelogenous
© 2025 The Author(s). Published by the Royal Society of Chemistry
leukemia (AML). Moreover, the identication of critical residues
through alanine scanning offers valuable insights for the design
of more effective HDAC3 inhibitors. This work highlights the
utility of advanced computational methods in elucidating
enzyme-inhibitor dynamics and paves the way for the develop-
ment of next-generation cancer therapeutics.
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