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N and CatBoost models in a tea-
waste biochar filtration system for toxic organic
pollutant removal efficiency prediction†

Stuti Jha,a Rama Gaur, *a Syed Shahabuddin,*a Vinay Vakharia b

and Mohammed E. Ali Mohsin*c

Water pollution is a dreadful global crisis undermining the environment and economy. In order to combat

this issue, several methods and techniques are adopted for treating the polluted water. Adsorption by

biowastes is one of the most economically viable, simple, and effective methods for wastewater

treatment. In spite of numerous reports in the literature showing the removal of various pollutants, there

is still room for investigation in the field of simultaneous adsorption of varied categories of pollutants.

The present study focuses on the simultaneous removal of organic water contaminants like dyes,

agrochemicals, and aromatic compounds from wastewater using biochar prepared from tea waste as

adsorbent. A detailed investigation on the effect of contact time, pH, dosage, and temperature on the

adsorption performance of adsorbent has been carried out. At optimized reaction condition of 5 mg

ml−1 of adsorbent dosage at pH 2 for 60 min, 82.66% overall removal was obtained for 40 ppm of

pollutant (malachite green, congo red, chlorpyrifos, and 4-nitroaniline) mixture. Further, the percentage

removal was predicted using two machine learning (ML) models: CatBoost and Recurrent Neural

Network (RNN), with and without Bayesian optimization. The prediction capability of these models was

evaluated using three performance metrics: coefficient of determination (R2), Mean Absolute Error (MAE),

and Root Mean Square Error (RMSE). Based on the evaluation, RNN was found to be the most effective

model for % removal prediction based on higher R2 value of 0.960. Moreover, the fabrication of

a portable column filtration device for the removal of coexisting harmful organic pollutants has been

demonstrated. The results confirm that tea waste (TW)-derived biochar, coupled with advanced machine

learning models, is a promising solution for real-time wastewater treatment.
1. Introduction

Water is a vital element for life and a key to survival. Approxi-
mately two thirds of the world's population experience water
scarcity problems or lack access to clean/pure water. Thus, it is
a global priority to preserve water quantity and quality. Besides
overpopulation, climate change, exploitation of various water
resources, etc. water pollution is also one of the chief causes of
water being unt for usage and shortage of freshwater avail-
ability.1,2 Water pollution has risen at an alarming rate due to
anthropogenic activities like industrialization, enlargement of
urban areas, metropolitan expansion, and mining practises over
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the years. Effluents and overspills from different industries such
food, textiles, leather, pharmaceuticals, tannery, and oil rening
are the leading sources of water pollution.3 Wastewater consti-
tutes of persistent organic and inorganic water contaminants like
dyes, agrochemicals, aromatic compounds, heavy metals, oil-
spills, etc.4,5 These toxic chemicals inict havoc on human well-
being and wildlife eventually leading to an imbalance in the
ecosystem. To battle this peril of water pollution, extensive
research has been carried out in the area of wastewater treatment.
A great deal of efforts has been invested towards the development
of effective techniques and materials for the treatment of waste-
water. Various cost-effective techniques like photocatalysis,
reverse osmosis, chemical precipitation, ion-exchange, etc. are
employed for the treatment of wastewater.6 However, there are
certain disadvantages like fouling of membrane, complex oper-
ational conditions and set-up, limited efficiency, generation of
sludge, etc. associated with these methods. Adsorption is one
such cost-effective, simple, widely adapted, and efficient method
for removal of noxious pollutants from wastewater.7,8 Some of the
most common adsorbents include zeolites, carbon-based mate-
rials, nanomaterials, bio-wastes, activated carbon, etc.9–11 A large
© 2025 The Author(s). Published by the Royal Society of Chemistry
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number of reports are available in the literature focusing on
adsorption of a single pollutant and a few focusing on simulta-
neous removal (binary or multicomponent system) of pollutants
of same category (Table S1†).12–23 As deduced from the literature
search, there is lack of reports on:

(1) Simultaneous removal of pollutants from a diverse range
of pollutants.

(2) Large scale application of adsorbent.
(3) An adsorption study on real-time industrial effluent.
There is always an expected co-existence of multiple pollut-

ants with different structure, charges, chemical nature etc. in
wastewater.24 Therefore, for an adsorbent to be an ideal candi-
date for wastewater treatment, it needs to be effective in not just
individual removal but simultaneous removal of pollutants as
well. Apart from that as the industry scale adsorption employs
column ltration considering the high volume of wastewater,
the practicality and efficiency of the adsorbent should not be
limited to laboratory scale only. Fabrication and designing of
a portable column ltration system is a simple, convenient, and
effective way for large-scale wastewater treatment.25 Thus,
development and detailed investigation of adsorbents offering
the merits of being low-cost, multi-functional, and effective for
both lab as well as real-time large-scale analysis is a pressing
priority in the area of water treatment and environmental
remediation.26 In the present study, biochar which is a carbon-
rich, green, and effective adsorbent prepared from pyrolysis of
biowastes has been utilized for abatement of organic pollutants.
Apart from carbon, biochar's composition consists of signi-
cant amount of oxygen, hydrogen, and nitrogen. The specic
properties of biochar include long-term stability, hydropho-
bicity, large surface area, chemical composition, high porosity,
etc. which is hypothesized to promote interaction with pollut-
ants and make them a suitable candidate for adsorption.27,28

The pyrolysis temperatures for preparation of biochar i.e. 300 °
C, 500 °C, 700 °C were chosen with an aim to have biochar
prepared at mild, moderate, and extreme pyrolysis temperature.
Also, the properties of biochar are deeply inuenced by the
pyrolysis temperature so selecting the temperature from
a broad zone enables obtaining adsorbents with distinct nature.
For example, at 300 °C, biochar generally retains a high
concentration of oxygen-containing functional groups (e.g., –
OH, –COOH), which enhance adsorption through hydrogen
bonding and electrostatic interactions, particularly benecial
for binding polar pollutants. At 500 °C, more conversion to
carbon can be observed and aromaticity is introduced in the
biochar. At high temperature of 700 °C, ash content increases in
the biochar and agglomeration of particles can also expected.

Machine learning in adsorption studies refers to the use of
data-driven algorithms to predict adsorption efficiency based on
various input parameters such as adsorbent properties, pollutant
concentration, pH, and contact time. By analyzing experimental
data (e.g., pollutant type, concentration, pH, contact time, and
removal %), machine learning can identify key inuencing
factors affecting the percentage of adsorption and its prediction.
In this study, machine learning was applied to predict the
removal efficiency of toxic pollutants using biochar, enabling
accurate estimation based on input variables such as adsorbent
© 2025 The Author(s). Published by the Royal Society of Chemistry
dosage, contact time, and initial pollutant concentration. This
approach enhances the understanding and optimization of
biochar-based adsorption. Optimization techniques ensure the
selection of hyperparameter of ML models which signicantly
enhances the predictive performance of models. Furthermore,
ML-driven comprehension of biochar properties and pollutant
behaviour aids in the development of more effective and
sustainable ltration techniques. Zhang et al. examines the utility
of ML to predict the biochar yield and properties from biomass
residue.29 Authors emphasizes how anaerobic digestion processes
enhanced by biochar may be optimized using machine learning
to recover bioenergy. Chang and Lee predicts the adsorption
characteristics of biochar-activated carbon generated from waste
wood using articial neural network to optimize production
efficiency and cost.30 The results highlight ML potential to
enhance adsorption performance and process optimization. In
another study, Zhang et al. highlights the potential use of ML to
optimize the synthesis and adsorption capacities of biochar for
the elimination of contaminants.31 Study systematically covers
advancements in predicting biochar yield, physicochemical
properties, adsorption efficiency, and optimal conditions while
providing general guidelines for whole-process optimization.

Prior studies on pollutant removal efficiency predicts mostly
used traditional experimental methods and simpler statistical
models, which oen had scalability and accuracy issues.
However, in this study, authors anticipate the percentage of
elimination by using the advanced capabilities of RNN and
CatBoost models. While RNNs succeed at capturing temporal
and sequential correlations in adsorption processes, CatBoost
excels at handling categorical information and complex inter-
actions. In the absence of Bayesian optimization, these models
provide baseline projections using default congurations,
offering insight into the underlying trends in pollutant removal.
Bayesian optimization is used to systematically modify hyper-
parameters in order to increase accuracy, decrease errors, and
provide dependable outcomes. This dual approach allows for
a comparative evaluation of model performance and demon-
strates how machine learning may be used to improve biochar-
based ltration systems for simultaneous pollution removal.
With these models, authors aim to set a benchmark for
predictive analytics in wastewater treatment processes.

The signicant contribution of present study is as follows:
(a) The work addresses the challenging issue of multi-

pollutant adsorption in synthetic wastewater by concentrating
on the simultaneous removal of agrochemicals, dyes, and
aromatic compounds. Based on the widespread availability of
tea waste in the Indian context, their unique physical and
chemical properties, and large amount of tea waste (approxi-
mately 25 million kilogram) generated in India in a year due to
its high consumption, the biowaste (tea waste) has been chosen
for the preparation of biochar (pyrolysis at 300 °C, 500 °C, and
700 °C, for 3 hours at 5 °C min−1 of heating rate).32

(b) It also focuses on the effect of various parameters like
contact time, dosage, pH, and temperature on the adsorption
process.

(c) The study offers a portable device for real-time wastewater
treatment that incorporates machine learning insights and offers
RSC Adv., 2025, 15, 27260–27278 | 27261
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Table 1 Structure, charge and toxic effect of the pollutants studied in the present report

Pollutant Structure Charge Toxic effect Ref

Malachite green (MG) +ve Respiratory toxicity, carcinogenic, chromosomal fractures 33

Congo red (CR) −ve Carcinogenic, mutagenic, causes infertility, irritation to skin 34

4-Nitro aniline (4-NA) −ve Dizziness, fatigue, methemoglobinemia, anemia 35

Chlorpyrifos (CPY) −ve Headaches, blurred vision, muscle tremors, endocrine disruption 36
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a scalable, practical solution for large-scale applications, all while
using a comprehensive adsorptionmechanism for each pollutant.

(d) This study utilizes RNN and CatBoost to properly predict
% removal efficiency, utilizing their capabilities in handling
sequential data and complicated interactions, in contrast to
prior studies that relied on conventional experimental
approaches and simple statistical models.

(e) Using Bayesian optimization to ne-tune RNN and Cat-
Boost hyperparameters sets guidelines for ML applications in
wastewater treatment, ensuring improved prediction accuracy,
fewer errors, and reliable outcomes. The nature of these
pollutants along with their structure, charge, and toxic impacts
is as listed in Table 1.33–36
2. Material and method

The detailed discussion on chemicals and materials used
during the present study has been done in Section 2.1 and 2.2.
2.1. Materials

The TW required for the preparation of biochar was collected
from the canteen of Pandit Deendayal Energy University, Gan-
dhinagar, India. Other chemicals: acetone (Finar, AR grade,
27262 | RSC Adv., 2025, 15, 27260–27278
purity: 99%), NaNO3 (Merck, ACS grade, purity: 99%), HCl (Finar,
AR grade, purity: 37%), NaOH (Merck, ACS grade, purity: 97%),
malachite green (MG) (Finar, extrapure, purity 90%), congo red
(CR) (SRL chemical, ACS grade, purity: 75%), 4-nitroaniline (4-NA)
(Sigma-Aldrich, purity: 99%), and chlorpyrifos (CPY) (commer-
cial, SUPER-D, r = 1.4 g cm−3) were used as received. In this
study, millipore water was used for preparing all the solutions.
2.2. Pre-treatment of tea waste

The collected TW was thoroughly rinsed washed with distilled
water and shade-dried. The dried TW was crushed in a mixer
grinder to convert it into powdered form. The powder obtained
was sieved with a sieve (mesh size <75 mm) to obtain uniform-
sized particles of TW (75 mm). TW powder was stored in air-
tight vials to avoid atmospheric moisture adsorption.
2.3. Preparation of biochar from tea waste

Pyrolysis method was used for the preparation of biochar. The
sieved TW powder was weighed and kept in a crucible inside the
muffle furnace (Thermo sher). The biochar was prepared at
three different pyrolysis temperatures (300 °C, 500 °C, and 700 °
C) for 3 hours with the heating rate of 5 °C min−1 and will be
here forth referred to as TW3, TW5, and TW7, respectively.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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3. Characterization

All the samples in the current study were analyzed for their
functional groups, crystallinity, morphology, surface area, and
surface charge. The Fourier-transform infrared (FTIR) spectra of
the samples were recorded using FTIR spectrometer Perki-
nElmer, spectrum 2 model in ATR mode (scan range of 400–
4000 cm−1) for estimating the functional groups present. The X-
ray diffraction spectra (XRD) was recorded using PANalytical
X'Pert Pro diffractometer at 40 kV using ltered Cu Ka radiation
(l = 1.53 Å) with a goniometer speed in 5 to 50°, 2q range (step
size = 1° per minute). The morphology of the samples was
studied using eld emission-scanning electron microscopy (FE-
SEM) images of the samples taken in Zeiss ultra 55 model at
acceleration voltage of 5.00 kV. For FE-SEM analysis the samples
were sprinkled on clean aluminum stub over conducting carbon
tape. A thin gold layer was coated on the stubs using LEICA EM
ACE200 to make them conductive. The surface area was calcu-
lated by Brunauer–Emmett–Teller (BET) analysis in Altamira
BET analyzer at a degassing temperature of 200 °C for 2 hours.
The charge on the adsorbent surface was analyzed using point
of zero charge (PZC) method using salt addition method.37

LABINDIA 3000+ Ultraviolet-visible (UV-vis) Spectrophotometer
was used to monitor the concentration of the analyte solutions
during the entire adsorption study.

4. Adsorption study

The model pollutants (CPY, 4-NA, MG, and CR) were removed
using TW, TW3, TW5, and TW7. The primary investigation was
carried out by performing individual removal studies. Based on
the results, the best adsorbent was selected for an in-depth
adsorption analysis for simultaneous removal. The adsorption
studies were conducted for individual removal and simulta-
neous removal of the chosen pollutants from synthetic waste-
water. All the adsorption studies were performed at room
temperature. For individual and simultaneous removal 10 ppm
solution of individual analyte and a mixture (40 ppm) of all the
analytes, respectively were prepared. The effective concentra-
tion of all the analyte was kept as 10 ppm in all the adsorption
studies. In a typical adsorption study 10 mg of adsorbent was
added to 10 ml of the analyte solution. The solution was then
sonicated for 5 minutes. The solutions were then placed on
a shaker for 60 min for continuous stirring (170 rpm). Aer
completion of 60 min, the solutions were centrifuged for 5 min
at 4000 rpm to allow settling down of the adsorbent. The
supernatant of the solutions was analysed using UV-visible
spectrophotometer to monitor the concentration of the analy-
tes. The lmax values for MG, CR, 4-NA, and CPY during the
individual adsorption were considered as 617 nm, 499 nm,
381 nm, 298 nm, respectively while during the simultaneous
adsorption were found to be 648 nm, 516 nm, 361 nm, and
298 nm, respectively. A shi in the lmax values in the mixture as
compared to individual can be due to the interactions between
the pollutant molecules in the mixture.

The kinetics, dosage, pH studies, isothermal, and thermo-
dynamic studies were carried out for the simultaneous removal
© 2025 The Author(s). Published by the Royal Society of Chemistry
using the best selected adsorbent from the primary adsorption
studies. The kinetic studies were performed by monitoring the
concentration of the analyte solution at a regular time interval
of 10 minutes up to 60 minutes till the attainment of equilib-
rium. The obtained kinetic data were tted into different kinetic
models namely rst order (FO), second order (SO), Pseudo rst
order (PSO), Pseudo second order (PSO), Elovich, and intra-
particle diffusion model. The effect of dosage and pH on the
adsorption efficiency of the adsorbent was studied by varying
the adsorbent dosage (0.1 mg ml−1 to 5 mg ml−1) and pH of the
analyte solution (2, 4, 7, 10, and 12). The acidic and basic pH
were adjusted using 0.1 M HCl and 0.1 M NaOH. The spent
adsorbent was collected and regenerated by washing with
acetone followed by drying overnight at 60 °C. The isothermal
studies were performed by varying the concentration analyte
from 5 to 40 ppm. The effect of temperature was studied at
different temperatures of 278 K, 288 K, 298 K, 318 K, and 323 K.

The column adsorption study was performed by packing
a glass column sized 15 mm × 300 mm. 0.5 g (1 cm height) of
adsorbent was packed between two layers of cotton. The analyte
solutions containing mixture of pollutants with 10 ppm
concentration, was fed into the adsorbent packed column via
continuous ow with a vacuum pump (ow rate = 0.2
ml min−1). The ltrate obtained aer passing 100 ml of analyte
solution through the column was analysed using UV-visible
spectroscopy. The removal/adsorption (%) and adsorption
capacity at equilibrium are calculated using eqn (1) and (2),
respectively.

% Adsorption ¼ Ci � Ce

Ci

� 100 (1)

where, Ci represents concentration of analyte before adsorption,
Ce indicates concentration of the analyte at equilibrium

Qe = V(C1 − C2) O M (2)

Qe refers to adsorption capacity at equilibrium (mmol g−1); V
represents volume of analyte solution taken (ml); M stands for
quantity of adsorbent added (mg); C1 and C2 refer to the analyte
concentration before and aer adsorption respectively at the
lmax value (mg L−1).
5. Machine learning

ML is a type of articial intelligence techniques which allows
computers to learn from data and make judgments or predic-
tions without explicit programming. In order to address diffi-
cult issues across a variety of elds, the task of ML is to nd
patterns and correlations in data. From image identication
and natural language processing to intricate predictive model-
ling, it has several uses in manufacturing industries, environ-
mental sciences, etc.38 Large datasets and nonlinear
interactions are easily handled by machine learning approaches
including ensemble methods, decision trees, and neural
networks. Recent developments have made ML a signicant
tool for process optimization, result prediction, and revealing
insights that conventional approaches oen overlook.39 As
RSC Adv., 2025, 15, 27260–27278 | 27263
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shown by its use in industries like wastewater treatment,
machine learning model has the potential to completely
transform real-world problem-solving by improving accuracy,
efficiency, and scalability. In the present study, authors incor-
porated and tuned RNN and Catboost to predict % removal
efficiency. The brief description of models are as follows.
5.1. Recurrent neural network

RNNs are a type of ANN designed to process sequential data by
remembering previous inputs via internal states. Applications
requiring temporal or sequential dependency, such as language
modelling and time-series forecasting, benet greatly from its
use. The mathematical formulation of RNN is as follows:40

(a) Hidden state: RNN primary memory mechanism is the
hidden state (Zt). It allows the network to comprehend temporal
or sequential linkages by storing data from earlier time steps
(zt−1). It is formulated as:

Zt = 4(Whzt−1 + WuUt + bz) (3)

Here Wh and Wu represents the weight matrix for previous
hidden state and weight matrix for the input at time t. 4

represent activation function and bz represent bias vector.
(b) Output calculation: the output at time step t, denoted as

Ot, is computed as:

Ot = j(WoZt + bo) (4)

where Wo represents weight matrix to map hidden state to
output state. J represent the output activation function.

(c) Loss function: the performance of RNN is evaluated using
a loss function, such as MSE for regression tasks or cross-
entropy loss for classication which is computed as:

3 ¼ 1

N

XN
t¼1

l
�
Ot; Ôt

�
(5)

Here, 3 represent total loss in sequence, l loss function, Ot and
Ôt represent true and predicted value at time t.
5.2. CatBoost

Catboost also known as categorical boosting is a kind of
gradient boosting algorithm which is specically designed to
perform efficiently with categorical data. The algorithms
utilized decision tree as a base learner and incorporates order
encoding and target-based encoding to enhance accuracy, and
reduce overtting. Here loss function is minimized by itera-
tively adding weak learners. Themathematical formulation is as
follows:

(a) Objective function:
The loss function which needs to be minimized is as follows:

3 ¼ 1

N

XN
t¼1

l
�
ti; t̂i

�
(6)

(b) Gradient boosting framework:
27264 | RSC Adv., 2025, 15, 27260–27278
The CatBoost model added new decision trees at each iter-
ation and the prediction at step k is represented as:

t̂i
(k) = t̂i

(k−1) + amk(Vi) (7)

Here, t̂i
(k−1) represent prediction at previous iteration, a repre-

sent learning rate, and mk represent output of kth decision tree.
(c) Categorical feature encoding:
It is mathematically represented as

EncodedðcÞ ¼

Pi�1

j¼1

1�
Cj ¼ C

�
$tj

Pi�1

j¼1

1�
Cj ¼ C

�
$b

(8)

Here,1[Cj = C]$tj represent a function whose value equal to 1 if
sample j has same category as C. tj represent target value for
sample j. b represents smoothing parameter to prevent
overtting.

(d) Symmetric trees:
When CatBoost builds symmetric decision trees, every leaf

splits on the same feature at the same depth. The gain function
is maximized to dene the tree structure as follows:

Gain ¼
X Gl

2

Hl þ l
(9)

where Gl andHl represent sum of gradients and sum of hessians
in leaf l, l represent overtting parameter.
6. Results & discussion

The yield for the prepared biochar (TW3, TW5, and TW7) was
found to be ∼40%. The pH of the water suspension of biochar
was found to be 8. The characterization and adsorption results
are as mentioned below.
6.1. Functional group analysis

A knowledge about the different functional groups present on
the adsorbent surface provides a better understanding of the
characteristic of the material and how it will interact with the
analyte. Fig. 1 shows the FTIR of TW, TW3, TW5, and TW7. TW
is majorly composed of lignin, cellulose, hemicellulose, and has
polyphenols, carboxylic acid, and amino acids as major func-
tional groups.41 TW shows the characteristic peak of –O–H
stretching (3301 cm−1), C–H stretching in cellulose, hemi-
cellulose and lignin (2845 and 2916 cm−1), C]O or C–O
stretching (1640 cm−1 and 1029 cm−1), and N–H stretching
(1539 cm−1), conrming the presence of above-mentioned
functional groups.42,43 The disappearance of all the character-
istic peaks of TW except 1029 cm−1 in the FT-IR spectra of
biochar conrms the thermal degradation of TW. The peak at
568 cm−1 assigned to C–OH bending, 1456 cm−1 and 1409 cm−1

and 874 cm−1 related to the C–H stretching and aromatic nature
of biochar was found in all the biochars.44,45 Thus, the biochar is
found to have more in aromatic character as compared to the
biomass used as raw material.46 However, the peak at 874 cm−1

diminishes in TW7, indicating loss in the aromatic nature of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 FTIR of tea waste and prepared biochar samples (TW3, TW5,
and TW7).
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biochar with rise in decomposition temperature. The aromatic
character of biochar provides long-term stability, high surface
area, environment for favourable chemical and electrostatic
interaction which ensure the enhanced removal of
pollutants.47,48
6.2. XRD analysis

The XRD spectra of TW and prepared biochar samples is as
shown in Fig. 2. From the XRD of TW, a broad peak at 2q value
of 22.3° is observed which indicates the amorphous nature of
carbon. As TW is subjected to different temperatures and con-
verted into biochar, sharp peaks are observed. This represents
the conversion of amorphous carbon of TW to crystalline
carbon in TW3, TW5, and TW7. Peaks corresponding to SiO2,
Fig. 2 XRD of tea waste and prepared biochar samples (TW3, TW5,
and TW7).

© 2025 The Author(s). Published by the Royal Society of Chemistry
Fe2O3, Fe3O4, MnO2, and Al2O3 are found in TW3, TW5, and
TW7. Their 2q values are as marked in Fig. 2b. Additional peaks
corresponding to CaCO3 at 31.7° and 39.8° and Al2O3 at 25.6°
and 46.6° are observed in TW7. All these peaks are matched
according to JCPDS no: 44-0141, 82-1533, 33-0664, 39-1346, 05-
0586, 10-0173, and 11-0517. The occurrence of these oxides hint
towards the presence of ash in biochar samples. From the XRD
analysis, we can infer that the ash content increases in biochar
when the temperature rises from 300 °C to 700 °C. The increase
in ash content might negatively impact the adsorption effi-
ciency as it decreases the available surface area for adsorption.
Similar ndings have been reported by Tomczyk et al., Loebsack
et al., and Hou et al.49–51

6.3. Surface morphology analysis

From the FE-SEM image of TW (Fig. 3a), it is observed that it has
an irregular bumpy heterogenous surface with coarser struc-
ture.52 On subjecting the biomass (TW) to various pyrolysis
temperature and conversion to biochar, biochars with different
morphologies are formed. This is due to the decomposition and
volatilization of matter occurring during pyrolysis process.
During the preparation of TW3 and TW5 at 300 °C and 500 °C,
the larger particles of TW disintegrate into smaller particles
(Fig. 3b and c respectively). TW3 has smaller particles compared
to TW5. The disintegration and cracking of TW particles can be
attributed to the release of volatile matter.53 A further increase
in the pyrolysis temperature to 700 °C, leads to aggregations of
particles in TW7 (Fig. 3d).

6.4. BET analysis

The samples were analysed using BET characterization tech-
nique for estimation of surface area and pore size. The BET
surface area for TW, TW3, TW5, and TW7 was found to be 6.018
m2 g−1, 10.653 m2 g−1, 9.981 m2 g−1, and 5.734 m2 g−1. The
surface area was noted to increase when TW was converted to
TW3 and TW5. This can be related to the fact that the pore-
blocking substances (lignin, cellulose, etc.) are thermally
cracked when subjected to high temperatures.49,54 However, at
700 °C the surface area decreased to a value even less than TW.
This can be to the agglomeration of particles at higher
temperatures which is also in accordance with the FE-SEM
images. Kumar et al., co-related the decrease in surface area
with increase in temperature higher than 600 °C with the
structural ordering and pore melting.55 Owing to the thermal
breaking of hemicellulose, lignin, starch, etc. and loss of water
during the pyrolysis process, pores of different sizes are formed
on biochar.56 TW, TW3, TW5, and TW7 exhibited a pore size of
8.936 nm, 9.204 nm, 9.594 nm, 10.492 nm. This continuous
increment in the pore size value with pyrolysis temperature can
be related to the release of volatile matter.57,58

6.5. Point of zero charge (PZC)

The PZC of the adsorbent is the value of pH at which it bears no
net charge on its surface. The PZC value of any material is used
for identifying the charge on its surface at a particular pH value.
For values of pH less than PZC, the surface of the adsorbent has
RSC Adv., 2025, 15, 27260–27278 | 27265

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra01021g


Fig. 3 FE-SEM images of (a) TW, and derived biochar (b) TW3, (c) TW5, and (d) TW7.
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a positive charge, indicating the dominance of positively
charged adsorbent sites. The adsorbent's surface possesses
a negative charge when the value of pH is more than its PZC
value. This suggests an increase and governance of negatively
charged sites in the adsorption process at pH > PZC. Thus, the
PZC analysis plays a vital role in deciphering the adsorption
Fig. 4 Point of zero charge of (a) TW, and derived biochar (b) TW3, (c) T

27266 | RSC Adv., 2025, 15, 27260–27278
mechanism. For TW, the PZC value was found to be 6.6 (Fig. 4a).
As the biomass (TW) is converted into biochar the PZC value is
noted to be increasing. For TW3, TW5, and TW7 the PZC was
calculated to be 7.3, 7.5 and 8.3 respectively (Fig. 4b–d). From
this we can conclude that as the pyrolysis temperature increases
from 300 °C to 700 °C, the PZC value also rises. This property
W5, and (d) TW7 using salt addition method.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Removal (%) of pollutants using tea waste and its biochars

Code CPY 4-NA MG CR

TW 45.28 0 92.84 38.63
TW3 48.81 18.08 83.82 46.34
TW5 50.89 0 83.43 80.78
TW7 50.36 0 97.35 84.61

Fig. 5 Graphical representation of the most effective adsorbent for
removal of different pollutants and their removal % (conc. of analyte =

10 ppm, adsorbent dosage = 1 mg ml−1, 60 min).
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can be associated with the release of alkaline salts at higher
temperature.59
6.6. Adsorption studies

6.6.1. Individual adsorption studies. TW, TW3, TW5, and
TW7 were evaluated for the individual removal of CPY, 4-NA,
Fig. 6 UV-visible graph of (a) synthetic wastewater mixture and indiv
pollutants from synthetic wastewater by TW5 (conc. of analyte = 40 pp

© 2025 The Author(s). Published by the Royal Society of Chemistry
MG, and CR. The % removal values of all the pollutants are as
shown in Table 2. As observed from the results, only TW3
showed removal of 4-NA (18.08%). CPY was best removed by
TW5 (50.89%), while TW7 was themost effective for dye removal
i.e. MG (97.35%) and CR (84.61%). These ndings have been
graphically represented in Fig. 5.

The hydrophobicity of the biochar is said to be increasing
along with the rise in pyrolysis temperature. The hydrophobic
character of the biochar is reported to be favourable for the
adsorption of agrochemical.60 So, increase in hydrophobicity
with increase in temperature from 300 to 700 °C could be the
reason for higher adsorption of CPY on TW5 and TW7 as
compared to TW3. Similar ndings have been reported by
Zhang et al., where hydrophobicity of biochar has promoted the
adsorption of different organophosphorus insecticides. The
adsorption of 4-NA, is likely to be facilitated by the more oxygen
rich functional groups of the biochar pyrolyzed at lower
temperature like 300 °C (TW3) in comparison to that at higher
temperatures such as 500 °C-900 °C (TW5 and TW7).61 In case of
dye adsorption, an adsorbent with greater pore size benets the
process as large pores are required to accommodate bulky dye
molecules.62,63 TW7 has the largest pore size as compared to
other studied materials in the study (as estimated by BET
analysis), resulting in its highest dye removal efficiency.

6.6.2. Simultaneous removal studies. Aer primary evalu-
ation from the individual adsorption studies, a detailed
simultaneous removal of pollutants from synthetic wastewater
was carried out. All the three biochar samples (TW3, TW5, and
TW7) were further investigated for their potential in removal of
pollutants from a mixture of agrochemical, aromatic molecule,
and industrial dyes (CPY, 4-NA, MG, and CR). It was calculated
that TW3, TW5, and TW7 showed an overall removal percentage
of 49.65 ± 3, 53.45 ± 2, and 47.48 ± 2, respectively in 60 min.
The individual removal of each component is as mentioned in
Table S2 (ESI).† From the results, it can be concluded that TW5
idual analyte before adsorption, and (b) simultaneous adsorption of
m, adsorbent dosage = 1 mg ml−1, 60 min).

RSC Adv., 2025, 15, 27260–27278 | 27267
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Fig. 7 Overall removal % from synthetic wastewater with respect to
time by TW5 (conc. of synthetic wastewater = 40 ppm, pH = 7,
adsorbent dosage = 1 mg ml−1, time = 80 min).
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was the most efficient adsorbent for simultaneous removal.
Fig. 6a and b shows the UV-visible spectra for the adsorption of
mixture using TW5. Thus, TW5 was further assessed by per-
forming the kinetic, dosage and pH study for the simultaneous
adsorption.

6.6.2.1. Kinetic studies. For the kinetic study, the concen-
tration of the mixture was monitored at every 10 min (4 min
during the rapid adsorption stage i.e. till 20 min) till 60 min as
Fig. 8 Linear fitting of (a) first order, (b) second order, (c) Pseudo first or
models for simultaneous removal by TW5.

27268 | RSC Adv., 2025, 15, 27260–27278
saturation was observed post 60 min (Fig. 7). A slight drop in
removal efficiency was observed at 30 and 40 minutes, which
could be attributed to temporary desorption. This desorption
can be attributed to the redistribution of adsorbate, surface
reorganization, or weakly/reversibly bound molecules being
temporarily released during the adsorption process. At the end
of 60 min, 52.16 ± 2% of overall removal was achieved from the
mixture. Based on the kinetic data, different kinetic models
namely rst order (FO), second order (SO), pseudo rst order
(PFO), pseudo second order (PSO), Elovich, and intra-particle
diffusion were plotted (according to their linear equations) to
get a better understanding of the nature of the adsorption
process (Fig. 8a–f). The overall Qe value was found to be 4.58 mg
g−1. The value of individual Qe, K, and R2 for each pollutant
derived from the linear tting of the kinetic models are
mentioned in Table S3.† From the comparative high value of R2

of second order graph, we can conclude that the reaction
follows second order kinetics. This suggests that the adsorption
process is dependent on the concentration of analyte and
number of active adsorbent sites.

6.6.2.2. Effect of adsorbent dosage. The dosage studies were
performed for identication of the optimal dosage of adsorbent
(TW5) for maximum removal efficiency. The bar graph showing
the overall % removal at varying dosage is as shown in Fig. 9.
The % removal of individual component and overall adsorption
is summarized in Table S4.† On increasing the dosage from
0.1 mg ml−1 to 5 mg ml−1, the overall removal efficiency was
found to increase from 9.32 ± 2% to 81.39 ± 2.1%. The
enhancement in the removal (%) can be due to the increasing
availability of adsorption sites with increasing dosage of TW5.
der, (d) Pseudo second order, (e) Elovich, and (f) intra-particle diffusion

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Overall removal (%) of the mixture at different TW5 dosage
(conc. of synthetic wastewater= 40 ppm, pH= 7, adsorbent dosage=
0.1 to 10 mg ml−1, time = 60 min).
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At adsorbent dosage of 10 mg ml−1, a decrease in the efficiency
was noted. This may be due to the agglomeration of particles.
Similar results have been reported in several studies.64,65

6.6.2.3. Effect of pH of analyte. The basicity and acidity of the
analyte solution highly affects the characteristic of the analyte
and the adsorbent, thus inuencing the adsorption process.
Various factors like charge, structure, chemical and physical
properties get affected with a change in pH of the solution
which in turn inuences the interaction between the adsorbent
and analyte. For the study, the pH of the analyte solution was
adjusted as described in section 4. The pH of the aqueous
solution was found to be 7. The UV-visible graph is as shown in
Fig. 10a and the bar graph for overall removal (%) is as shown in
Fig. 10b. The individual removal (%) of each pollutant at
different pH are summarized in Table S5.† A highest overall
removal of 62.72 ± 0.9% was obtained at pH value of 2, which
decreased to∼45% as the pH increased from 2 to 12. MG shows
maximum removal of 89% at extremely high basic (pH 12)
Fig. 10 (a) UV-visible graph, and (b) bar graph showing the removal of po
(conc. of synthetic wastewater = 40 ppm, pH = 2 to 12, adsorbent dosa

© 2025 The Author(s). Published by the Royal Society of Chemistry
medium. Maximum adsorption of CR was observed at highly
acidic pH of 2 (77.22%), which decreased with increasing value
of pH, attaining its minimum value of 47.92% at pH 12. At the
pH of 2, 32.99% of 4-NA was adsorbed, while at the pH value of 4
and 7, there was a slight drop of 7% in the removal of 4-NA
which decreases furthermore at pH of 12 (15.90%). For CPY, the
removal % was found to be gradually decreasing from 53.90%
(at pH = 2), to 27.37% (at pH = 12). Further discussion
regarding the nature of adsorption at the studied pH is as
mentioned in section 5.4 (mechanism of adsorption). The
results obtained from dosage and pH studies, infer that
maximum overall removal can be achieved at 5 mg ml−1 of
adsorbent dosage and pH 2. Thus, a maximum overall removal
of 82.66 ± 1.3% was obtained for the treatment of synthetic
wastewater at pH 2 and 5 mg ml−1 dosage of TW5.

6.6.2.4. Effect of concentration of analyte. The bar chart as
shown in Fig. 11 displays the efficacy of contaminant removal
(%) at various analyte concentrations (5, 10, 20, and 40 mg L−1).
The removal (%) of each component in the mixture dye is as
mentioned in Table S6.† The highest clearance efficiency was
recorded at 10 mg L−1 (61.76 ± 2.8%), closely followed by
5 mg L−1 (60.55 ± 2.3%). When the analyte concentration
increased to 20 mg L−1, the removal efficiency somewhat
decreased to 59.5 ± 1.9%, but it became more apparent at
40 mg L−1, when it dropped to 50.33 ± 1.1%. This graph
demonstrates that as the analyte concentration increases over
a certain threshold, the adsorption efficacy decreases because
the surface of the biochar has reached saturation of available
adsorption sites. These ndings highlight the need of opti-
mizing operational parameters for effective wastewater treat-
ment and show how analyte concentration inuences removal
performance.

6.6.2.5. Effect of temperature. On varying the temperature of
the adsorption system, the removal (%) was found to be 28.15%,
29.69%, 53.85%, 42.31%, and 41.08% at 278 K, 288 K, 298 K, 318
K, and 323 K, respectively. From the removal (%) values, it can
llutants from the mixture at different pH values of the analyte solution
ge = 1 mg ml−1, time = 60 min).

RSC Adv., 2025, 15, 27260–27278 | 27269
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Fig. 11 Bar graph showing the overall removal (%) of pollutants at
different analyte concentrations (conc. of analyte = 5–40 ppm, pH =

7, adsorbent dosage = 1 mg ml−1, time = 60 min).
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be said that high temperature favoured the reaction process as
compared to decreased at low temperatures. Highest efficiency
was recorded at room temperature, depicting the optimum
temperature condition (298 K). The obtained experimental data
was tted into eqn (10), to obtain the value of DG. The obtained
DG was used to plot the graph of DG versus temperature (K)
according to eqn (11).

DG = −RT ln k (10)

DG = DH − TDS (11)

where, DG = change in Gibbs free energy, R = gas constant
(8.314 J mol−1 K−1), T = temperature (Kelvin), k = solute coef-
cient (1000Qe/Ce), DH = change in enthalpy, DS = change in
entropy.
Fig. 12 Thermodynamic plot for overall removal (conc. of analyte =

40 ppm, adsorbent dosage= 1 mgml−1, time= 60min, temperature=
278 K, 288 K, 298 K, 318 K, and 323 K).

27270 | RSC Adv., 2025, 15, 27260–27278
Fig. 12 shows the plotted graph of DG versus temperature (K).
The negative values of DG (kJ mol−1 K−1) indicates the sponta-
neous nature of the adsorption process at all temperature. The
values of DS and DH were found to be 0.0844 J mol−1 K−1 and
9.276 kJ mol−1, respectively as derived from the graph. The
positive value of DS corresponds to the increase in entropy/
randomness of the system, while the positive value of DH
hints towards the endothermic nature of adsorption process.

6.7. Mechanism of adsorption

The mechanism is profoundly dependent on the charge of the
analyte and adsorbent, their functionalities, charge, and
porosity of the adsorbent, which in turn determines the nature
of interaction between them. Various interactions like p–p

interaction, hydrophobic interactions, hydrogen bonding, and
pore-lling are involved in the adsorption of pollutants. The
aromatic functional groups present in MG, CR, CPY, and 4-NA
can act as p-electron acceptors while the aromatic rings in TW5
may act as p-electron donors. This results in the adsorption of
pollutant via p–p interaction. The hydrophobic groups like
alkyl chains, methyl groups, etc. present in the analyte and
adsorbent allow the removal of pollutant through hydrophobic
interactions. Oxygen and nitrogen like atoms present in the
analyte forms hydrogen bonds with functional groups like –OH,
and –COOH present on the surface of TW5, facilitating their
adsorption. The porous network and surface area of TW5 allow
the diffusion of the pollutants in the pores resulting in their
removal from the aqueous solution.

As per the results obtained from the pH studies (Table S5†
and Fig. 10) and PZC of TW5, a plausible mechanism for the
adsorption of each pollutant (based on the charge) from the
synthetic wastewater is discussed (Fig. 13). The PZC value of
TW5 is 7.5 as identied from the PZC analysis, implying that for
pH values <7.5, the adsorbent's surface is positively charged,
while for pH values >7.5, it is negatively charged. Ion-exchange
interactions between like charges of analyte and adsorbent are
responsible for the adsorption of positively charged pollutant,
that is MG from the studied synthetic wastewater in the acidic
medium. In the basic medium, the adsorptive removal process
is governed by electrostatic attraction amongst positive MG and
negative TW5.66 The adsorption of negatively charged CR, 4-NA,
and CPY is facilitated in the acidic medium owing to electro-
static interactions between negative charges of the pollutants
and positively charged adsorbent. As the pH increases and
shis to basic, a decrement in removal % is observed for the
negatively charged pollutants due to the electrostatic repulsion
between the like charges of analyte and adsorbent.67–69

6.8. Column ltration adsorption study

From the conducted (effect of analyte) study, it was observed
that better removal efficiency is achieved at 10 ppm concen-
tration of the analyte. Therefore, with an aim to develop
a portable lter for wastewater treatment, the present study was
scaled up via column adsorption process for adsorption of
10 ppm analyte solution. The bar chart (Fig. 14) displays the
pollutants' removal efficacy (%) at different combination
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 Mechanism of adsorption of pollutants during their simultaneous removal at different acidic and basic pH values.

Fig. 14 Bar graph showing the overall removal (%) of mixture by
column filtration study.
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volumes (100 to 500 ml). The % removal of the individual
components for every 100 ml solution is as mentioned in Table
S7.† The elimination efficiency peaked at 400 ml (87.11%), with
100 ml (86.41%) and 300 ml (86.12%) following closely aer.
The removal efficiency dropped somewhat to 85.66% at 200 ml,
but it dropped dramatically to 75.78% at 500 ml. The statistics
demonstrate that the adsorbent is considerable efficient within
a certain volume range; beyond this range may lower the
number of accessible adsorption zones or dilute the pollutant
concentration, both of which would reduce efficacy. These
ndings demonstrate how important it is to maintain the
© 2025 The Author(s). Published by the Royal Society of Chemistry
mixture volume at the optimal amount for optimal removal
efficacy.

6.9. Recyclability of spent adsorbent

The bar chart in Fig. 15 depicts the removal efficacy (%) of
pollutants across ve adsorption–desorption cycles and the
individual removal is as mentioned in Table S8.† With
a removal efficiency of 53.45 ± 2.1%, the rst cycle retained the
greatest performance. However, a continuous decline in
removal efficiency was seen with each cycle. In the second and
third cycles, the efficiencies dropped slightly to 51.13 ± 1.8%
and 52.47 ± 2.3%, respectively. In the fourth cycle, the removal
efficiency dropped to 40.98 ± 0.8%, and in the h cycle, it
dropped to 32.75 ± 2.2% once again. This trend suggests that
with repeated usage, the adsorbent's capacity to remove
pollutants gradually decreases, most likely due to the loss or
saturation of active adsorption sites. These results emphasize
the need of further investigation into adsorbent regeneration
techniques to sustain high removal efficiencies across many
cycles.

The adsorbent aer adsorption and regeneration was char-
acterized using FTIR to study the nature of adsorption and
stability of adsorbent post-regeneration, Fig. 16 shows the FTIR
spectra of TW5 before adsorption, aer adsorption, and aer
regeneration. On comparing the spectra of TW5 before and aer
adsorption, disappearance of peaks and appearance of new
peaks is observed post-adsorption. This suggests the vital role of
functional groups of adsorbents in the adsorption of pollutants.
The disappearance of peaks attributed to aromatic character of
biochar (C–C stretching in aromatic ring), C]C stretching,
symmetric COO– stretching can be due to electrostatic
RSC Adv., 2025, 15, 27260–27278 | 27271
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Fig. 15 Bar graph of overall removal of pollutants from the mixture
during different cycles of TW5 (conc. of synthetic wastewater =
40 ppm, pH = 7, adsorbent dosage = 1 mg ml−1, time = 60 min).

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 1
2:

14
:3

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
attraction between dye and functional groups,p–p interactions,
hydrophobic interaction and hydrogen bonding. New peaks at
957 cm−1, 915 cm−1, and 533 cm−1, are observed in FTIR
spectrum aer adsorption. The peaks at 957 cm−1 and 915 cm−1

represents the C]C of alkenes and C–H out of plane vibration.
These peaks can also be due to the vibrations relating to
phosphate group of chlorpyrifos, aromatic amines possibly
from 4-NA. The peak at 533 cm−1 is associated with metal-oxide
bond. For the present study, this peak can be due to the
formation of Si–O or Fe–O bond between minerals/metal-oxides
in biochar and oxygen containing functional groups of
pollutant. The spectrum of TW5 aer regeneration with acetone
shows similar peaks as aer adsorption spectrum, suggesting
that chemical bonds are formed between pollutant and
Fig. 16 FTIR spectra of TW5 before adsorption, after adsorption, and af

27272 | RSC Adv., 2025, 15, 27260–27278
adsorbent and thus are not broken by acetone. However, in the
recyclability study of TW5 it is observed that the adsorbent
shows good performance for up to 3 cycles. This suggests that
acetone has freed up the active adsorption sites and pores
without altering the chemical bonds.
6.10. Machine learning prediction

The present study extensively investigated the adsorption
capacities of the tea waste-derived biochar across a range of
synthesis and operation conditions. The % removal efficiency
was predicted using two advanced machine learning models,
RNN and CatBoost, additionally with and without Bayesian
optimization. The performance of these models was rigorously
assessed, and their prediction accuracy and reliability were
thoroughly reviewed, using three crucial evaluation metrics: R2,
MAE, and RMSE. It is clear from Fig. 17a, that during the
training phase, CatBoost R2 value of 0.99 was a signicant
increase of around 28.17% when compared to RNN R2 value of
0.77. This indicates the underlying patterns in the efficacy of
pollutant removal and shows how well CatBoost matches the
training data. Similarly, CatBoost achieved an R2 value of 0.91
during the ten-fold cross-validation phase, outperforming RNN
by 26.68%. This improvement demonstrates how CatBoost
improves training performance and generalizes to new data
efficiently, reducing the likelihood of overtting. The results
demonstrate how reliable and robust CatBoost is in simulating
the efficacy of pollution removal, making it a superior choice for
this study than RNN. As observed from Fig. 17b, during the
training phase, CatBoost performed about 89.18% better than
RNN, which had an MAE of 11.23, with an MAE of 1.21. This
illustrates CatBoost remarkable ability to lower training
prediction errors, ensuring a more accurate match with actual
values. Similarly, during the ten-fold cross-validation phase,
CatBoost MAE of 5.62 was about 52.85% lower than RNN' MAE
ter regeneration.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 17 Prediction results of (a) R2, (b) MAE, and (c) RMSE from ML models without optimization.
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of 11.93. This reduction illustrates CatBoost enhanced ability to
generalize and maintain low prediction errors across unknown
inputs. While performing training and ten-fold cross-validation
on the experimental dataset, it is observed from Fig. 17c, Cat-
Boost outperformed RNN, based on the comparative study of
RMSE values obtained. The RMSE of value of 1.97 obtained
during training of CatBoost is around 86.35% lower than the
RMSE value of 14.48 for RNN. This signicant decrease suggests
© 2025 The Author(s). Published by the Royal Society of Chemistry
that CatBoost can model the data with much lower prediction
errors, leading to improved accuracy in the training stage.
CatBoost RMSE of 8.09 during the ten-fold cross-validation
phase was 46.28% lower than RNN's RMSE of 15.07. This
illustrates how well CatBoost generalizes, guaranteeing more
reliable results on unknown datasets.

As observed from Fig. 18a, the analysis of R2 values obtained
when ML models are optimized with Bayesian optimization
RSC Adv., 2025, 15, 27260–27278 | 27273

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra01021g


Fig. 18 Prediction results of (a) R2, (b) MAE, and (c) RMSE from ML models with Bayesian optimization.
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demonstrates the impact of hyperparameter modication on
the prediction of % removal. During the training phase, RNN
and CatBoost both demonstrated exceptional accuracy with R2
27274 | RSC Adv., 2025, 15, 27260–27278
values of 0.977 and 0.983, respectively. When compared to RNN,
CatBoost R2 increased by 0.61%, suggesting that Bayesian
optimization was effective in modifying CatBoost
© 2025 The Author(s). Published by the Royal Society of Chemistry
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hyperparameters, enhancing its capacity to detect complex
relationships in the data. During the ten-fold cross-validation
phase, the RNN R2 score of 0.960 was about 5.10% more than
CatBoost R2 value of 0.911. This implies that even though both
models shown exceptional performance during training, RNN
maintained a higher generalization ability on unknown data
aer Bayesian optimization. The investigation of MAE values
aer Bayesian optimization indicates the meaningful differ-
ences in prediction capabilities between RNN and CatBoost
models as observed from Fig. 18b. CatBoost achieved a drop of
around 18.35% throughout the training phase, with a lower
MAE of 2.705 than RNN's MAE of 3.314. This implies that aer
optimization, CatBoost was better able to nd correlations in
the training data and minimize errors. During the ten-fold
cross-validation phase, RNN demonstrated better generaliza-
tion with a lower MAE of 4.333 than CatBoost MAE of 5.619,
indicating a 22.88% relative improvement. This suggests that
RNN beat CatBoost on unknown data, even though CatBoost
did quite well in training accuracy. The RMSE values (Fig. 18c)
aer Bayesian optimization clearly demonstrate performance
trends between the RNN and CatBoost models. When compared
to RNN 4.660, CatBoost showed a drop of around 20.55%
throughout the training phase, with a lower RMSE of 3.703. This
implies that CatBoost was better at nding patterns in the data
and lowering prediction errors during training. Moreover, in the
ten-fold cross-validation stage, RNN performed reasonably
better than CatBoost, with an RMSE of 5.721, which was 31.69%
lower than CatBoost RMSE of 8.377. The prediction results
shows that RNN has better generalization capabilities than
CatBoost, making it more reliable on unknown data.
7. Conclusion

This study investigates the simultaneous removal of multiple
organic pollutants, notably malachite green, congo red, 4-
nitroaniline, and chlorpyrifos, utilizing biochar derived from
tea waste. The optimal adsorbent (TW5) was evaluated under
a number of conditions, including pH, concentration, dosage,
contact time, and temperature. Under optimal conditions,
which included a pH of 2, a contact period of 60 minutes, and
an adsorbent dose of 5 mg ml−1, a maximum removal efficiency
of 82.66% was observed. The adsorption procedure corre-
sponded to second-order kinetic models, which offered a solid
justication for the mechanism of pollutant removal. The
portable column ltration device demonstrated its value in real-
time wastewater treatment by eliminating 90% of coexisting
pollutants. MLmodels were applied to the experimental data set
to predict the adsorption efficiency. With reduced MAE and
RMSE values throughout both the training and cross-validation
stages, RNN was shown to be the most effective model for %
removal prediction. Although CatBoost performed well during
training, its generalization was less reliable. These ndings
show that it is possible to enhance pollutant removal processes
by fusing state-of-the-art machine learning techniques with
experimental insights, offering a workable and reasonably
priced choice for wastewater treatment applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Although the present work evaluates biochar as an adsorbent
for multi-component system, other pollutants like oil, heavy
metals, surfactants, etc. present in the wastewater can alter the
adsorption performance of the adsorbent. The separation of the
adsorbent is another challenge that can surface during the real-
time wastewater analysis. Considering the drawbacks, several
modication/functionalization techniques like acid modica-
tion, base modication, and magnetization can be used to
develop adsorbent with enhanced efficiency and easy separation
post-adsorption. A membrane fabrication can be attempted to
convert the presented work into a more applicable and feasible
form for large-scale wastewater treatment. ML models can be
applied for selecting and analyzing the optimum pyrolysis
conditions for biochar preparation to obtain maximum removal
efficiency.
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