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opper–glutathione clusters with
superior p-nitrophenol degradation and
horseradish peroxidase-like activity†

Mayowa Oyebanji, Xuejiao Yang, Ling Chen, Wencai Sun, Ruru Qian, Haizhu Yu *
and Manzhou Zhu

Copper nanoclusters (Cu NCs) are emerging as highly promising nanomaterials due to their unique

physicochemical properties, making them an ideal platform for catalysis, sensing, and environmental

remediation. This study explores the development of ultrasmall, water-soluble copper–glutathione (Cu–

SG) nanoclusters, focusing on their catalytic capacity for the degradation of p-nitrophenol (p-NP),

horseradish peroxidase (HRP)-like activity, and hydrogen peroxide (H2O2) detection. During synthesis,

a combination of one-pot synthesis and acid-etching strategy was employed. The acid-etching

approach was specifically utilized as an essential method to precisely regulate the structural properties of

the clusters. The water-soluble ultrasmall Cu–SG nanoclusters show superior catalytic efficiency,

achieving 98% conversion of p-NP to p-aminophenol (p-AP) within six minutes. The reaction followed

first-order kinetics with a rate constant of 0.44 min−1, consistent with the Langmuir–Hinshelwood

model. Notably, the Cu–SG retained catalytic efficiency across multiple reaction cycles, highlighting their

recyclability and long-term stability. Additionally, Cu–SG exhibited excellent sensitivity and selectivity for

rapid colorimetric H2O2 detection due to the strong HRP-like activity, achieving a detection limit of 6.03

mM with high resistance to interference from other ions and compounds. Thermodynamic analysis

demonstrates an enthalpy driven spontaneous reduction of p-NP with Cu–SG, wherein the van der

Waals and hydrogen bonding interactions are predominant. By contrast, the interaction of Cu–SG with

H2O2 is an entropy-driven, spontaneous process, and the dominating hydrophobic forces drive the HRP-

like catalytic mechanism. This study demonstrates the potential of the Cu–SG as an efficient, stable, and

recyclable water-soluble copper nanocatalyst for pollutant degradation and as a sensitive sensor for

reactive species.
1. Introduction

Copper-based nanomaterials, particularly copper nanoclusters
(Cu NCs), have attracted signicant attention in recent years
due to their unique properties, including high surface area,
tunable optical characteristics, and remarkable catalytic
activity. These properties make Cu NCs promising candidates
for a wide range of applications, such as catalysis, sensing, and
environmental remediation.1–4 One of the most fascinating
aspects of Cu NCs is their ability to undergo structural and
electronic modications in response to varying synthetic
conditions.5–7 A critical factor inuencing the reactivity and
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performance of Cu NCs is their surface chemistry, which is
highly sensitive to the surrounding environment. Notably, acid-
etching strategies can signicantly affect their structural prop-
erties, leading to changes in stability, oxidation state, and
reactivity.8–12 Understanding the mechanisms underlying these
reactions and exploring the effects of acid-etching on their
physicochemical properties is important for optimizing the
performance of Cu NCs across diverse applications.

In this study, we investigated the acid-etching approach in
the transformation of copper–glutathione (Cu–SG) clusters,
providing a comprehensive analysis on their synthesis, char-
acterization, and potential applications in p-nitrophenol (p-NP)
degradation, horseradish peroxidase (HRP)-like reactions, and
hydrogen peroxide (H2O2) detection. Particular emphasis was
placed on the inuence of the acid-etching technique on Cu–SG
clusters and the mechanisms underlying their catalytic activity.
The structural properties of Cu–SG were systematically exam-
ined under increasingly acidic conditions to evaluate the effects
on catalytic efficiency and sensor performance. Aer acid
etching (pH = 2), Cu–SG demonstrated enhanced functionality,
RSC Adv., 2025, 15, 8889–8900 | 8889
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exhibiting excellent catalytic performance in the reduction of p-
NP to p-aminophenol (p-AP) with high recyclability. Further-
more, its strong HRP-like activity enabled efficient colorimetric
detection of H2O2, highlighting its potential as a versatile and
practical candidate for real-world applications.

2. Experimental
2.1 Materials

All chemicals and reagents used in this study were purchased
from Shanghai Macklin Biochemical Co., Ltd and used without
further purication. These include: glutathione (GSH, 99%),
Cu(NO3)2 (AR), 3,30,5,50-tetramethylbenzidine (TMB, 99%),
H2O2 (30%, AR), p-nitrophenol (p-NP, AR), 5,5-dimethyl-1-
pyrroline-1-oxide (DMPO, 98%), 2,2,6,6-tetramethylpiperidin-1-
oxyl (TEMP, 98%), Al(NO3)3 (AR), KOH (AR), NaCl (AR), ZnCl2
(99%), KCl (AR), fructose (98%), glucose (98%), sucrose (AR),
ascorbic acid (98%), arginine (99%), histidine (99%), NaOH
(AR), and HCl (AR). Before use, all glassware was thoroughly
cleaned and dried in an oven. All solutions were prepared using
Milli-Q ultrapure water as solvent.

2.2 Equipment

Transmission electron microscopy (TEM) and energy-dispersive
spectroscopy (EDS) were conducted using a JEM-2100 micro-
scope. Dynamic light scattering (DLS) analysis was performed
with the Malvern Zetasizer ZS90. UV-visible absorption spectra
were recorded on a Metash UV-9000PC spectrophotometer, and
uorescence spectra were obtained using the HORIBA
FluoroMax-4P uorescence spectrophotometer. Fourier-
transform infrared (FT-IR) spectroscopy was performed on
a Bruker Vertex80+ Hyperion spectrometer. X-ray photoelectron
spectroscopy (XPS) measurements were carried out using an
ESCALAB 250 spectrometer with monochromated Al Ka radia-
tion. Electron paramagnetic resonance (EPR) spectroscopy was
performed on a Magnettech ESR 5000 spectrometer. The elec-
trochemical measurements were carried out on a CHI 660E
electrochemical workstation (CHI Instruments) with a three-
electrode system. The working electrode was a glassy carbon,
an Ag/AgCl was used as the reference electrode, and a Pt wire
was used as the counter electrode in PBS buffer at room
temperature. Before the testing, the sample solution was
degassed with a high-purity N2 gas.

2.3 Synthesis of Cu–SG

The Cu–SG clusters were synthesized through a one-pot chem-
ical reduction process combined with an acid-etching strategy.
Briey, 0.8 mL of 200 mM glutathione (GSH) was added to
18.4 mL of ultrapure water. Subsequently, 0.4 mL of 100 mM
Cu(NO3)2 solution was introduced, and the mixture was stirred
for 10 minutes, resulting in a turbid solution. The pH of the
solution was adjusted to 10 by the dropwise addition of 3 M
NaOH, which caused the solution to turn clear. The mixture was
then heated in a water bath at 80 °C with continuous stirring for
6 hours. Aer cooling to room temperature, the acid-etching
process was performed by gradually adding 1 M HCl, with the
8890 | RSC Adv., 2025, 15, 8889–8900
effects studied progressively until the solution reaches to pH =

2. For clarity, the intermediate state prior to the acid etching
was designated as the copper nanoparticles (Cu-NPs) for its
relatively larger size (Fig. S1†). Unless otherwise specied, the
Cu–SG clusters formed under pH= 2 condition were used in the
following tests, and the samples were stored in dark at 4 °C for
further experiments.
2.4 Catalytic performance for p-NP degradation and
recycling of the Cu–SG

For the p-NP degradation experiments, 300 mL of freshly
prepared 200 mM NaBH4 was added to 3 mL of 100 mM p-NP
solution, followed by the addition of 50 mL of Cu–SG. The
reaction progress was monitored using UV-vis spectroscopy by
measuring absorbance at characteristic wavelengths: 317 nm
for p-NP, 400 nm for p-nitrophenolate, and ∼295 nm for p-AP.
The reaction kinetics are consistent with the equation13,14

−ln(Ct/C0) = −ln(At/A0) = kt

where C0 and Ct represent the concentration of p-NP at times
0 and t; A0 and At represent the UV/vis absorbance (at 400 nm) of
p-NP at times 0 and t, respectively, and k represents the
apparent rate constant (min−1). For catalyst recycling, the Cu–
SG clusters were recovered by ltration through an ultralter
(MWCO = 3000), followed by washing with ultrapure water
adjusted to pH 2 prior to reuse.
2.5 HRP-like kinetic analysis of Cu–SG

The HRP-like activity of Cu–SG was analyzed through steady-
state kinetics. Using H2O2 and TMB as substrates, measure-
ments were conducted by varying the concentration of one
substrate while keeping the other constant. The absorbance of
oxidized TMB (TMBox) at 652 nm was recorded using UV-vis
spectroscopy. For the assay, 100 mL of Cu–SG was mixed with
100 mL of H2O2 at varying concentrations (5–100 mM) and
100 mL of TMB (10 mM). Alternatively, 100 mL of TMB at
different concentrations (8–20 mM) was mixed with 100 mL of
H2O2 (60 mM). The reaction mixture was adjusted to a total
volume of 2 mL and incubated at ambient temperature for
20 minutes before spectrophotometric analysis. The enzymatic
reaction kinetic constants (vmax, Km) were calculated using the
Michaelis–Menten equation:

v = C$vmax/Km + C

where v is the initial reaction velocity, vmax is the maximal
reaction velocity, C is the concentration of substrate, and Km is
the apparent Michaelis–Menten constant. The linearity of the
data was examined using Lineweaver–Burk plots, derived from
the double reciprocal of the Michaelis–Menten equation.12,15,16
2.6 Selective colorimetric analysis of H2O2 with Cu–SG

For the quantitative colorimetric analysis of H2O2, 100 mL of
freshly prepared H2O2 solutions at various concentrations (0–
1250 mM) were mixed with 100 mL of 10 mM TMB and 100 mL of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Cu–SG. The total volume was adjusted to 2 mL with ultrapure
water, and the reaction mixture was incubated at room
temperature for 20 minutes before spectrophotometric analysis.
The absorbance of TMBox was monitored at 652 nm using UV-
vis spectroscopy. To assess the selectivity of the Cu–SG-based
probe, interference tests were conducted by replacing H2O2

with 100 mL of 2000 mM solutions of various ions and
compounds, including Al(NO3)3–Al

3+, KOH–K+, NaCl–Na+,
ZnCl2–Zn

2+, KCl–Cl−, fructose (Fru.), glucose (Glu.), sucrose
(Suc.), ascorbic acid (AA), arginine (Arg.), histidine (His.), and
GSH into the detection solution. The results were evaluated by
comparing the absorbance changes under the same experi-
mental conditions.
3. Results and discussion
3.1 Characterization of the Cu–SG

The elemental analysis of Cu-NPs (the intermediate states prior
to the acid-etching) by EDS demonstrates the successful incor-
poration of GSH in the particles (Fig. S2†). Then the acid-
etching process induced characteristic changes in the size and
properties of the Cu-NPs. TEM and DLS analysis (Fig. 1 and S1†)
revealed a progressive reduction in particle size and improved
dispersion with increasing acidity. Under highly acidic condi-
tions (pH = 2), the Cu–SG clusters exhibited a uniform, mono-
dispersed size distribution, ranging from 0.4 to 1.8 nm with an
average size of ∼1 nm (Fig. 1a inset) according to TEM analysis,
which is comparable to the DLS results ranging from 0.5 to
1.9 nm with an average size of ∼1.12 nm (Fig. 1b).

UV-vis spectrometry was further employed to investigate the
optical absorption properties of the Cu–SG system during acid-
etching and to correlate the results with TEM and DLS analyses.
The UV-vis spectra (Fig. 2a and S3a†) supported the TEM and
DLS ndings, showing that the Cu–SG solution in a strongly
acidic environment exhibited peaks exclusively below 400 nm,
characteristic of copper nanoclusters (Cu NCs).17–20 Notably, an
additional shoulder peak at ∼290 nm conrmed the formation
of ultra-small Cu NCs. In contrast, under increasingly alkaline
conditions, the Cu–SG solution displayed optical features
indicative of larger Cu-NPs, evidenced by a surface plasmon
Fig. 1 (a) TEM image (inset: size distribution of Cu–SG); and (b) DLS res

© 2025 The Author(s). Published by the Royal Society of Chemistry
resonance (SPR) peak at approximately 620 nm (Fig. S3a†).21,22

Fluorescence analysis further underscored the effects of acid-
etching on the optical properties of Cu–SG. The uorescence
emission spectra (Fig. 2a) revealed dual uorescence features
with emission peaks at 430 nm and 505 nm under strongly
acidic conditions. In comparison, the Cu-NPs system in alkaline
environment exhibited a single uorescence peak at 430 nm
(Fig. S3b†). This distinct uorescence behavior highlights the
signicant inuence of acid-etching on the optical properties of
the Cu–SG system.

Following the optical investigations, FT-IR spectroscopy was
analyzed to identify the characteristic functional groups in both
pure GSH and Cu–SG (Fig. 2b). The FT-IR spectrum of pure GSH
exhibited distinct peaks, including O–H stretching at
3344 cm−1, N–H stretching at 3247 cm−1, and asymmetric and
symmetric N–H stretches at 3129 cm−1 and 3028 cm−1,
respectively. Additional features included an S–H stretching
band at 2524 cm−1, a C]O stretching band at 1718 cm−1, and
amide I and amide II vibrations at 1624 cm−1 and 1546 cm−1,
respectively. Peaks corresponding to the asymmetric and
symmetric COO− vibrations appeared at 1584 cm−1 and
1394 cm−1, respectively.23–25 Aer coordination with copper,
most peaks were maintained, indicating the largely preserved
structure of ligand in the formed clusters. However, the char-
acteristic S–H stretching band of GSH was absent in all samples
during acid etching, implying the possible coordination of the
thiol group in GSH with copper, and thus the formation of Cu–S
bonds.26 Meanwhile, the broadened N–H and C]O peaks
demonstrate the complicated chemical environment of the
amide and carboxylic groups.27

To probe the oxidation state of Cu–SG, X-ray photoelectron
spectroscopy (XPS) analysis was performed, providing detailed
insights into the chemical states present. The XPS full-spectrum
survey of Cu–SG revealed characteristic peaks at 167.7 eV (S 2p),
198.1 eV (Cl 2p), 285.0 eV (C 1s), 400.0 eV (N 1s), 531.8 eV (O 1s),
and 1071.0 eV (Na 1s) (Fig. S5a†).26 These peaks corresponded to
the expected components of the GSH ligands used in synthesis,
conrming the successful integration of copper with the
ligands. To further examine the oxidation state of copper, high-
resolution XPS spectra were recorded for the Cu 2p region. Two
ults of Cu–SG.

RSC Adv., 2025, 15, 8889–8900 | 8891
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Fig. 2 (a) UV-vis absorption (black line), fluorescence excitation (blue dash line) and emission curves (red line, upon excitation at 370 nm) of Cu–
SG; (b) FT-IR spectra of GSH and Cu–SG; (c) XPS spectra in the Cu 2p region of Cu–SG; and (d) DPV curve of Cu–SG.
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prominent peaks were observed at 952.3 eV and 932.4 eV, cor-
responding to the Cu 2p1/2 and Cu 2p3/2 energy levels, respec-
tively (Fig. 2c). These peaks persisted across the Cu–SG system
during acid-etching processes, though they exhibited shis
toward lower binding energies as the acid-etching intensity
increased (Fig. S5b†), such shis are attributed to potential
changes in quantum size, surface charge, and electron density
redistribution.28–30 The absence of the satellite peak at ∼942 eV
in XPS excludes the possibility of Cu(II).31,32Meanwhile, The DPV
curves of Cu–SG (Fig. 2d) displayed distinct reduction (R1,
−0.14 V) and oxidation (O1, 0.12 V) peaks. The small O1 and R1
values highlight the potential of Cu–SG to participate in redox
reactions, as later demonstrated in p-NP reduction and TMB
oxidation experiments.
3.2 Catalytic degradation of p-NP with Cu–SG

The catalytic potential of Cu–SG was investigated in the NaBH4-
assisted reduction of p-NP. p-NP is a common industrial
pollutant that raises signicant environmental and health
concerns due to its toxicity and persistence in aquatic
systems.33–35 Its reduction to p-AP, a valuable precursor for
pharmaceuticals and dyes, not only serves to remove
a hazardous compound but also produces a useful chem-
ical.13,14,36 A widely used approach for p-NP degradation involves
NaBH4 as a reductant, in conjunction with a catalyst.36–39 In this
study, the redox activity of Cu–SG enabled its use as an efficient
8892 | RSC Adv., 2025, 15, 8889–8900
catalyst to facilitate the reduction of p-NP to p-AP (Scheme S1†).
The UV-vis absorption spectra were used to monitor the
reduction reaction. Initially, the p-NP solution exhibited
a maximum absorption peak at 317 nm. Upon the addition of
NaBH4, the solution turned bright yellow due to the formation
of 4-nitrophenolate anions, characterized by a new peak at
400 nm. In the absence of the Cu–SG catalyst, the absorption
peak at 400 nm remained unchanged even aer 48 hours,
indicating no progression in the reduction reaction (Fig. 3a).

Upon the addition of Cu–SG as the catalyst, the absorption
peak at 400 nm rapidly disappeared within 6 minutes, and the
bright yellow solution turned colorless (Fig. 3b). This rapid
change highlighted the catalytic efficiency of Cu–SG in the
degradation process. By contrast, the Cu cluster samples gained
by the acid etching under otherwise pH conditions all show no
catalytic activity (Fig. S6 and Table S1†). Furthermore, using an
ultraltration (MWCO 3000 kD) strategy, the Cu–SG catalyst
could be easily recycled and reused for over ve cycles (>90%
conversion for each cycle, Fig. 3c). DLS analysis indicates the
maintained cluster size of Cu–SG before and aer the p-NP
reduction (Fig. S7†). These results, and especially the recyclable
characteristics underscore the practical potential of Cu–SG as
a stable and recyclable nanocatalyst for environmental
pollutant remediation.

The reaction kinetics and degradation pathway of p-NP are
presented by plotting −ln(Ct/C0) against time (t) (Fig. 3d),
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) The optical absorption spectra of p-NP + NaBH4 in the absence of Cu–SG at different time point; (b) time-dependent optical
absorption spectra of p-NP reduction by Cu–SG; (c) reusability of the Cu–SG for the catalytic reduction of p-NP. Conversions were calculated
from the UV-vis absorption spectra; and (d) linear fitting of the reaction rate constant.

Scheme 1 The proposed p-NP degradation pathway catalyzed by Cu–SG.

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 8889–8900 | 8893
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which reveals a quasi-linear relationship. This suggests that
the degradation follows a rst-order rate law, with a rate
constant (k) of 0.44 min−1. Such behavior is consistent with
the Langmuir–Hinshelwood model.13,14 In this model, the
reaction takes place on the surface of the catalyst, with the
adsorption of reactants playing a crucial role in determining
the overall rate. The reaction rate is therefore governed by the
concentration of the adsorbed species. This suggests that the
reaction pathway for the Cu–SG-catalyzed reduction of p-NP to
p-AP (Scheme 1) begins with the synergistic adsorption of both
p-NP and the hydrogen donor NaBH4 onto the Cu–SG surface.
The reaction proceeds through a series of hydrogenation
steps, where p-NP is progressively reduced, ultimately yielding
p-AP.

3.3. HRP-like activity of Cu–SG

Motivated by capacity of Cu–SG in regulating electron transfer,
we further analyzed the biomimetic activity of Cu–SG, mainly
focusing on the HRP-like activity of Cu–SG.40–42 TMBwas used as
a molecular probe in this series of tests. In the presence of
H2O2, Cu–SG catalyzed the conversion of the colorless TMB to
blue TMBox (Fig. 4a). The optimal HRP-like activity of Cu–SG
was observed with increased acidity (Fig. S8†).

The kinetic mechanism of Cu–SG was assessed using enzyme
kinetics, and typical Michaelis–Menten curves (Fig. 4b and c)
Fig. 4 (a) The UV-vis absorption spectra of the different reaction system
TMB at 10 mM; (c) with the concentration of H2O2 at 60 mM (insets: Lin
equation) (d) long-term stability study of the Cu–SG solution stored at 4 °
TMB) system.

8894 | RSC Adv., 2025, 15, 8889–8900
were obtained and tted well (Fig. 4b and c, insets).12,40,43,44 The
Michaelis constant (Km) and maximal reaction velocity (Vmax) of
Cu–SG with respect to H2O2 (Km = 0.4133 mM, Vmax = 1.50 ×

10−7 m s−1) and TMB (Km = 2.1099 mM, Vmax = 1.21 ×

10−7 m s−1) are among the rst-level HRP-like nanomaterials
(Table S2†), and relatively higher than those of the nature HRP.
The results suggest that Cu–SG exhibits stronger affinities and
efficient catalytic kinetics toward both substrates. Furthermore,
the excellent linearity of the double-reciprocal plots of the
substrates suggests a double-displacement (Ping–Pong) mech-
anism, typical for HRP and similar nanomaterials.45,46 Of note,
the HRP-like activity of Cu–SG remains stable even aer storage
for about two months, indicating its excellent long-term
stability (Fig. 4d).

To conrm that the reaction mechanism follows the “Ping–
Pong” model, the type of the primary reactive oxygen species
(cOH, cO2

−, and 1O2, abbreviated as ROS) were investigated, as
they play an important role in the chromogenic reaction in the
presence of H2O2.41,42,47 EPR analysis was performed with DMPO
and TEMP as radical trappers, and the characteristic EPR
signals attributing to DMPO-cO2

− (Fig. 5a)48–51 and TEMP-1O2

(Fig. 5b) were observed.50–52 Based on these ndings, the HRP-
like reaction mechanism of Cu–SG starts with the decomposi-
tion of H2O2 into cO2

− and 1O2, and then the oxidation of
TMB.53–55
s; steady-state kinetic assay of Cu–SG: (b) with the concentration of
eweaver–Burk plots of the double reciprocal of the Michaelis–Menten
C via testing the optical absorption at 652 nm for the (Cu–SG + H2O2 +

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 EPR spectra of (a) H2O2/DMPO with Cu–SG; and (b) H2O2/TEMP with Cu–SG.
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3.4 Quantitative colorimetric H2O2 detection

The detection of H2O2 is of importance in various elds,
including environmental monitoring, clinical diagnostics, and
industrial processes.56,57 Due to its high reactivity and oxidative
power, H2O2 plays an essential role inmany chemical processes,
Fig. 6 (a) UV-vis absorption analysis of H2O2 (0, 10, 20, 40, 100, 200, 50
correlation of optical absorption intensity vs. H2O2 concentrations. (inset
and LOD of Cu–SG with those of other HRP-like nanomaterials for H2O2

detection (500 mM) and interference (2000 mM).

© 2025 The Author(s). Published by the Royal Society of Chemistry
but its concentration must be carefully monitored because of its
potential toxicity. To address this, several sensor systems based
on nanomaterials have been developed for rapid and sensitive
H2O2 detection58–60 Inspired by the HRP-like properties and
ROS-generating ability of Cu–SG, the quantitative detection of
0, 750, 1000, and 1250 mM) in presence of Cu–SG and TMB (b) linear
is the linear range from 0 to 40 mM); (c) comparison of the linear range
detection; and (d) selectivity assessment of the Cu–SG probe for H2O2

RSC Adv., 2025, 15, 8889–8900 | 8895
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Table 1 Thermodynamic parameters for Cu–SG upon interaction
with p-NP and H2O2

System
T
(K)

Ka

(M−1)
DG0

(kJ mol−1)
DH0

(kJ mol−1)
DS0

(J mol−1 K−1)

p-NP 298 1.48 × 103 −18.28 −169.08 −506.02
303 6.12 × 102 −15.75
308 1.61 × 102 −13.22

H2O2 298 1.22 × 102 −11.98 44.73 190.29
303 1.81 × 102 −12.93
308 2.19 × 102 −13.88
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H2O2 was investigated using a colorimetric approach. The
absorbance at 652 nm increased gradually with the concentra-
tion of H2O2 in the presence of Cu–SG and TMB (Fig. 6a). A
strong linear correlation between absorbance at 652 nm and
H2O2 concentration (0–1250 mM) was observed (Fig. 6b), with
excellent linearity within the narrow range of 0 to 40 mM
(correlation value = 0.9900, inset of Fig. 6b). The linear range
and LOD of Cu–SG were comparable to those of the recently
reported HRP-like nanomaterials (Fig. 6c and Table S3†). The
limit of detection (LOD) was determined to be 6.03 mM (based
on 3s/S).

The selectivity and sensitivity of the Cu–SG probe towards
H2O2 were evaluated by testing its response to potential inter-
fering ions and compounds (with 3-fold higher concentration
than that of H2O2) under otherwise identical conditions. As
shown in Fig. 6d, these interfering species had negligible
impact on the UV-vis absorption response of the Cu–SG–TMB
probe in the H2O2-sensing system, demonstrating the high
specicity of the Cu–SG probe for H2O2 detection in complex
matrices.

3.5 Thermodynamic studies

Herein, uorescence analysis has been conducted at three
different temperatures (298, 303, and 303 K) to examine the
inuence of standard conditions on the reaction pathways for
Cu–SG with p-NP or H2O2 (Fig. S9†), on the basis of the Stern–
Volmer equation eqn (1)61,62

F0/F = 1 + Ksv[C] (1)

F0 and F represent the uorescence intensities of Cu–SG in the
absence and presence of p-NP, respectively, Ksv is the Stern–
Volmer constant, and [C] denotes the analyte concentration.

The Stern–Volmer plot for the Cu–SG–p-NP system presented
in Fig. 7a and the linearity indicates a quantitative 1 : 1 binding.
On this base, the binding constant (Ka) was calculated accord-
ing to the logarithmic relationship of eqn (2).63,64

log[(F0 − F)/F] = logKa + log[C] (2)

The temperature dependence of the binding constants was
examined at 298, 303, and 308 K (Table 1), as this range is
generally considered to minimize signicant structural or
Fig. 7 The derived Stern–Volmer plots for; (a) Cu–SG–p-NP and (b) Cu
The corresponding Van't Hoff plot for the interaction of Cu–SG–p-NP a

8896 | RSC Adv., 2025, 15, 8889–8900
conformational changes in the reaction system.65 This
assumption allows the estimation of DH0 and DS0 values using
the Van't Hoff equation eqn (3)

InKa = −DH0/RT + DS0/R (3)

where R is the gas constant, and T is the temperature. The Van't
Hoff plot of ln Ka against T

−1 (Fig. 7c) allowed the estimation of
DH0 and DS0 from the slope and intercept, and thus the DG0

could be deduced accordingly via eqn (4)

DG0 = DH0 − TDS0 (4)

According to the results in Table 1, the DG0 < 0, DH0 < 0, and
DS0 < 0 indicate an exergonic interaction under ambient
conditions, suggesting the dominance of van der Waals and
hydrogen bonding interactions among Cu–SG and p-NP.61,62 The
results indicates the strong interaction of Cu–SG with p-NP,
which might drive the subsequent reduction of p-NP via react-
ing with NaBH4.

Similar to aforementioned procedures, the interaction of
Cu–SG with H2O2 was also investigated, while a modied Stern–
Volmer equation eqn (5) was rst applied to account to the
enhanced luminescence:

F/F0 = 1 + Ksv[C] (5)

On the basis of the Stern–Volmer plots (Fig. 7b) and thermo-
dynamic values gained from the Van't Hoff equation, DG0 <
0 with DH0 > 0 and DS0 > 0 indicates that the Cu–SG and H2O2

interaction is endothermic but exergonic, suggesting the
dominance of hydrophobic forces.
–SG–H2O2 systems at different temperatures; 298, 303, and 308 K. (c)
nd Cu–SG–H2O2 systems at 298, 303, and 308 K.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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4 Conclusion

This study demonstrates the potential of a facile acid-etching
technique as a strategy for tuning the physicochemical prop-
erties of nanomaterials and endowing them with multifunc-
tional applications. The prepared, ultrasmall Cu–SG (with an
average size of 1 nm) achieved a 98% conversion of p-nitro-
phenol to p-aminophenol within six minutes and retained over
90% efficiency across ve cycles, demonstrating excellent recy-
clability. As a colorimetric probe for H2O2 detection, Cu–SG
exhibited high specicity and a wide detection range. These
ndings establish Cu–SG as a promising candidate for envi-
ronmental remediation and analytical sensing applications.
The versatility of Cu–SG, combined with its ability to undergo
facile acid-etching transformations, offers an innovative
approach for developing efficient, stable, and recyclable water-
soluble copper nanoclusters for both environmental and
analytical uses.
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