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troscopy and exploratory data
analysis of crude oil residue in relation to the time
of spill

N. D. Menkiti, *a C. Isanborb and O. O. Ayejuyob

Eight oil residues extracted from crude oil spill sites have been investigated for natural attenuation using

heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (2D HSQC NMR).

Using the exploratory data analysis (EDA) techniques; principal component analysis (PCA) and

hierarchical cluster analysis (HCA), the predictive ability of the NMR technique with respect to similarities

and differences in the composition of the oil residue over time was explored. The first three PCs from

PCA accounted for 87% of the total variance while three clusters each were obtained from HCA analysis

based on similarity in samples and NMR areas. Both exploratory analyses revealed that the –CH3/–CH2

types, aliphatic, and aromatic content of the oil residue are the main factors responsible for

compositional differences. The Euclidean distance constructed from PCA indicated real differences

between fresh crude oil, aged, and younger residue. If the exposure time of the oil spill is known, HSQC

coupled with exploratory data analysis would be a useful tool in evaluating the structural and

compositional transformation of oil residue in the environment. This may be useful as a guide in deciding

which remediation strategy is implemented in an oil spill environment like the Niger Delta region.
1. Introduction

Crude oil, otherwise known as petroleum, contains a lot of
substances belonging to homologous series of hydrocarbons
(aliphatic, alicyclic and aromatic hydrocarbon) as well as heter-
oatomic compounds (resins and asphaltenes) containing
heteroatoms such as sulfur, oxygen and nitrogen and a very little
amount of trace metals (V, Ni, Fe, Zn, etc.).1–3 When crude oil
spills on land, it undergoes composition and structural changes
due to environmental exposure conditions. Processes like
photooxidation, biodegradation, and adsorption are responsible
for these changes.4 In the soil, aerobic biodegradation of
aromatic hydrocarbon has led to the formation of new
compounds.5,6 It is important to state that these new compounds
formed are site-specic and composition will differ due to
microorganisms, pathways of degradation, and the time of the
spill. What this means is that each oil spill will present a unique
composition and hence, the toxicity of its components will vary.7,8

Treatment of crude oil-contaminated sites requires a funda-
mental understanding of the composition and physical proper-
ties of the oil residue. Variousmethods have been used to reclaim
the soil viz.; bioremediation,9,10 biopile,11 natural attenuation,12

and soil washing using solvents and surfactants.13–15 The success
of the remediation method applied depends on qualitative and
lo University, Zaria, Nigeria. E-mail:
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quantitative information derived from studies on the fate and
behaviour of crude oil contaminants in the environment. Inves-
tigations into the composition and structural changes of oil
residue in the environment have been done in the past using
both physical and chemical techniques. This includes gas chro-
matography, quantitative uorescence, IR spectroscopy, and
HPLC among others.16,17 These methods of analysis have their
shortcomings. For instance, GC and GC-MS may require deriva-
tization, and HPLC requires some other sample preparation
procedures,18 or some special columns to resolve aromatic and
resin fractions. For UV spectroscopic analysis, asphaltene
content will aggregate at high concentrations of crude oil making
noise evident in the spectrum,19 or too low a concentration may
exclude the detection of some species.20 Quantitative uores-
cence spectroscopy can only provide characteristics of crude oil
based on certain chromatographic variables,21 and on the
assumption that weathered crude oil and fresh crude oil have
similar properties if it is to be applied for source identication.22

In contrast to these techniques, nuclear magnetic resonance
spectroscopy (NMR) allows for both qualitative and quantitative
descriptions of a mixture of complex organic compounds espe-
cially crude oil.23,24 (NMR spectroscopy that offers a rapid char-
acterization of the oil residue properties is required since oil spill
occurs regularly.25 It gives molecular functional group informa-
tion about the properties of samples at the macroscopic scale,
and this is what allows for suitable characterization.26–28 In recent
times, NMR spectroscopy has been directed at improving the
sensitivity and resolution of the technique. It is for this reason
© 2025 The Author(s). Published by the Royal Society of Chemistry
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that 2D NMR (COSY, TOCSY, NOESY, HQSC, HMBC experiment)
spectroscopy is at the forefront of complex mixture elucidation.
For these systems, two-dimensional heteronuclear shi corre-
lated methods give sufficient discrimination of resonance, as the
correlated peaks are separated by chemical shis of two nuclei,29

and have shown themselves particularly well in determining the
chemical and spatial structure.30,31 It has been shown that NMR
data are useful in evaluating the average molecular properties of
crude oil,32–35 as well as the overall transformational changes in
oil residue in soil.36,37 In soil systems, the structural changes are
difficult to reproduce in the laboratory, hence, measurements of
eld samples are of fundamental interest. The Niger Delta envi-
ronment in Nigeria provides an excellent opportunity to monitor
and characterize the weathering processes in the soil under
natural conditions that ultimately leads to the variation in the
chemical composition of the spilled oil over time. Together with
established supervised and unsupervised machine learning tools
using multivariate methods such as principal component anal-
ysis, PCA,38–41 and hierarchical cluster analysis, HCA,42 or
orthogonal projections to latent structures, OPLS,43 this approach
can be used to identify metabolites that vary between different
classes of samples. Recently, we showed that similarities and
differences in the structural composition of aged oil residue
samples from the Niger Delta area of Nigeria can be identied
using 1H-NMR with PCA.44 Unlike other techniques such as GC-
MS, GC × GC-MS, or HPLC, NMR does not resolve the compo-
nents in a sample. Hence, the compositional similarity and
differences embedded in the oil residue can be extracted using
multivariate analysis. To the best of our knowledge, there are not
yet any combined methods of 2D HSQC NMR and exploratory
data analysis in relation to the time of spill that has been used to
elucidate compositional changes in the oil spills in the natural
environment of the Niger Delta in Nigeria. In this work, further
analysis of the oil residue was carried out to determine if pre-
dened NMR parameters obtained from the 2D HSQC NMR
experiment and exploratory data analysis could satisfactorily
evaluate the compositional changes of oil residue in terms of
similarities and differences in relation to the time of the spill.
2. Materials and methods
2.1 Sampling and sample properties

Soil samples, S1–S6 were obtained from crude oil contaminated
sites in the Niger Delta region with a history of spillage. The oil
spills were of different ages, crude oil sources and environ-
mental exposure conditions. Samples B1 and B2 were obtained
by the process of biostimulation by using cow dung as fertilizer
to improve the degradation of the fresh crude oil in a controlled
environment,45 while FC is a fresh crude oil sample that we
assumed had not undergone signicant degradation. Some
properties of the soil, oil residue, and fresh crude oil were
determined and have been described elsewhere.46
2.2 Data acquisition and processing

The Heteronuclear Single Quantum Correlation (HSQC) NMR
spectra of the fresh crude oil (FC) and the extract of eight oil
© 2025 The Author(s). Published by the Royal Society of Chemistry
residues (S1–B2) were recorded by a Bruker AC 500 MHz spec-
trometer. Approximately 5 mg of the crude oil mixture was
accurately weighed and dissolved in 500 mL of CDCl3 (Aldrich,
99.8%) containing 0.03% tetramethyl silane (TMS) as an internal
standard. The solution was mixed thoroughly into a 5 mm NMR
tube to ensure complete dissolution. The sample concentration
was thus approximately 10 mg mL−1 (10 000 mg L−1), consistent
with typical recommendations for HSQC experiments of complex
mixtures. This concentration was selected to ensure an adequate
signal-to-noise ratio, particularly for low-abundance functional
groups, and to avoid potential issues with weak solvent residual
peaks and insufficient cross-peak intensity in the HSQC spectra.42

HSQC experiment was carried out using echo/anti-echo-time
proportional phase incrementation gradient selection with
decoupling during acquisition.47–49 All spectra were automatically
corrected for phase and baseline. The total runtime of the
experiment was about 1 hour and 30 minutes for each sample.
The integrated signal volumes of selected cross-peaks in the
HSQC spectra were obtained using the integral function of the
soware, with consistent integration parameters applied across
all samples. To account for possible intensity variations arising
from differences in heteronuclear coupling constants (1JCH) and
relaxation times among functional groups, all HSQC spectra were
normalized to total spectral area before chemometric analysis.
The signal volumes and their assignment used for the study are
given in Table 1.
2.3 Exploratory data analysis

Principal Component Analysis (PCA) and Hierarchical Clus-
tering Analysis (HCA) were applied to the 2D-HSQC NMR
spectra data to reveal the underlying dataset structure, making
it possible to identify similarities between samples and detect
potential outliers. The different areas from the HSQC NMR
experiment represent variables that will determine the rela-
tionship between samples that have undergone the same type of
structural changes through time even though environmental
conditions will not be the same. The soware Originpro2019b
was used to perform the PCA and HCA analysis and visualized
using SIMCA 17(Umetrics).

2.3.1 Principal component analysis (PCA). Principal
component analysis (PCA) and other data reduction methods
for spectroscopic study are straightforward as they help visu-
alize the most important information contained in a data set by
taking multiple variables and reducing them into a much
smaller and more manageable number of variables while
retaining most of the information the original variables con-
tained.50 Mathematically, PCA is based on a decomposition of
the covariance matrix of the variables in a data set. Given a data
matrix Xwithm rows of samples and n columns of variables, the
covariance matrix of X is dened in eqn (1) as:

CovðXÞ ¼ XTX

m� 1
(1)

The result of the PCA procedure is a decomposition of the
data matrix X (eqn (2)) into principal components called score
RSC Adv., 2025, 15, 18910–18919 | 18911
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Table 1 Assignment in the HSQC spectra of the samples11

Area

dH (ppm) dC (ppm)

AssignmentFrom To From To

X1 0.79 0.93 10.02 12.56 –CH3 b to CH (ethyl group)
X2 0.74 1.03 12.56 15.9 –CH3 g or > to fga (aromatic ring) or g to
X3 0.74 1.00 18.12 21.52 –CH
X4 0.76 1.00 21.58 24.02 –CH3 a to –CH and b or > to –CH2

X5 0.91 0.98 26.74 29.06 –CH3 a to –CH and to –CH
Q1 1.25 1.33 12.94 15.68 –CH3 a to quaternary C
Q2 1.22 1.36 19.23 21.32 –CH3 b to an aromatic ring
Q3 1.21 1.37 21.38 23.77 –CH2 a to –CH3 and b to CH
Q4 1.16 1.36 23.78 25.65 –CH2 a to –CH3 and g or > to –CH
Q5 1.15 1.37 25.74 28.1 –CH2 b to quaternary C
Q6 1.02 1.48 28.1 31.15 –CH2 b to –CH
Q7 1.19 1.31 31.23 32.71 –CH2 g or > to –CH3, –CH or another fg
Q8 1.31 1.43 31.81 33.79 –CH2 b to –CH3 and g or > to CH3, –CH or

another fg
Q9 1.27 1.35 34.01 34.99 –CH in cyclohexane with –CH b

Q10 1.19 1.34 35.73 38.64 –CH in cyclohexane
Q11 1.1 1.19 38.62 40.52 –CH2 a to –CH and b to –CH3

A1 1.59 1.76 25.43 27.98 –CH2 a to quaternary C with 2(–CH3)
A2 1.48 1.57 27.05 28.83 –CH2 b to aromatic ring and b to –CH
A3 1.56 1.71 34.43 38.04 –CH a to 2(–CH3) and –CH2

Y1 2.09 2.92 17.66 22.95 –CH2 in cycloalkane a to –CH
Y2 2.52 2.96 27.52 32.14 –CH3 a to aromatic rings
Y3 2.41 2.63 31.82 37.58 –CH2 a to aromatic ring and a to –CH3

(substituted ethylene) or –CH2 in
cyclohexane a to an aromatic ring

C 6.74 7.9 121.87 132.33 –CH2 a to aromatic ring and g or > to
–CH3, –CH or another fg
–CH in aromatic ring

a fg – functional group.

Table 2 Sample code and time of spill

Sample S1 S2 S3 S4 S5 S6 B1 B2 FC
Time of spill (years) 10 10 8 5 2 1 1 1 1
Designation Older residue Younger residue
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and loading vectors. Here t1, is the score vector, p1 is the loading
vector, and E is the residual matrix.

Xnxm = t1p1
T + t2p2

T + tipi
T/ + tkpk

T + Enxm (2)

The score and loading vectors contain information on how
the samples and variables, respectively relate to each other. The
direction of the rst principal component (t1, p1) is the line in
the variable space that best describes the variation in the data
matrix X. The direction of the second principal component is
given by the straight line that best describes the variation not
described by the rst principal component and so on. Thus, the
original data set can be adequately described using a few
orthogonal principal components instead of the original vari-
ables, with no signicant loss of information.

2.3.2 Hierarchical clustering analysis. Hierarchical cluster
analysis (HCA) is a pattern recognition tool that reveals the
inherent relationship between variables or subjects without any
prior assumption.51 As a multivariate statistical technique, HCA
resolves and groups variables based on the properties they
possess.52 The resulting groups which are now called ‘clusters’
exhibit high internal (within clusters) homogeneity and high
external (between groups) heterogeneity and the level of simi-
larities at which observations are merged is used to construct
a dendrogram.53,54 For continuous variables, like our data, the
Euclidean distance is the best choice for the distance metric,
18912 | RSC Adv., 2025, 15, 18910–18919
because interpoint distances between the samples can be
computed directly by eqn (3);

dða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i¼1

ðai � biÞ2
vuut (3)

HCA seeks to form natural object grouping based exclusively
on similarities in predictor variables. The similarity between
each pair, a and b, of crude oil NMR responses was computed as
the Euclidian distance: where k is the number of NMR variables.
Aer that, clusters A and B, formed by samples in close prox-
imity, were grouped into a binary hierarchical tree (or dendro-
gram) in which the distance between clusters D (A, B) is the
longest distance between two samples, a Ꞓ A and b Ꞓ B. A cut-
off distance was applied to the resulting dendrogram to obtain
an arbitrary number of clusters.42 For cluster analysis, it is best
to autoscale the data, because similarity is directly determined
by a majority vote of the measurement variables.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra00826c


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
1/

20
25

 9
:1

9:
21

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
3. Results and discussions
3.1 Sample characteristics

The choice of sampling was based on a site with a history of oil
spills of a known time. The sample label and time of spill are
given in Table 2.

Fig. 1 and 2 show the HSQC spectrum of fresh crude oil and
the integrated signal volumes obtained from oil residue
samples, respectively. From Fig. 1, two groups of signals are
observed: aliphatic area of proton (1H, 1–4 ppm), carbon (13C,
10–60 ppm), and aromatic areas; 1H (6–8 ppm), 13C (115–145
ppm). According to Marshall and Rodgers,55 crude oil contains
tens of thousands or hundreds of thousands of compounds,
hence, is arguably the world's most compositionally complex
organic mixture, therefore, it is expected that the HSQC NMR
spectra should show a crowded and overlapping prole, as seen
in Fig. 2. These spectra can be described as a superposition of
the hydrogen and carbon chemical shis of each pure constit-
uent, weighted by the concentration of the constituent. It is
expected that the usual oil residue will contain the same
hydrocarbon families of saturates, aromatics, resins, and
asphaltenes in various proportions as environmental exposure
will not be the same across the study area. It is in this light that
differences and similarities are expected between the HSQC
NMR prole (conned within a relatively narrow spectral
window) of the oil residue. Though there is an overlap of
signals, we rely on statistical analysis to make the differences in
oil residue samples obvious (Table 3).
Fig. 1 1H, 13C-HSQC (500 MHz) NMR spectrum of fresh crude oil (FC) s

© 2025 The Author(s). Published by the Royal Society of Chemistry
3.2 Principal component analysis

The properties of the soil have been described elsewhere with
percentage SARA composition in the following order: saturates
> aromatics > polar > asphaltene.46 In our previous 1H-NMR
measurement, the spectrum was divided into regions with
structural groups assigned based on the proton environment.44

However, HSQC NMR offers a unique and better advantage of
producing well-resolved parts and has successfully been applied
to complex petroleum fractions,28 coal-derived fuel, shale oil,56

and biopiles.11

Table 4 shows the cumulative component matrix and the
component factors aer rotation. These results allow for the
grouping of initial variables (HSQC areas) according to the
strength of the connection with the principal components. This
study also used the loading diagram of PC 1 and PC 2 (Fig. 3) to
visualize which HSQC NMR weathering indices provide similar
information, which ones are negatively correlated or not related
to each other, and which ones are not well explained by the
model (PC 1 and PC 2 close to 0). In Table 4, HSQC areas that
show a moderate to high correlation are highlighted. The three
PCs selected accounted for over 87% of the total variance. In
this manner, the areas X2, X5-Q2, Q5-Q9, and Q11-A3 are
associated with PC 1 (48%). Also, X1, X3, X4, Q4, and B2-C were
loaded on PC 2 (33%), while Q3 and X1 are associated with PC 3
(12%). A2 and X2 are related to alkyl-substituted aromatic
compounds and –CH2 b to an aromatic ring. PC 1 has positive
factor loading values and is highly inuenced by X2 (–CH3 g to
an aromatic ring), X5 (–CH3 a to –CH and –CH3), Q1 (–CH3 b to
ample in CDCl3.

RSC Adv., 2025, 15, 18910–18919 | 18913
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Fig. 2 Fingerprint of the expanded HSQC-NMR spectra (dC/dH 10–45/0.3–3 ppm) for oil residue; green areas indicate integrated region and
sample S1 was left out for clarity.
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an aromatic ring), and Q5-Q9 (–CH2 or –CH in alicyclic
compounds). PC 2 is inuenced by Y2 (–CH2 a to an aromatic
ring), Y3 (–CH2 a to an aromatic ring or g to another functional
group), C (H-aromatics), and lastly, by X4 and Q10, which are
indicators of branched alkanes. Such classes of hydrocarbons
18914 | RSC Adv., 2025, 15, 18910–18919
are present in younger residue than in aged oil that has
undergone extensive weathering. PC 3 was inuenced by Q3 (–
CH2 a to CH3) and D1 (–CH3 a to aromatic ring). In the PCA
analysis, we did not carry out any prior pre-classication, so
samples with similar attenuation processes are expected to be
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Integrated signal volumes of selected cross-peaks in HSQC spectra

Name S1 S2 S3 S4 S5 S6 B1 B2 FC

X1 48.48 46.35 50.322 51.13 61.038 67.36 4.2923 9.99 101.87
X2 130.02 173.47 193.47 183.3 191.45 199.38 135.046 307.19 291.64
X3 255.93 248.35 268.43 287.3 224.89 237.02 63.35 79.33 354.32
X4 218.74 110.03 210.86 226.7 491.42 427.98 52.75 94.97 522.12
X5 1.99 3.95 3.95 4.14 12.05 16.66 6.477 9.837 22.98
Q1 24.64 23.91 33.91 33.22 74.08 78.09 48.32 44.78 100.95
Q2 37.37 33.17 39.17 48.72 142.56 198.12 171.67 173.15 242.31
Q3 82.67 83.11 83.11 85.33 101.12 164.01 154.26 153.53 101.12
Q4 226.21 117.43 159.3 190.53 488.52 401.35 9.5839 26.45 873.57
Q5 127.76 168.87 189.41 199.54 213.27 297.02 314.82 307.33 320.32
Q6 554.51 648.79 756.92 890.09 458.86 983 749.52 798.34 1034.68
Q7 40.09 34.2 49.76 52.43 45.17 72.71 79.59 22.678 95.62
Q8 109.07 107.22 152.09 152.61 193.631 191.38 216.28 112.75 391.12
Q9 16.85 10.31 15.31 20.22 60.55 29.16 8.6 9.7 90.42
Q10 81.01 89.79 106.47 109.22 316.29 381.18 30.89 22.61 423.28
Q11 30.38 22.41 29.5 33.25 31.21 24.29 28.07 27.783 62.44
A1 53.35 39.09 45.67 63.11 210.02 211.19 72.11 78.104 245.01
A2 30.72 20.58 29.58 31.24 32.37 25.44 26.06 29.25 68.44
A3 75.4 63.48 93.48 74.35 179.64 199.74 92.93 86.67 265.45
Y1 77.34 85.65 95.42 99.66 11.31 535.09 117.26 114.23 21.27
Y2 30.08 28.44 31.44 54.34 10.44 61.22 9.9363 9.59 60.23
Y3 129.51 176.98 196.09 201.22 151.64 58.71 12.22 15.003 250.43
C 400.55 352.1 456.33 512.26 754.12 854.43 229.27 220.72 987.46

Table 4 Loading of variables on PCs

Variable

Principal component

PC 1 PC 2 PC 3

X1 0.287 0.943 −0.117
X2 0.666 −0.014 −0.149
X3 −0.075 0.952 −0.245
X4 0.506 0.766 0.020
X5 0.898 0.371 0.154
Q1 0.892 0.384 0.128
Q2 0.963 −0.053 0.248
Q3 0.527 −0.503 0.683
Q4 0.620 0.746 −0.176
Q5 0.876 −0.274 0.315
Q6 0.501 −0.257 0.364
Q7 0.625 0.383 0.165
Q8 0.826 0.405 −0.169
Q9 0.698 0.606 −0.316
Q10 0.591 0.739 0.183
Q11 0.668 0.449 −0.494
A1 0.775 0.497 0.168
A2 0.706 0.454 −0.457
A3 0.806 0.550 0.095
Y1 0.036 0.142 0.980
Y2 0.129 0.799 0.297
Y3 −0.107 0.772 −0.561
C 0.519 0.826 0.114
Eigenvalue 13.269 4.730 2.120
% variance 40.86 33.64 12.96
% cumm variance 40.46 74.51 87.47
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close to each other. Samples S2, S3, B1, and B2 have a positive
PC 1 that is characterized by X1, X3, X4, and Y2 which are –CH3

of saturated hydrocarbons, alkenes, and –CH3 b to CH. Also,
samples S5 and S6 are positively loaded on PC 2 and are
© 2025 The Author(s). Published by the Royal Society of Chemistry
characterized by X2, Q2, Q3, Q5, Q6, Q7, Q8, Q10, A1 and A3,
which suggest the inuence of a and b-alkyl fragments of
naphthenic and hydroaromatic compounds.

Based on the score plot (Fig. 4a), the naturally attenuated
older residue samples (S1, S2, S3) are closer together, as are the
younger residues (S5 and S6) closer to FC. Remarkably, samples
B1 and B2 will showmarked differences in degradation because
microbial action on the oil within one year is close to each other
in the score plot. Mansurova et al. (2024)57 have obtained similar
results and interpretations. Fig. 4b shows the score plot of the
time evolution of the samples with HSQC NMR parameters. In
this spatial time distribution, the degraded oil residues evolved
in a clockwise pattern. In addition, cluster formation in PCA
plots (Fig. 4b) revealed similarities among data points within
respective samples, corresponding to assigned oil spill cate-
gories and demonstrating statistical differentiation between
these oil residues.58 This observation allows for the predict-
ability of the time of spill of crude oil when NMR indices are
known for such samples.

We applied the Euclidean distance (Table 5) based on the
similarity of the samples to gain insight into their composi-
tional relationship so that it will be consistent with the time of
the spill. On this basis, the average distance (0.8) between FC
and the naturally attenuated younger residue, S5 and S6 was
lower compared to the average distance (1.4) between FC and
older residue S1–S3 (Table 5, in bold). Biostimulated samples
B1 and B2 had the largest Euclidean distance (2.8). This shows
that the natural attenuation in the Niger Delta region within the
period under study may not be more effective than bio-
stimulation. Therefore, more time may be needed if trans-
formational changes due to natural attenuation will be
signicant.
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Fig. 3 Loading plot of HSQC NMR signal assignment in Table 1.

Table 5 Euclidean distance between FC and oil residue samples

Sample S1 S2 S3 S4 S5 S6 B1 B2
Distance 1.2 1.7 1.5 1.5 0.7 0.9 2.8 2.8
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3.3 Hierarchical cluster analysis

In this study, HCA was used to arrange the eight (8) oil residue
samples and the 23 HSQC-NMR areas into dendrogram based
on their similarities. Where samples are similar, the dendro-
gram offers a visual indication by bringing them close to each
other in a cluster. Fig. 5 and 6 show the dendrogram for the time
of the spill and HSQC-NMR areas, respectively. Based on the
individual sample characteristics, three clusters were obtained
and labelled as A, B, and C. It was observed that cluster A,
contained oil residue (S4–S6) with a time of spill of less than ve
years while cluster B, had samples that were biostimulated (B1,
B2). Cluster C contained older residues (S1–S3). This agrees with
our previous report,45 and related work by Rios et al.11 Similarly,
in the dendrogram built from the NMR areas (Fig. 6), three
clusters were identied. Group 1 contains arene, protonated
arenes, and internal aromatic carbon atoms.57 Group 2 contains
Fig. 4 Score plot: (a) oil residues (b) time of spill.

18916 | RSC Adv., 2025, 15, 18910–18919
–CH3 and –CH2 of aromatic and other functional groups. These
functional groups are due to alcoholic and carboxylic polar
compounds formed from biodegradation.44,58 Lastly, group 3
contains g-CH2, –CH2, and –CH of aliphatic and naphthalene
groups. This classication agrees well with our previous study
on where the structural differences lie in the samples. A
comparison of the two dendrograms, as in Fig. 5 and 6, showed
that the main factor responsible for grouping is aliphatic and
aromatic composition. However, we must stress some level of
ambiguity in this classication as in the case of S4 (<5 years)
which was grouped with older residue.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Dendrograms from hierarchical clustering of the oil residue in the soil at different time of spill.

Fig. 6 Dendrograms from hierarchical clustering of the oil residue in the soil at based on HQSC NMR weathering index.
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4. Conclusion

The analysis of naturally attenuated oil residues using data
from specic areas of HSQC NMR spectroscopy and exploratory
data analysis (PCA and HCA) have shown that differences in
environmental evolution in samples are characterized by
differences in –CH3/–CH2, aliphatic and aromatic content of the
oil residues. The Euclidean distance constructed from PCA
showed the real difference between fresh crude oil, aged, and
younger residue. If the time of the spill is known, HSQC NMR
would be a useful tool in evaluating the structural and compo-
sitional transformation of oil residue in the environment.
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