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oid purification for novel
techniques in carbon isotope ratio mass
spectrometry of doping control
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and Peijie Chen*a

Doping detection is a critical tool for maintaining fairness in competitive sports. Steroids are widely abused

due to their ability to promote protein synthesis, enhance muscle growth, and improve athletic

performance, leading to significant unfair competition. Carbon isotope ratios (CIRs) are effective in

distinguishing between endogenous and exogenous steroid sources, making steroids an ideal target for

isotope ratio analysis in anti-doping analysis. High-precision isotope ratio measurements using Gas

Chromatography-Isotope Ratio Mass Spectrometry (GC-IRMS) require high separation between the

target steroid and adjacent compounds to avoid interference. However, steroid concentrations in

biological matrices like urine and blood are often trace and accompanied by a large number of

coexisting interferents, making purification challenging. These limitations have partially restricted the use

of compound-specific isotope analysis in doping detection. This review highlights the latest

advancements over the past decade in sample preparation, liquid-phase purification, and both gas-phase

and liquid-phase isotope ratio mass spectrometry (IRMS) techniques. By summarizing the application of

these methods in anti-doping efforts and exploring future research directions, this review aims to

enhance the precision and reliability of steroid doping detection technologies, providing scientific

support for anti-doping efforts and identifying the abuse of steroids.
1. Introduction

Anabolic steroids (AS) are compounds that enhance athletic
performance by mimicking or amplifying the effects of endog-
enous hormones in the human body. The most common and
widely studied category of these substances is anabolic-
androgenic steroids (AAS).1,2 AAS are synthetic compounds
with structures and functions similar to endogenous male
hormones. AAS have two main effects: anabolic effects, which
promote protein synthesis and increase muscle mass, strength,
and bone density; and androgenic effects, which drive the
development and maintenance of male secondary sexual char-
acteristics.3 In addition to AAS, other substances with similar
effects such as selective androgen receptor modulators (SARMs)
are also considered steroid stimulants. While SARMs are not
structurally steroids, they selectively bind to androgen recep-
tors, producing anabolic effects similar to those of AAS.1,2 The
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abuse of stimulants can be traced back to the mid-20th century,
when reports rst emerged of athletes using testosterone and its
derivatives to enhance their physical performance.4 In modern
competitive sports, the misuse of steroid stimulants is most
prevalent in strength-based and explosive events, such as
weightliing and track and eld throws,5 at the same time,
there are also reports of abuse in endurance sports.6 These
substances can signicantly improve an athlete's muscle mass,
strength, explosiveness, and potentially aid recovery, providing
an unfair advantage in competition. Athletes typically use
synthetic anabolic steroids through injection or oral adminis-
tration, oen in long-term or cyclical regimens. Despite ongoing
updates to the World Anti-Doping Agency (WADA) prohibited
list of substance and enhanced detection methods for anabolic
agents, athletes continue to nd new ways to evade detection.7

For instance, some athletes may use novel steroids not yet listed
on the banned list or modify their drug usage cycles, employ
masking agents, or use other techniques to reduce the
concentration of steroids in their bodies and avoid detection.8

The abuse of AAS not only violates the principles of fair
competition but also poses severe health risks to athletes. Long-
term or high-dose use of AAS can result in liver damage,
increased risk of cardiovascular diseases, reproductive system
dysfunction and other serious adverse effects. It may also lead
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Typical workflow of doping control analysis.
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to psychological and physiological dependence, increasing the
risk of sudden death.1,3,5

Doping detection is an important strategy for ensuring fair-
ness in sports competitions and protecting athletes' health.
Through rigorous testing, the use of prohibited substances by
athletes can be identied and prevented in a timely. However,
current doping detection still faces several technical and prac-
tical challenges,9 including the detection of low-concentration
drug residues, interference from complex biological matrices,
and the identication of metabolites.10,11 Firstly, detecting low
concentrations of drug residues remains a signicant challenge
in the eld of doping detection. Many banned substances and
their metabolites are present in body uids at extremely low
concentrations, typically at the ng mL−1 or even at pg mL−1

level. This imposes strict requirements on the sensitivity and
accuracy of detection techniques.12 Secondly, the interference
from endogenous substances in biological matrices of human
body is another critical issue in doping detection. Biological
samples such as blood and urine contain a wide range of
endogenous substances that are chemically or physically
similar to exogenous steroids, making it difficult to accurately
distinguish between them.13 Moreover, steroids undergo
complex metabolic processes in the body, generating various
metabolites that closely resemble the parent compounds in
structure. This further complicates detection and introduces
additional uncertainties.14 Therefore, sample preparation and
purication steps are crucial in the detection process, as they
directly impact the accuracy, sensitivity, and reliability of the
results. To address these challenges, optimizing existing tech-
nologies and developing novel detection methods will be the
focus eld for future doping analysis.
© 2025 The Author(s). Published by the Royal Society of Chemistry
To address the various challenges in steroid doping detec-
tion, researchers have developed and applied a range of
advanced techniques to enhance the sensitivity, specicity, and
accuracy of detection methods15 (Fig. 1). For example, protein
precipitation (PP), solid-phase extraction (SPE) and liquid–
liquid extraction (LLE), which are commonly used sample
preparation techniques, effectively remove interfering
substances from biological matrices and concentrate the
targets, thereby signicantly improving the accuracy of subse-
quent analyses.16 These techniques in simplifying sample
matrices, reducing potential interferences and improving ana-
lyte recovery, making them indispensable in the processing of
complex biological samples such as urine and blood. In addi-
tion, IRMS has gained widespread application in steroid
detection in recent years.17–19 By precisely measuring the CIRs
(13C/12C) in steroid compounds, IRMS can effectively distin-
guish between endogenous and exogenous steroids, over-
coming the limitations of traditional mass spectrometry
techniques in this regard and greatly enhancing the specicity
of detection. Meanwhile, the Athlete Biological Passport (ABP)
has become an innovative tool for detecting doping abuse in the
anti-doping eld.20 The ABP monitors long-term changes in an
athlete's biomarkers, such as blood parameters and hormone
levels, to establish an individual baseline.21 Unlike traditional
one-time testing methods, the ABP can identify abnormal uc-
tuations that deviate from an athlete's normal physiological
variations, thus indirectly indicating the use of performance-
enhancing substances. This approach not only improves
detection sensitivity but also compensates for the limitations of
single-sample testing, providing robust support for steroid
doping detection.
RSC Adv., 2025, 15, 17548–17561 | 17549
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Table 1 List of abbreviations

Abbreviation Full term Abbreviation Full term

AS Anabolic steroids LPME Liquid-phase microextraction
AAS Anabolic-androgenic steroids MIPs Molecularly imprinted polymers
ABP Athlete biological passport MD-LC Multidimensional liquid chromatography
AAFs Adverse analytical ndings MSPE Magnetic solid phase extraction
CIRs Carbon isotope ratios MSTFA N-Methyl-N-(trimethylsilyl) triuoroacetamide
DES Deep eutectic solvents MTBE Methyl tert-butyl ether
DHEA Dehydroepiandrosterone PP Protein precipitation
EpiA Epiandrosterone PSL Prednisolone
EpiT Epitestosterone PS Prednisone
ERC Endogenous reference compound SARMs Selective androgen receptor modulators
GC-IRMS Gas chromatography-isotope ratio mass spectrometry SFE Supercritical uid extraction
GC-MS/MS Gas chromatography-tandem mass spectrometry SLE Supported liquid extraction
HRMS High-resolution mass spectrometry SPE Solid phase extraction
HTC High-temperature conversion SPME Solid phase microextraction
ILs Ionic liquids T Testosterone
IRMS Isotope ratio mass spectrometry TC Target compound
LLE Liquid–liquid extraction VPDB Vienna Pee dee belemnite
LC-IRMS Liquid chromatography-isotope ratio mass spectrometry WADA World Anti-Doping Agency
LC-MS/MS Liquid chromatography-tandem mass spectrometry WCOC Wet chemical oxidation conversion
LOD Limit of detection
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This review aims to summarize the latest advancements in
sample purication, analytical techniques, and IRMS in steroid
doping detection. It will also explore the technical challenges
and solutions encountered in steroid detection over the past
decade. Furthermore, the review will look ahead to potential
future developments to further enhance the scienticalness and
fairness of steroid detection. All the abbreviations used
throughout the manuscript are listed in Table 1.
2. Advances in sample preparation
techniques

Purication and analysis methods for steroid stimulants are
crucial for their detection and identication. Since steroids are
oen present at low concentrations in biological samples with
complex matrices, using highly sensitive and specic analytical
techniques is key to achieving accurate results. In recent years,
advancements in sample preparation methods have not only
improved sensitivity and specicity, but also simplied workows,
reduced processing time and lowered operational complexity (in
Table 2). Common sample preparation techniques include protein
PP, LLE, SPE, supercritical uid extraction (SFE), and liquid-phase
microextraction (LPME).22,23 PP and LLE remain classical sample
pretreatmentmethods. PP involves the addition of organic solvents
or salts to disrupt the hydration layer of proteins, leading to protein
denaturation and precipitation, thereby releasing the analytes into
the supernatant. On the other hand, LLE achieves separation and
purication based on differences in partition coefficients of the
target analytes between two immiscible solvents. In steroid detec-
tion, urine and plasma are oen used as the aqueous phase, with
appropriate organic solvents selected for protein precipitation and
extraction. The solvents including acetonitrile, methanol and
inorganic salts are the commonly reagents of PP methods,24–26

while the frequently organic solvents for LLE are mainly including
17550 | RSC Adv., 2025, 15, 17548–17561
methyl tert-butyl ether (MTBE), ethyl acetate and dichloromethane
and etc.26–28 Urine or blood samples oen require enzymatic
hydrolysis to convert conjugated steroids into their free forms,
thereby improving extraction efficiency. For instance, Mazzarino
et al. used b-glucuronidase to hydrolyze urine samples before
employing LLE to extract endogenous corticosteroids, achieving
a limit of detection (LOD) below 1 ng mL−1 and demonstrating
excellent sensitivity for certain steroids.29 Similarly, Makvandi et al.
utilized methanol–acetonitrile (1 : 5) for PP, followed by methanol-
based LLE, to detect steroids in serum samples. Compared to urine
testing, theirmethod identied anabolic-androgenic steroids (AAS)
in 80% of serum samples, their method identied anabolic-
androgenic steroids (AAS) in 80% of serum samples, highlighting
the potential of serum as a complementary matrix for AAS detec-
tion.25 Furthermore, Yuan et al. developed an MTBE-based LC-MS/
MSmethod for detecting 12 steroid hormones in serum, achieving
limits of quantication ranging from 0.005 ng mL−1 to 1 ng mL−1

and recovery rates between 86.4% and 115.0%, demonstrating
high sensitivity and specicity.30

However, traditional liquid–liquid extraction (LLE) has
several limitations, including high solvent consumption, low
selectivity and a tendency to form emulsions. To address these
issues, researchers have begun exploring environmentally
friendly solvent alternatives, such as deep eutectic solvents
(DES),31 ionic liquids (ILs)32 and bio-based solvents.33 These
innovative solutions offer potential advantages in terms of
sustainability and efficiency. Whereas, their application in
doping detection remains limited, primarily due to the need for
further validation of protocols and assessment of their
compatibility with current analytical workows.

SPE is another widely used sample preparation technique
that separates and enriches target compounds based on their
selective interactions with solid-phase adsorbents. It can effec-
tively remove matrix interferences, concentrates target analytes
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and then enhance the sensitivity of detection. The choice of
sorbent material is critical for SPE performance, with
commonly used materials including reversed-phase C18 and
amino-functionalized columns.34

For example, Derly et al. employed C18 SPE cartridge to
analyze testosterone (T) and hydroxylated metabolites in
human urine, revealing age-dependent changes, with most
metabolite levels decreasing in older men.35 Similarly, Pussard
et al. utilized Oasis HLB as an SPE adsorbent to extract and
enrich endogenous anabolic steroids (EAAS) in human urine,
including both free and conjugated forms of glucocorticoids
and mineralocorticoids. This method demonstrated good line-
arity and accuracy, making it suitable for single-injection
quantication of multiple steroids.36

In recent years, researchers have focused on developing novel
SPE materials to further improve the separation and purication
efficiency of steroids.37 One signicant advancement is the
application of molecularly imprinted polymers (MIPs) in SPE.38

MIPs are functional polymers prepared through polymerization
in the presence of template molecules (i.e., target analytes),
enabling highly specic recognition similar to antibodies. Using
MIPs as SPE adsorbents allows for the selective adsorption of
target steroid molecules, signicantly improving purication
efficiency and sensitivity. For instance, Pournamdari et al.
synthesized MIPs for medroxyprogesterone using methacrylic
acid and applied them to selectively adsorb the drug in human
serum and urine, demonstrating the potential of MIPs-SPE for
trace analysis in complex matrices.39 Guo et al. utilized an MIPs-
SPE method to efficiently enrich and quantify four estrogens in
serum, enhancing the sensitivity of HPLC and reducing matrix
interferences.40 In addition to MIPs, researchers are actively
exploring other innovative SPE materials. New adsorbents, such
as graphene-based materials, nanomaterials, and magnetic
media, show promise in steroid separation and purication due
to their unique pore structures and surface chemistry.40–43

Magnetic solid-phase extraction (MSPE) has also garnered
signicant attention for its use of magnetic nanomaterials as
sorbents. By applying an external magnetic eld, MSPE enables
to simplify the workow and shorten sample preparation time.42

Additionally, supported-liquid extraction (SLE) has been applied
as an alternative method. In SLE, sample solutions form a thin
lm on the surface of inert porous sorbents, and target analytes
are extracted using a solvent immiscible with the lm. This
technique is particularly effective for extracting nonpolar and
moderately polar compounds from biological uids.44–46 These
above growing array of advanced materials and techniques
highlights the ongoing innovation in sample preparation for
steroid analysis, offering solutions to improve efficiency, sensi-
tivity and environmental sustainability in doping detection.
3. Advances in semi-preparative
liquid chromatography purification
techniques

Samples are typically derived from complex biological matrices,
such as urine and serum, which contain numerous potential
17552 | RSC Adv., 2025, 15, 17548–17561
interferences that pose signicant challenges to subsequent
analysis.51,59,60,62–64 Table 3 summarized the research progress of
steroid purication and preparation. Semi-preparative HPLC is
a powerful purication tool that effectively isolates and puries
target steroids and their metabolites from complex matrices,
providing high-quality samples for structural identication,
standard preparation and IRMS analysis. The principles of
semi-preparative HPLC are similar to HPLC, relying on differ-
ences in partition coefficients of target compounds between the
stationary and mobile phases. The key difference lies in the use
of larger diameter columns and higher ow rates in semi-
preparative HPLC, allowing for greater sample loading and
improved separation efficiency to yield milligram-scale puried
substances.65

The choice of stationary phase is critical for the separation
efficiency and purity achieved with semi-preparative HPLC.
Common stationary phases include reversed-phase C18, C8,
phenyl columns, normal-phase silica columns, amino columns,
and other specialized functionalized materials.66 For steroid
separation, C18 columns are the most widely used, particularly
for their hydrophobicity, which makes them suitable for sepa-
rating most steroid compounds. For example, in the separation
of hydrophobic steroids such as T and dehydroepiandrosterone
(DHEA), C18 stationary phases effectively distinguish these
compounds, ensuring high-purity separation in complex bio-
logical matrices such as urine and serum.67–71 Due to their
superior resolution, C18 columns are commonly used for
precise quantication and identication of steroids. C8
columns, with weaker hydrophobicity than C18 columns, are
better suited for separating smaller or more polar steroid
compounds.72 Normal-phase silica relies on the interaction of
silanol groups (Si–OH) with the polar functional groups in
steroid molecules, such as hydroxyl or keto groups, through
hydrogen bonding,.73 However, C8 and normal-phase silica
columns are less commonly used for steroid purication.
Phenyl columns, which utilize hydrophobic interactions and p–

p interactions are particularly effective for nonpolar and weakly
polar compounds, especially those with aromatic rings.74–77

Amino columns, featuring medium polarity through
aminopropyl-functionalized silica, are mainly used for sepa-
rating steroids with hydroxyl or keto groups. The amino groups
on the stationary phase form hydrogen bonds with these func-
tional groups, enabling effective retention and high-efficiency
separation. For example, amino columns have been used to
separate glucocorticoids such as prednisone (PS) and prednis-
olone (PSL) and nally achieved efficient separation of these
polar compounds.78,79 For steroids with chiral centers, chiral
stationary phases are ideal for enantiomeric separation. For
instance, in separating chiral molecules such as dexametha-
sone and betamethasone in urine an plasma, the Lux i-
Cellulose-5 chiral column has been shown to achieve
complete separation.81

Traditional one-dimensional liquid chromatography (1D-LC)
oen struggles to achieve sufficient resolution when separating
structurally similar steroids and their metabolites with close
polarity, which limit its ability to meet the demands of highly
sensitive and selective analysis.75,79,80,82,83 Semi-preparative two-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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dimensional liquid chromatography (2D-LC) and multi-
dimensional liquid chromatography (MD-LC) have emerged as
powerful tools for steroid purication, signicantly enhancing
peak capacity and resolution by integrating orthogonal sepa-
ration mechanisms.74,76–78,84–88 The core principle of 2D-LC is the
use of two chromatographic columns with different separation
mechanisms, such as a combination of reversed-phase chro-
matography with hydrophilic interaction chromatography
(HILIC) or ion exchange chromatography (IEC). Fractions
separated in the rst dimension are automatically collected and
transferred to the second dimension for further separation.
This orthogonal approach effectively removes matrix interfer-
ences and enables the separation of structurally similar steroid
stimulants.89 For example, Lalonde et al. developed an auto-
mated 2D-HPLCmethod for the purication of steroids in urine
samples. Using an XDB Phenyl column in the rst dimension
and a reversed-phase C18 column in the second dimension, the
method achieved efficient separation anabolic steroids and
their metabolites, including 9 urinary steroids such as T and
DHEA.77 MD-LC builds upon the foundation of 2D-LC by
incorporating more than two dimensions and combining
multiple separation mechanisms. This approach allows for
highly efficient purication of trace steroid stimulants from
complex samples. For instance, Honesova et al. and Polet et al.
established a three-dimensional semi-preparative LC purica-
tion method for the analysis of T and its metabolites in urine
samples as well as the purication of nandrolone metabo-
lites.84,85 This method used two six-port switching valves to
enable two independent, non-interfering loops for multidi-
mensional chromatographic collection and rapid sample
cleanup. While multidimensional LC systems offer higher peak
capacity and resolution, these systems are inherently more
complex and require more professional operating skills and
method development experience. To address these challenges,
immunoaffinity chromatography (IAC) has been developed as
an alternative sample preparation technique for gas
chromatography-combustion-isotope ratio mass spectrometry
(GC-C-IRMS) analysis.90 However, HPLC methods has its
advantages in stability and purication quality, so it is still the
preferred method for precise analytical workows.

4. Advances in IRMS techniques

IRMS can distinguish endogenous steroids from exogenous
synthetic steroids by measuring the CIRs, providing robust
evidence for doping detection.91 To enhance the interpretability
of isotope ratio data, CIRs are typically reported using the delta
notation (d13C), expressed in per mil (&) relative to the inter-
national standard Vienna Pee Dee Belemnite (VPDB).92 The
delta value is calculated using the formula: d13C = [(Rsample/
Rstandard) − 1] × 1000, where R is the ratio of 13C/12C in the
sample or standard.93 Recent updates in reference materials for
d13C calibration should be noted. The certied reference
material VPDB has undergone re-evaluation, which slightly
affects the absolute isotope ratio scales and reinforces the
importance of precise two-point calibration using well-
characterized reference gases.94 In anti-doping analysis, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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differentiation between endogenous and exogenous steroids
relies not on absolute d13C values, but on D-values, dened as
the isotopic difference between a target compound (TC) and an
endogenous reference compound (ERC): D = d13CERC – d13CTC.
WADA recommends using aD-value greater than 3& to indicate
exogenous origin, due to the small but consistent differences in
carbon isotope ratios between synthetic steroids (typically
<−27&) and endogenous compounds (usually between −16&
and −26&).95 According to the sample introduction methods,
IRMS is mainly classied into GC-IRMS and liquid-phase IRMS
(LC-IRMS)96 (Fig. 2). GC-IRMS combines gas chromatography
(GC) with IRMS and is suitable for analyzing volatile or deriv-
atized compounds. In doping control, target compounds oen
require derivatization to enhance volatility for GC separation.
The separated compounds are then introduced into a combus-
tion or high-temperature pyrolysis furnace, where they are
converted into simple gases (e.g., CO2, H2, O2) for isotopic ratio
measurements by IRMS.97 For example, Wang et al. utilized GC-
C-IRMS to investigate the effects of musk intake on anti-doping
controls. They found that varying doses of musk altered steroid
proles and CIRs, potentially leading to abnormal analytical
ndings (AAFs). This study was the rst to conrm that musk
intake could result in positive doping test results.98 In terms of
other element determination, such as H and O isotopes, envi-
ronmental factors during sample pretreatment and separation
can lead to signicant isotope fractionation. Therefore, it
requires very delicate operations during sample pretreatment to
ensure the accuracy and reproducibility of H and O isotopes.99

Two-dimensional gas chromatography (2D-GC) combined
with IRMS enables higher-resolution analysis of steroids in
complex samples. By employing two chromatographic columns
with different separation mechanisms (e.g., polarity and non-
© 2025 The Author(s). Published by the Royal Society of Chemistry
polarity), 2D-GC signicantly enhances separation efficiency
and analytical capability.100,101 Putz et al. have reported the
application of 2D-GC-IRMS for steroid analysis.100 The rst GC
dimension used a low-polarity column (Optima 1, 30 m length,
0.25 mm ID) for preliminary purication of urinary steroids,
while the second dimension employed a moderately polar
column (DB-17 MS, 30 m length, 0.25 mm ID) for compound
separation. This method was applied to 74 routine doping
control samples to establish population-based thresholds,
reducing manual workload and time on sample preparation.
Epiandrosterone (EpiA), which is sulfated in the body, requires
enzymatic hydrolysis followed by acidic solvolysis for analysis,
making its sample preparation highly complex. In order to
simplify the sample preparation of sulfonated compounds,
Piper et al. tested the enzymatic cleavage of arylsulfatase from
Pseudomonas aeruginosa and further simplied the pretreat-
ment process by using MD-gas chromatography to ensure the
peak purity required for CIRs.101 While GC-IRMS is a mature
technique with high sensitivity and excellent reproducibility,
derivatization steps can introduce isotope fractionation effects,
potentially affecting measurement accuracy. Additionally,
thermally unstable steroid compounds may degrade during
derivatization or GC separation, limiting the applicability of this
method.

LC-IRMS overcomes the limitations of GC-IRMS, as it elim-
inates the need for derivatization, allowing direct analysis of
non-volatile and thermally unstable compounds.102 The LC-
IRMS workow begins with LC separation, where different
steroid compounds in complex samples are separated based on
their physicochemical properties. The eluate is then introduced
into an online interface that converts the target analytes into gas
forms detectable by IRMS. Common interface technologies
RSC Adv., 2025, 15, 17548–17561 | 17555
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include wet chemical oxidation (WCOC) and high-temperature
conversion (HTC).

WCOC method employs strong oxidizing agents (e.g.,
sodium persulfate) to oxidize organic compounds into CO2,
while HTC pyrolyzes compounds at high temperatures into CO2

and other small gas molecules. The generated CO2 is subse-
quently introduced into the IRMS for measurement of the
13C/12C isotope ratio.103 Zhang et al. developed a novel high-
temperature liquid chromatography coupled with photodiode
array detection and isotope ratio mass spectrometry (HT-LC/
PDA/IRMS) for the CIRs analysis of non-derivatized steroid
hormones. Using a C4 column at high temperatures with
ultrapure water as the sole mobile phase, the method achieved
complete separation of a mixture of ve steroids, including T
and epitestosterone (EpiT). The applicability of the method was
validated using testosterone-containing ointments.104 Recently,
Honesova et al. evaluated six analytical columns for their suit-
ability in separating steroids using similar conditions. They
identied ZirChrom-PBD and Sachtopore-RP as the only two
columns suitable for steroids separation.105 Subsequently, the
team employed a 2D-LC purication method, combining
Sachtopore-RP columns with conditions up to 200 °C and pure
water as the mobile phase. This approach successfully
measured the CIRs of steroids in urine, enabling differentiation
between endogenous and synthetic steroids.87 Since LC-IRMS
converts analytes into CO2 via wet oxidation and accurately
determines CIRs using water as the mobile phase, the current
design of LC interfaces imposes strict limitations on ow rates
and particularly the composition of the mobile phase.
Addressing these limitations will require the development of
novel, high-efficiency interface technologies combined with
advanced multi-dimensional chromatography methods to ach-
ieve precise analysis of trace steroid stimulants in complex
matrices.106,107 Additionally, coupling IRMS with high-resolution
mass spectrometry (HRMS) has emerged as a promising
approach. This combination provides both structural and
isotopic ratio information, offering more comprehensive
evidence for doping detection and enhancing the reliability of
analytical results.108

5. Conclusion

This review provides a summary of the latest research
advancements in the purication, analysis, and application of
IRMS techniques for steroid doping detection. In the eld of
purication and analysis, the combination of separation tech-
niques such as HPLC and GC with mass spectrometry has
signicantly improved the sensitivity and specicity. These
techniques enable rapid separation of targets from complex
biological samples and differentiate between endogenous and
exogenous steroids. With the optimization of sample prepara-
tion, particularly the combined use of LLE and SPE, detection
efficiency has been further enhanced. Meanwhile, the applica-
tion of IRMS techniques (e.g., GC-C-IRMS and LC-IRMS) has
provided a scientic basis for distinguishing between endoge-
nous and exogenous steroids through the measurement of
CIRs, thus further strengthening the ability to prevent detection
17556 | RSC Adv., 2025, 15, 17548–17561
evasion. However, given the complex structures of novel steroid
stimulants and increasingly abuse strategies, existing detection
methods still require further optimization, particularly in the
areas of rapid screening, sensitivity enhancement, and the
identication of unknown stimulants. Future advancements
include the development of innovative sample preparation
materials, such as molecularly imprinted polymers, for detect-
ing new synthetic steroids. Additionally, integrating AI-assisted
mass spectrometry for enhanced screening capabilities, opti-
mizing mass spectrometry parameters and exploring new
biomarkers will help improve the sensitivity for detecting
micro-dose stimulants. Moreover, enhancing international
collaboration and establishing standardized testing protocols
and databases are essential for advancing the global standard-
ization of doping detection technologies.
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and J. Isac-Garćıa, Green and bio-based solvents, Top. Curr.
Chem., 2018, 376, 1–40.
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