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Natural plant fibers are inexpensive, lightweight, renewable, and environmentally friendly, making them
sustainable substitutes for synthetic materials. This study aims to identify alternative, eco-friendly

replacements for nonbiodegradable fibers used in polymer composites. To achieve this goal, the fibers

from Ravenala madagascariensis leaf stalks were thoroughly characterized, with a focus on their

physical, mechanical, thermal, and morphological properties. The hygroscopic properties (moisture

content and regain), density, and chemical composition of the fibers were evaluated following ASTM
D2654, ASTM D1909, ASTM D891-18, and TAPPI standards, respectively. Chemical composition analysis
revealed that the fiber contained 54.25 wt% cellulose, 20.12 wt% hemicellulose, and 15.17 wt% lignin,
contributing to its enhanced mechanical properties. The crystallinity, surface structure, chemical bonds,
and thermal behavior of the fibers were analyzed via XRD, SEM, FTIR, and TGA techniques. This novel
fiber has a moisture content and regain percentages of 9.17% and 10.1%, respectively. Its average tensile
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strength is 151 MPa for a 20 mm gauge length (GL) and 136.8 MPa for a 30 mm gauge length (GL), with

a crystallinity index of 67.37%, in which the size of the crystals is 15.64 nm. The fiber degradation begins

DOI: 10.1039/d5ra00644a

rsc.li/rsc-advances

1. Introduction

Over the past three decades, the development of fiber materials
has flourished substantially because of their wide variety of
applications. For instance, the utilization of synthetic fibers in
composite products is remarkable due to their useful contri-
butions to supplementary products as well as their high-
strength material qualities. However, the high carbon emis-
sions while producing such fibers as well as the awareness of
‘zero carbon emissions’ in recent years have shifted the focus to
produce eco-friendly composite materials.

Environmental threats, along with protective regulations,
have served as catalysts for the use of natural resources across
various production sectors." As a result, interest in finding new
materials to replace traditional materials is increasing, with
natural fibers emerging as promising options. Note that natural
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at a maximum temperature of 550 °C. This original fiber holds potential for applications in the
production of cellulose nanoparticles, fiber-reinforced composites, biomaterials and so on.

fibers are biodegradable, recyclable, and lightweight. Moreover,
its natural polymers do have appealing fiber properties, such as
a wide stiffness range and a high strength-to-weight ratio.?
Owing to their natural abundance, exploring more opportuni-
ties to find sources of natural fibers is essential.*

Recent studies suggest that natural fibers are well suited for
reinforcing polymeric composite materials; thus, natural fibers
are replacing synthetic fibers in the composite industry.>*> The
utilization of natural fibers in industry and agriculture,
however, results in the production of significant amounts of
waste.”®** Therefore, developing an efficient method to convert
biomass waste into usable reinforcement materials may provide
a solution for producing economical and environmentally
friendly composites. The “green composites”***” are made from
natural fiber reinforcements, and several researchers have
already produced such composites.”®'® For example, banana
fibers® are extensively used in textiles to provide a lustrous
appearance. Furthermore, nontraditional fibers such as hemp
and flax*»** have become popular and are gradually replacing
synthetic fibers.>

In fact, natural fibers consist of cellulose, hemicellulose,
lignin, and pectin, with the proportions of these components
varying between different fibers.** A higher cellulose content
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increases fiber flammability, whereas a greater lignin content
tends to lower the fiber degradation temperature.”**>* As
a result, the presence of lignin and cellulose enhances the
thermal stability of natural fibers and their functionalized
materials, making them suitable for use in various polymer
matrices for diverse functional applications.*** Additionally,
natural fibers offer an alternative energy source for biodegrad-
able reinforcement materials.”” The strong chemical and elec-
trical resistance, effective thermal and acoustic insulation, and
high fracture resistance of these materials make them an
attractive area of research for various potential applications.”®
Nearly every industry is moving toward a greener, eco-friendly
approach, aiming to replace synthetic materials with natural
alternatives.” Many automotive manufacturers now use
biofiber-based composites, such as headliners, trunk liners,
dashboards, seat backs, and door panels, to produce various car
parts and accessories.*>** Additionally, fiber-reinforced
composites are also used in the shipbuilding, aerospace, and
construction industries.*” Table 1 lists the applications and
sources of different plant-based natural fibers.

Awide variety of natural fibers are derived from various parts
of plants, including the stem, root, bark, leaf stalk, husk, fruit,
etc.®® The literature review highlighted the importance of char-
acterizing new natural fibers for composite materials, as such
analysis determines their potential for various applications.
During this process, a previously uncharacterized cellulosic
natural fiber was identified in the leaf stalk of the Ravenala (R.)
madagascariensis plant. Since no prior studies on the charac-
terization of this specific fiber were found in the existing liter-
ature, the present study conducted its characterization based on
established methodologies used for other natural fibers The
main objective of this study was to examine the physical,
chemical, thermal, and mechanical properties of Ravenala
madagascariensis fibers (RMFs). The investigations included the

Table 1 Different plant fibers and their applications
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linear density, moisture properties, chemical composition,
surface morphology, functional characteristics, crystallinity
index, crystallite size, mechanical properties, and thermal
behavior of the RMFs. These properties were analyzed via
chemical analysis, scanning electron microscopy (SEM), Fourier
transform-infrared (FT-IR) spectroscopy, X-ray diffraction
(XRD), tensile testing, and thermogravimetric analysis (TGA).

2. Materials and methods
2.1 Materials

R. madagascariensis is a tree that can grow at a height of 30-60
feet (9-18 m). Its leaves are green, oblong, and feature a broad,
pinnate margin with evergreen venation, measuring over 2.4
meters in length. Globally, R. madagascariensis is native to
Madagascar, where it grows both in the wild and in cultivated
settings. It is also widely cultivated in tropical and subtropical
regions—including Bangladesh, India, and parts of North
America—mainly for ornamental landscaping due to its striking
appearance.®” In this study, lignocellulosic fibers were extracted
from the leaf stalk of the R. madagascariensis plant through an
eco-friendly extraction process. Currently, there is no compre-
hensive data on the global annual harvest of Ravenala mada-
gascariensis for fiber use. While native to Madagascar and
occasionally traded for ornamental purposes, it is not
commercially harvested at scale for its fiber. Notably, 90 kg of its
seeds were exported to Pakistan in July 2021, indicating limited
international trade. This study focuses on the basic fiber char-
acterization of the plant, aiming to support future research into
its commercial viability and sustainable fiber applications.®®

2.2 Extraction of the fibers

Ravenala madagascariensis is an abundant ornamental plant
widely cultivated in tropical and subtropical regions, including

Fiber name Source Scientific name Applications Reference
Hemp Hemp plant Cannabis sativa Textiles, paper, ropes, and skincare products 33-36
Ramie Ramie plant Boehmeria nivea Apparel, home furnishings, and fishing nets 37, 38
Pineapple leaf fiber Pineapple leaves Ananas comosus Textiles, upholstery, accessories 39, 40
Typha fiber Typha leaves Typha Australis Composites 41
Hogla Hogla plant Typha elephantina Roxb ~ Textiles, and composites 42
Coconut tree Primary flower Cocos nucifera Composites, rope, doormats, gardening 43, 44
leaf stalks, husks products

Palm tree Leaf stalks Livistona rotundifolia Composites, packaging materials 45
Corn leaf fiber Corn plant Zea mays Composites 46, 47
Kenaf Kenaf plant leaf stalks Hibiscus cannabinus Packaging materials, insulation 48, 49
Stinging nettle fiber Stinging nettle plant Urtica dioica Clothing, cordage, twine 50, 51
Water hyacinth fiber =~ Water hyacinth plant Pontederia crassipes Polymer composites 52-54
Banana fiber Banana plant stems Musa spp. Textiles, handicrafts, papermaking 55-57
Soy silk Soybean residue Glycine max Clothing, accessories 58
Pinatex Pineapple leaves Ananas comosus Textiles, footwear, bags, accessories 59
Sisal Sisal plant leaves Agave sisalana Ropes, twine, carpets, geotextiles 60
Abaca Abaca plant (Manila hemp)  Musa textilis Fiber craft, tea bags, specialty papers 61
Lotus fiber Lotus plant rhizomes Nelumbo nucifera Luxury textiles, traditional asian garments 62
Kapok Kapok tree seeds Ceiba pentandra Pillow stuffing, insulation, and hydrogel 63
Spider silk Produced by spiders Various spider species Lightweight but strong textiles, medical uses 64, 65
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Fig. 1 RMF extraction process: (a) R. madagascariensis plant, (b) collected leaf stalks, (c) removed spongy parts of leaf stalks, (d) mechanical

retting, and (e) extracted fibers.

Bangladesh. Its large leaf stalks are regularly pruned to main-
tain the aesthetic appearance of the plant, resulting in
a substantial amount of biomass waste. Instead of discarding
these stalks, they were collected and chopped into 10”-12"
pieces and prepared for fiber extraction. This approach offers
a sustainable solution for waste valorization while contributing
to the development of environmentally friendly, renewable
materials for composite applications. This study presents the
first detailed characterization of fibers derived from this plant
species, revealing promising attributes for utilization in textile
and biocomposite applications.

Avariety of natural fibers are obtained from different parts of
plants through methods such as water retting, mechanical
processes, chemical extraction and enzymatic retting. The
selection of an extraction method is influenced by factors such
as the type of fiber needed, the method's efficiency, the time
available, the intended application of the fibers, and the cost of
extraction.® The leaf stalks of R. madagascariensis were cut, and
the hollow sections inside them were removed. The fibers were
then extracted from the leaf stalks via a mechanical combing
process, as shown in Fig. 1. The extracted fibers were washed at
a temperature of 50 °C for 2 hours to remove excess gummy
substances, and their surfaces were thoroughly cleaned with
fresh water. After washing, the fibers were dried under direct
sunlight for approximately two days.

2.3 Methods of fiber characterization

2.3.1 Physical characterization and fiber density measure-
ment. The R. madagascariensis fibers were conditioned under
standard conditions (20 °C temperature and 65% relative
humidity) for 48 hours. Fiber diameters were measured at three
random points on 22 fibers via an optical microscope, and
longitudinal images were captured from different fiber samples.

25152 | RSC Adv, 2025, 15, 25150-25163

The average diameter was calculated using the “Image-Pro Plus”
software.” The linear density of the fibers was determined in
Tex units following ASTM D 1577-92, with measurements taken
from 25 individual fibers to calculate the average count. The
fiber density was measured via a pycnometer setup with
toluene, a liquid of known density, and the fiber density was
calculated via the following equation:™
[ — m]

P= (m3 —ml)(m4—m1) X pm (1)

where p is the density of the RMF (g cm™*) and pm is the density
of methanol (g em™®). m1: the mass of the empty pycnometer
(g). m2: mass of the pycnometer filled with methanol (g). m3:
mass of the pycnometer filled with chopped RMFs (g). m4: mass
of the pycnometer filled with chopped RMFs and methanol (g)

2.3.2 FTIR analysis. Fourier transform infrared (FTIR)
spectroscopy (FT-IR Spectrum II, PerkinElmer, Llantrisant, UK)
was used to analyze the active chemical components of the R.
madagascariensis fibers. The fibers were ground into a fine
powder and mixed with transparent potassium bromide (KBr)
for infrared measurement. The FTIR spectrometer was operated
in absorbance mode at a room temperature of 30 °C and
a relative humidity of 65%, with a scan rate of 32 per min, and
the resolution was 2% within the wavenumber range of 500-
4000 cm ™.

2.3.3 Moisture content and regain. The moisture content
(MC) and moisture regain (MR) percentage were determined
using the ASTM D 2654 and ASTM D 1909 methods, respec-
tively. A 5 g fiber sample was tested under standard atmospheric
conditions of 20 °C and 65% relative humidity. The weighed
samples were placed in an air oven maintained at a constant
temperature of 105 °C. The sample weight was recorded at 15-
minute intervals until the change in weight between successive
measurements was less than 0.1%. The difference between the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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standard conditioned weight and the oven-dry weight was used
to calculate the moisture content and moisture regain of the
RMFs. The calculations were performed via the following
equation.

W, -
— X

MC% =
C% W,

100 )

W, — W,
MR%ZAJﬁiix

100 3)

where W; and W, denote the fiber weights before and after
drying, respectively, in grams.

2.3.4 Mechanical property analysis. The tensile strength,
Young's modulus and elongation at break of the fibers were
measured following ASTM D 3822-07 standards. Tests were
conducted at room temperature using a Hounsfield H10KS
testing machine (UK) with a crosshead speed of 10 mm min "
and two fiber GLs of 20 mm and 30 mm under a relative
humidity of 65 & 3%. For each GL, 11 RMFs were tested, and the
average results were recorded. A 1.0 kN load cell was used to
measure the force applied during the tests.”” The fiber diameter
and tensile strength were statistically analyzed via the Weibull
distribution with Minitab statistical software 2022. The tensile
strength and Young's modulus were calculated via the following
equation:

g s,

(4)
where F,, and S, denote the maximum force at break and the
cross-sectional area of the fibers, respectively.

2.3.5 XRD analysis. The crystallinity index of the RMF
sample was analyzed using X-ray diffraction (XRD). This index,
which reflects the degree of structural organization, is crucial
because it affects the alkali treatment process and the
mechanical properties of natural cellulose fibers. The analysis
was performed with a BRUKER AXS Diffractometer D8 (Ger-
many) utilizing Cu Ko radiation under operating conditions of
40 kv and 40 mA. The diffracted X-rays were scanned using the
detector provided in the diffractometer, covering an angular
range of 5° to 60° (26) at a scan speed of 3°min ™" with 0.02° step
increments. The crystallinity index (CI) of the RMF was calcu-
lated using empirical methods, as described by the following
equation:

CK%%:QQLEEXWO (5)
IZOO

In this context, I,y represents the maximum intensity of the
peak at a 26 angle between 22° and 23°, corresponding to the
crystalline region. Similarly, I,,, denotes the minimum intensity
of the peak at a 26 angle between 15° and 19°, which represents
the amorphous region. The crystallite size of the RMFs was
determined via Scherrer's equation, as outlined below:

K 2

CS= ——
B cosf

(6)

K represents Scherrer's constant with a value of 0.89, whereas 4,
# and  correspond to the wavelength of the radiation, the Bragg

© 2025 The Author(s). Published by the Royal Society of Chemistry
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angle, and the full width at half maximum (FWHM),
respectively.

2.3.6 TGA along with DSC analysis. Thermogravimetric
analysis (TGA) was conducted to assess the thermal stability of
the fibers using an SDT650 thermal analyzer, which integrates
TGA and DSC functions, from TA Instruments, USA. TGA is
critical for evaluating the thermal durability of natural fiber
components and determining the operational temperature
range for composites incorporating such fibers. For this anal-
ysis, 10 mg of RMF was used. The TGA and DSC experiments
were carried out in a nitrogen atmosphere, with the tempera-
ture increasing from room temperature to 600 °C at a constant
heating rate of 10 °C min~ ' and a nitrogen flow rate of 30
ml min~".7 The kinetic activation energy (E,), which represents
the minimum energy required to degrade the fiber, was deter-
mined using Broido's equation.

Differential scanning calorimetry (DSC) was performed to
complement the thermogravimetric analysis. A 10 mg sample
was placed in sealed pans to prevent contamination. The sealed
pan was then positioned inside the calorimeter and heated
under an inert nitrogen atmosphere up to 45 °C. Significant
melting peak temperatures were recorded at a consistent heat-
ing rate of 10 °C min .

2.3.7 SEM and EDX analysis. The surface and cross-
sectional morphologies of the RMFs were examined through
scanning electron microscopy (SEM) using a JEOL 6460LV
instrument (Tokyo, Japan). The analysis was conducted at an
accelerating voltage of 20.0 kV. Prior to testing, the samples
were coated with gold under vacuum to increase their
conductivity.

Energy dispersive X-ray spectroscopy (EDX) is a widely used
method for identifying surface elements, such as oxygen,
nitrogen, and carbon, in natural fibers. EDX analysis, which was
conducted via the TEAM™ EDS system integrated with SEM,
was employed to identify the elemental composition of the R.
madagascariensis fibers.

2.3.8 Chemical composition analysis. The chemical
composition of RMFs was analyzed via TAPPI standard
methods. The lignin content was determined according to
TAPPI T211 om-8324. The extractive content of the fibers was
determined following the TAPPI T204 om-88 standard method.
Holocellulose and cellulose contents were measured following
the TAPPI T249 and TAPPI T203 om-93 methods, respectively.”
The hemicellulose content was calculated via the following
equation:

Hemicellulose% = Holocellulose% — Cellulose% (7)

3. Results and discussion
3.1 Physical characterization and fiber density

The R. madagascariensis leaf stalk fibers had an average length
of 26.4 cm. Accurately measuring the diameter of natural fibers
is challenging because of their irregular thickness, which varies
along their length as a result of environmental factors and

RSC Adv, 2025, 15, 25150-25163 | 25153
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Fig. 2 Optical microscope image of the RMF.

Table 2 Comparison of the physical properties of RMFs with different natural fibers

Fiber Diameter (um) Density (gm per cc) Count (Tex) Reference
RMFs 140-303 1.08 33.70 £ 11.72 Current work
Rosa hybrida bark fiber 214-238 1.194 14.51 66

Coconut tree leaf 140-990 1.2 — 72
Hylocereus undatus stem fiber 173.53 1.08 14.82 76

Eleusine indica grass 315.4 £ 10 1.14 — 77

Cyperus pangorei fiber 133.3 1.10 11-14 78
Saccharum Bengalense grass 320.47 1.17 18.63 £ 6.28 79

Ziziphus mauritiana fiber 570.2 1.13 — 80

growth conditions. To determine the diameter of R. mada-
gascariensis fibers, measurements were taken at three random
points on each fiber. As shown in Fig. 2, the diameters at the
first, second, and third points were 0.170192 mm, 0.172115
mm, and 0.181731 mm, respectively. The average single-fiber
weight was calculated as 0.008455 g on the basis of 20 fibers
of varying lengths. The fineness of the fiber was 33.70 + 11.72
Tex. Table 2 shows the fineness of Rosa hybrida bark fiber (14.51
Tex), Hylocereus undatus stem fiber (14.82 Tex), and Saccharum
bengalense grass fiber (18.63 Tex) which are all lower than RMFs.
The specific density was 1.08 g cm >, This low density makes it
suitable for lightweight applications as an alternative to
synthetic fibers. A comparison of the physical properties of
RMFs with those of other natural fibers is shown in Table 2.

3.2 FTIR analysis

The Fourier transform infrared (FTIR) spectrum shown in Fig. 3
presents the transmittance (%) as a function of wavenumber
(em™™). The spectrum exhibited several significant absorption
bands corresponding to specific molecular vibrations. Key
peaks are observed at 3336 cm™ ', 2914 cm ', 1728 cm !,
1600 cm ™, 1507 em ™, 1370 em ™}, 1238 ecm™*, 1034 cm ™, and
892 cm™"'. The prominent peak at approximately 3390 cm™" is
typically associated with O-H stretching vibrations, indicating
the presence of hydroxyl groups or water molecules. The peak
regions of the fibers corresponding to the specified functional

groups are presented in Table 3.

3.3 Moisture content and regain analysis

The composition of a fiber is significantly affected by its moisture
content. The ability of a textile to retain body heat under varying
climatic conditions greatly influences its comfort level, making
moisture regulation a critical aspect of performance. Changes in
moisture content impact textile properties such as elasticity,
friction, fiber diameter, and tensile strength. A decrease in

25154 | RSC Adv, 2025, 15, 25150-25163
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Fig. 3 FTIR spectrum of R. madagascariensis fiber.

equilibrium relative humidity can cause a textile to become
weaker, more brittle, and fragile. To minimize moisture loss to
the environment, maintaining air humidity during fiber pro-
cessing is essential.®® The average moisture content and moisture
regain of the fibers are 9.172% and 10.102%, respectively, which
are similar to those of bamboo fibers (9.16%).°* The results were
obtained via the use of five distinct fiber samples, each weighing
five grams. The standard deviations for the two measurements
were 0.601 and 0.726, with coefficients of variation of 6.56% and
7.18%, respectively, indicating consistent moisture contents and
regain values among the samples.

3.4 Fiber mechanical property analysis

The mechanical properties of the RMFs were measured through
tensile tests conducted for two different gauge lengths (GLs), as
detailed in Table 4. Three key tensile properties were analyzed:
tensile strength, Young's modulus and elongation at break. As
illustrated in Fig. 4, the tensile strength of the 20 mm GL was

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Chemical stretching patterns associated with peak positions

Wavenumber (cm ™) Allocations References

3336 A prominent absorption peak at 3336 cm™" is observed in RMFs, attributed to the O-H and C-H 81
stretching in cellulose. This peak corresponds to the presence of alpha-cellulose, polysaccharide,
and monosaccharide molecules

2914 The small peak at 2914 cm ™ is associated with the C-H stretching vibrations of CH and CH, 82
groups in cellulose and hemicellulose

1728 The small peak observed at 1728 cm ™" is attributed to the carbonyl group of carboxylic acid 83
present in lignin

1600 A small peak in 1600 cm ™' is indicating water absorption in natural cellulose 84

1507 The vibrational activity at 1507 cm ™" is attributed to the stretching of C=C bonds in aromatic 85
lignin structures

1370 The C-O groups in the aromatic rings of hemicellulose and lignin 86

1238 The absorbance peak at 1238 cm ™' corresponds to the C-O stretching vibration of an acetyl 87
group in lignin

1034 The absorption peak at 1034 cm ™ is attributed to the C-O vibration in cellulose 88

892 Hemicellulose exhibits characteristic peaks at 896 cm ™, corresponding to the stretching 89

vibrations and deformations of C-C-H, C-O-C, and C-C-O bonds in cellulose

Table 4 Summary of the mechanical properties of R. madagascariensis fibers

GL (mm) Mean diameter (mm) Tensile strength (MPa) Young's modulus (GPa) Elongation at break (%)
20 0.2191 + 0.05 151 4+ 19.99 4.325 + 1.36 6.475 £ 3.63
30 0.1933 + 0.05 136.8 + 26.64 5.70 £ 1.15 5.178 £ 2.89

significantly greater than that of the 30 mm GL. Factors such as
the fiber extraction method, leaf age, climate conditions, micro-
structure, and defects caused by cracks influence the tensile
properties of RMFs. The presence and accumulation of defects in
the longer GL (30 mm) led to more rapid failure. Additionally, the
tensile test results are impacted by the GL, instrument precision,
grips, and compliance of the testing device.*

The results in Fig. 5 demonstrate that the Young's modulus
for the 30 mm GL is 5.70 GPa greater than that for the 20 mm
GL. This trend is expected, as the arrangement of defects rela-
tive to the fiber length and volume may result in an increase in
the Young's modulus with increasing GL.*® Fig. 6 presents the
Weibull distribution plots for the diameter, tensile strength,

80

Tensile Strength (MPa)

20 mm GL 30 mm GL

Samples

Fig. 4 Tensile strength of R. madagascariensis fiber.

© 2025 The Author(s). Published by the Royal Society of Chemistry

and elongation at break of the RMFs. The data show that the
values for diameter, tensile strength, and elongation at break
fall within the expected range and align well with the fitted
curves. This study concludes that the mechanical properties
determined using the two-parameter Weibull distributions
closely match the average experimental results.

3.5 XRD analysis

Natural cellulose exists in two forms, I and IB. Certain plant
fibers, such as cotton, jute, flax, and hemp, tend to have a relatively
high proportion of If. Beta cellulose is formed by eliminating

I Young's modulus
Elongation at break,
T T 7
g I

6
w 5 3
o s
Y x
4 3
2 L4 8
T ®
4 c
£ 38
P =
© o
€ 2 <
3 28
> w

1 1

0 0

20 mm GL 30 mm GL

Samples

Fig. 5 Young's modulus and elongation at break of R. madagascar-
iensis fiber.
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a) Probability Plot of Diameter 20 mm GL of R. madagascariensis b) Probability Plot of Diameter 30 mm GL of R. madagascariensis
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water and forming oxygen bridges between C-1 and C-4, with the
stacking of parallel hydrogen-bonded sheets partially stabilized by
van der Waals interactions.”” The X-ray diffraction (XRD) pattern of
natural fibers extracted from R madagascariensis is shown in
Fig. 7. The x-axis, labeled “2 theta (degree),” ranges from 5 to 60°,
whereas the y-axis represents “intensity (counts).” The pattern
reveals crystalline regions with peaks at specific 26 angles. Two
prominent peaks are observed: a broad and intense peak at 20 =
15.56° and a sharp, tall peak at 26 = 22.02°, indicative of a strong
crystalline phase corresponding to cellulose-I diffraction.

The crystallinity index (CI) of the R. madagascariensis fibers
was 67.37%, which was higher than that of the Dracaena reflexa
fibers (57.32%), Coir fibers (57%), Calotropis gigantea fibers
(56.08%), Grewia tilifolia fibers (41.7%) and Palmyra seed sprout
fibers (PSSFs) (38%). Fibers with more crystalline regions
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Fig. 7 X-ray spectra of R. madagascariensis fiber.
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Fig. 8 TGA (a), DTG and DSC (b) study of R. madagascariensis fiber.
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Fig. 9 SEM images of the longitudinal views (a) and cross-sectional views (b) of RMFs.

exhibit enhanced mechanical stability and stiffness. However,
the moderate CI of this fiber suggests that its mechanical
strength and stiffness are also moderate. The CI implies that the
fiber is thermally stable and can withstand a broad temperature
range before degradation. The amorphous fraction (32.63%)
makes the fibers more susceptible to swelling and disintegra-
tion in certain solvents. The higher crystallinity index indicates
that the fiber may be suitable for biocomposite materials
requiring a specific amorphous-to-crystalline ratio.****

The average size of a single crystal, referred to as the crys-
talline size (CS), was calculated to be 15.64 nm. In materials
science, the crystalline size is commonly used to describe
nanoparticles, colloids, gels, and spray-dried agglomerates. A
smaller crystallite size enhances the sintering process, allowing
for lower sintering temperatures.®

3.6 TGA along with DSC analysis

Fig. 8 shows the thermogravimetric behavior of the RMF
sample, along with the corresponding differential scanning

© 2025 The Author(s). Published by the Royal Society of Chemistry

calorimetry (DSC) data. The graph depicts the mass change of
the sample as a function of temperature or time. The
percentage weight reduction, relative to the sample's initial

o 0.5k
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Fig. 10 Energy-dispersive X-ray spectroscopy of RMFs.
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weight, is plotted on the right y-axis, whereas the heat flow in
watts per gram (W g~ ') is shown on the left y-axis. The x-axis
represents the temperature in degrees Celsius (°C). The data
points on the graph are marked with brackets and connected
by lines. As the temperature increased, the sample weight
decreased, indicating disintegration. A more complex heat
flow curve is also observed.

The weight reduction begins significantly at 85.6 °C, reach-
ing 93.8%, likely due to the evaporation of moisture or volatiles.
Dehydration is suggested by the first endothermic peak at
58.01 °C, with a heat flow of —0.003 W g~ . Effective decom-
position occurs at 275 °C, with a weight loss of 90.5%. The most
prominent thermal event is an exothermic peak at 380 °C
(0.037 W g, indicating further degradation. At 400 °C,
a substantial weight reduction of 19.5% was observed, indi-
cating the onset of decomposition. Finally, the material
continues to degrade or transform at 550 °C, as shown by
a weight loss of 13.96% and a heat flow of 0.05 W g™,

Table 5 EDS analysis of R. madagascariensis fibers

Element Atomic (%) Weight (%)
Aluminum 9.20 13.58
Carbon 56.73 37.28
Chlorine 16.86 32.71
Oxygen 13.64 11.94
Sodium 3.57 4.4
Chemical components
® Lignin, Ex:rac:)i\'es,
15.17% 2.10%
® Cellulose,
54.25%
B Hemicellulose,
20.12%
m Cellulose mHemicellulose m=Lignin Extractives

Fig. 11 Chemical composition of R. madagascariensis fiber.
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3.7 Morphological analysis (SEM and EDX)

SEM was used to examine the surface morphology of the
untreated R. madagascariensis fibers. As represented in Fig. 9a,
the fibers exhibited a textured and uneven surface, primarily
due to the presence of hemicellulose, lignin, and other impu-
rities covering the fibers. These natural surface irregularities
contribute to poor surface wet-out and insufficient fiber-matrix
bonding. The surface is believed to contain oils, waxes, and dirt.
To ensure strong interfacial interactions between the fiber and
the polymer matrix, the surface of the fiber must be optimized.
Chemical treatment is necessary to remove organic matter and
contaminants before incorporating the fibers into the polymer
matrix.’®®” The cross-sectional analysis shown in Fig. 9b of R.
madagascariensis fibers reveals that each single fiber is
composed of multiple hollow structures of varying shapes.
These structures consist of thick microstructures and are
enveloped by microfibrils along their longitudinal surface. The
covering of microfibrils adds texture and possibly contributes to
the durability and adhesion properties of the fibers, which
could improve their performance in composite materials or
textiles.”®

Fig. 10 shows the elemental quantitative analysis of R.
madagascariensis fibers, expressed in terms of atomic and mass
percentages. In Table 5, quantitative analysis of elements was
performed on the basis of atomic percentage and weight. The
EDS analysis indicates the absence of nitrogen and sulfur in the
fibers.

3.8 Chemical composition analysis

Identifying the chemical behavior of a substance is essential for
understanding its properties, structure, characteristics, and
processing capabilities. The composition of a fiber significantly
influences these factors. The R. madagascariensis fibers were
found to contain 15.17% lignin, 20.12% hemicellulose, and
54.25% cellulose. The high cellulose content enhances its
suitability for high-value applications and facilitates processing
for various purposes. This contributes to improved crystallinity,
mechanical properties, biodegradability, hydrolysis resistance,
and thermal stability, which are in good agreement with the
results shown earlier. Hemicellulose and lignin present in
relatively small amounts help regulate the stiffness and

Table 6 Comparison of the chemical composition, tensile properties, moisture content and thermal stability of different fibers

Chemical composition

Cellulose ~ Hemicellulose Lignin  Tensile strength ~ Moisture content  Thermal stability
Name of fiber (%) (%) (%) (MPa) (%) (°C) References
RMF 54.25 20.12 15.17 151 9.172 £ 0.601 275 Current work
Coconut tree leaf 27 14 27.7 119.8 4.7 280.1 99
Tamarind 59 22 19 61.16 9.64 264 100
Rosa hybrid bark fiber 52.99 18.49 17.34 352.01 11.60 290 66
Sisal 60-78 10-14.2 8-14 320 20-22 234 101
Pineapple leaf fiber 73.4 7.1 10.5 210-695 9.8 236.6 102, 103
Ficus racemosa 72.36 11.21 10.45 270 6.13 200 104
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bundling of fibers, making them suitable for high-performance
composite applications. Additionally, the fiber was found to
have 2.10% extractive content. The percentage distributions of
these chemical components are illustrated in the pie chart in
Fig. 11. A comparison of the chemical composition, mechanical
properties, moisture content and thermal stability of the
samples is shown in Table 6.

4. Conclusion and outlook

A novel natural fiber was successfully extracted from the leaf
stalks of Ravenala madagascariensis using environmentally
friendly retting methods, including mechanical processing and
sun-drying.

X-ray diffraction (XRD) and Fourier-transform infrared
spectroscopy (FTIR) confirmed the fiber's structural similarity
to other lignocellulosic fibers, reinforcing its classification as
a typical plant-derived material.

Chemical composition analysis showed a high cellulose
content of 54.25%, making the fiber a strong candidate for
applications that benefit from cellulose-rich materials, such as
biocomposites and cellulose-based products.

The fineness of the extracted fiber was measured at 33.70 +
11.72 Tex, which is within the typical range for natural fibers
used in various industrial applications.

Scanning Electron Microscopy (SEM) revealed a rough
surface with voids and cracks, which may improve fiber-matrix
adhesion when used as reinforcement in composite materials.

Thermogravimetric analysis demonstrated that the fiber
remains thermally stable up to 275 °C, indicating its suitability
for low-to medium-temperature processing conditions.

The fiber exhibited moderate mechanical properties in terms
of density, tensile strength, and elongation, supporting its
potential use in lightweight composite structures.

The ability to employ RMFs for a variety of purposes,
including composite reinforcements and the assessment of
their mechanical, chemical, and physical properties, is gener-
ally enhanced by this study.
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