
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
M

ar
ch

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/1

9/
20

26
 7

:2
4:

40
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Radially evolving
School of Chemistry, IISER Thiruvananth

pushpita@iisertvm.ac.in

† Electronic supplementary informa
https://doi.org/10.1039/d5ra00635j

‡ These authors contributed equally to th

Cite this: RSC Adv., 2025, 15, 6854

Received 27th January 2025
Accepted 25th February 2025

DOI: 10.1039/d5ra00635j

rsc.li/rsc-advances

6854 | RSC Adv., 2025, 15, 6854–68
spiral wave patterns in the
Gierer–Meinhardt reaction–diffusion system†

Tarpan Maiti, ‡ Achal Jadhav ‡ and Pushpita Ghosh *

Spiral wave formation in spatially extended systems is a fascinating phenomenon that has garnered

significant attention in reaction–diffusion systems. In this study, we explore the emergence of spiral

wave-like patterns in the Gierer–Meinhardt reaction–diffusion model. By employing a multiple-time

scale perturbation technique, we derive amplitude equations that reveal the conditions for spiral wave

formation. Notably, our analysis shows that the amplitude of these spiral waves varies with the radial

distance, introducing a distinctive feature to this pattern. Our theoretical predictions are further

substantiated by numerical simulations, which confirm the emergence of spiral wave structures and

validate the distinct radial dependence of their amplitude.
1 Introduction

Self-organized pattern formation, one of the most captivating
out-of-equilibrium phenomena, has drawn immense attention
over recent decades. Beyond biological systems, such
phenomena have been observed in a wide variety of chemical
and physical systems.1,2 Alan Turing's pioneering work on
reaction–diffusion systems, which proposed diffusion-driven
instability in activator–inhibitor kinetics as the fundamental
mechanism behind self-organization, has laid the foundation
for extensive research in this eld.3,4 This framework has
revealed a plethora of spatiotemporal structures, such as
stripes, spots, traveling waves, labyrinthine patterns, and
others, both experimentally5–7 and theoretically.8–10 Among
these, spiral wave patterns stand out as a particularly fasci-
nating example of spatiotemporal organization.

A spiral wave is a two-dimensional structure that propagates
either outward from or inward toward a central core, forming
a characteristic spiral geometry. The Belousov–Zhabotinsky (BZ)
reaction, a classical example of a homogeneous reaction–
diffusion system, has been widely studied for its ability to
generate oscillatory behavior and spatially extended patterns
such as spiral and target waves. The rst experimental obser-
vation of spiral waves was achieved in the Belousov–Zhabotin-
sky (BZ) reaction,11–14 followed by similar ndings in other
chemical systems such as the sodium silicate–cobalt chloride
reaction,15 the photosensitive chlorine dioxide iodine malonic
acid reaction.16 Similarly, heterogeneous autocatalytic
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reactions, including the oxidation of CO on platinum surfaces,
exhibit rich spatiotemporal dynamics governed by reaction–
diffusion mechanisms.17 Beyond these, precipitating reaction–
diffusion systems have also been shown to produce intricate
patterns, including Liesegang rings and reaction-driven waves,
which share similarities with spiral and target waves observed
in classical reaction–diffusion models.18–21 In electrochemical
and metal co-deposition systems, reaction–diffusion dynamics
play a crucial role in the formation of complex spatiotemporal
structures, including spiral waves and target patterns, inu-
enced by the coupling between reaction kinetics and mass
transport.22–24

Spiral waves have also been observed in numerous biological
processes, including the aggregation of slime molds,25 the
development of frog eggs,26 cardiac arrhythmias,27 fertilized
starsh eggs,28 and dense bacterial populations,29 among
others. From a theoretical perspective, various reaction–diffu-
sion models have successfully captured spiral wave dynamics.
These include chemical models such as the Oregonator model
for the BZ reaction,30,31 the CDIMA reaction–diffusion
model,8,32,33 and the delayed-feedback induced spiral in Brus-
selator model.34 Similarly, biological self-organization processes
have been described using models such as the FitzHugh–
Nagumo,35,36 Hastings–Powell,37 and Decroly–Goldbeter38

models. The Gierer–Meinhardt (GM) model is another widely
studied reaction–diffusion framework, originally developed to
elucidate spatial pattern formation during morphogenesis.39

This model has been instrumental in simulating a range of
patterns, including spots, stripes, combinations of spots and
stripes,40–43 as well as traveling wave-like patterns.44 However,
the dynamics of spiral waves within the GM model remain
underexplored, particularly from a numerical analysis
perspective. Bhattacharyay et al.45 analytically demonstrated the
potential for spiral and target wave formation in the GM system
© 2025 The Author(s). Published by the Royal Society of Chemistry
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using multiple-scale analysis. However, numerical validation of
these insights is lacking, highlighting the need for further
investigation. These diverse systems highlight the universality
of RD-driven pattern formation and motivate further investi-
gation into the underlying mechanisms that govern the emer-
gence of novel structures. Understanding the conditions under
which these patterns arise, particularly the variation of spiral
wave amplitudes or frequency modulation, has broad implica-
tions for nonlinear chemical dynamics, biological morphogen-
esis, and materials science.

In this study, we undertake a comprehensive exploration of
spiral wave dynamics in the GM reaction–diffusion system from
both analytical and numerical perspectives. Employing the
multiple-scale analysis technique,45–48 a weakly nonlinear anal-
ysis, we derive amplitude equations to elucidate the conditions
for spiral wave formation. To corroborate these analytical
ndings, we perform numerical simulations and examine the
emergence of spiral waves under both zero-ux and periodic
boundary conditions. Furthermore, we investigate the depen-
dence of spiral wave formation on domain size and grid reso-
lution, to ensure the robustness of the spiral waves providing
deeper insights into the system's behavior. Remarkably, our
ndings reveal the existence of amplitude variations of the
developed spiral waves in GM model, radially-varying spiral
wave patterns, a phenomenon not previously reported to the
best of our knowledge. The derived amplitude equations predict
this unique behavior, offering valuable insights into the
radially-evolving spiral wave dynamics in the GM model. This
distinctive characteristic sets our study apart from existing
research on spiral wave dynamics and highlights the novel
contributions of our work. Understanding the variation of spiral
wave amplitudes in reaction–diffusion (RD) systems is essential
for advancing multiple scientic elds. In nonlinear chemical
dynamics, such variations reveal instabilities and mode selec-
tion, rening models of self-organization in chemical systems.
In biological morphogenesis, they inuence processes like cell
signaling, cardiac waves, and tissue development, with impli-
cations for disease modeling. In materials science, amplitude
variations impact pattern formation in electrochemical and
metal co-deposition systems, affecting surface morphology,
nanoscale fabrication, and corrosion control. Similarly, in
precipitating RD systems, they offer pathways for designing
ordered material structures with specic functionalities.
2 The model

In this study, we consider the two-variable Gierer–Meinhardt
(GM) model,39,40 which was originally proposed to describe the
emergence of spatial patterns in tissue structures, starting from
nearly homogeneous conditions during embryological devel-
opment and regeneration. Themodel builds upon Alan Turing's
groundbreaking concept of reaction–diffusion systems, specif-
ically emphasizing the autocatalytic behavior of an activator
and the cross-catalytic inhibition mediated by an inhibitor. The
governing equations of the original two-variable GM model are
given as follows:
© 2025 The Author(s). Published by the Royal Society of Chemistry
vU

vT
¼ rU

U2�
1þ kUU2

�
V

� mUU þ sU þDUV
2U ; (1a)

vV

vT
¼ rVU

2 � mVV þ sV þDVV
2V : (1b)

Here, U and V represent the concentration of the activator and
inhibitor species, respectively, and thus have the dimension of
concentration. In accordance with the activator–inhibitor
dynamics of a reaction–diffusion system, the activator species
promotes the production of both itself and the inhibitor, while
the inhibitor suppresses the activator's production. The term�

U2

1þ kUU2

�
captures the saturable nature of activator produc-

tion, with kU serving as the saturation constant. The parameters
sU and sV are the basic production term of the activator and
inhibitor, respectively, while the removal rates of the two
species are represented by mU, mV. rU and rV are the cross-
reaction coefficients and are related to the product of the rate
constant and source densities of the activator and inhibitor
species, respectively. The diffusion coefficients for the activator
and inhibitor are denoted by DU and DV. Although this model
was originally proposed to explain the development of spatial
patterns in tissue structures during morphogenesis, it can also
describe spatiotemporal pattern formation observed in various
chemical systems. To reduce the complexity of the equation, we
set the saturation constant (kU) and the basic production term
of the inhibitor (sV) to zero in the current investigation.40 This
scenario closely resembles a chemical reaction occurring in
a continuously stirred tank reactor (CSTR),49 where reactants
and products are continuously introduced and removed. During
these reactions, intermediate species50 generated in the system
act as activator and inhibitor components. The following
dimensionless quantities have been introduced to render the
overall eqn (1) dimensionless:

t ¼ mUT ; x ¼
ffiffiffiffiffiffiffi
mU

DV

r
X ; y ¼

ffiffiffiffiffiffiffi
mU

DV

r
Y ; u ¼ mUrV

mVrU
U ;

v ¼ mU
2rV

mVrU
2
V :

Substituting these transformations, eqn (1) becomes:

vu

vt
¼
�
u2

v
� uþ s

�
þDV2u; (2a)

vv

vt
¼ m

�
u2 � v

�þ V2v: (2b)

Here, D ¼ DU

DV
, m ¼ mV

mU
, and s ¼ rVsU

mVrU
are dimensionless

parameters. Setting the reaction terms in eqn (2) to zero
provides the system's homogeneous steady state, given by
(uss,vss) = [(1 + s), (1 + s)2].
2.1 Linear stability analysis: Hopf and Turing instability

We performed a systematic linear stability analysis around the
homogeneous steady state of the system in the absence of
RSC Adv., 2025, 15, 6854–6862 | 6855
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Fig. 1 Bifurcation diagram obtained from linear stability analysis of eqn
(2) of the GM model for the parameter values: D = 0.25. The region
above and below the Hopf curve (green line) represents temporally
stable and unstable regions, respectively. The region above and below
the Turing curve (blue line) represents spatially stable and unstable
regions, respectively.
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diffusion. This analysis provides the condition for Hopf bifur-

cation in the parameter space as mH ¼ 1� s

1þ s
. The Hopf bifur-

cation curve separates the parameter space into regions of
temporally stable and unstable states. Subsequently, we carried
out the stability analysis of the spatially extended GM model
around the homogeneous steady state in the presence of
diffusion. This yields the Turing condition as:

mT ¼ 1
D

� ffiffiffiffiffiffiffiffiffiffiffi
2

1þ s

r
� 1
�
. The Turing curve divides the parameter

space into two regions, indicating the presence of diffusion-
driven instability. Fig. 1 illustrates the corresponding bifurca-
tion diagram for a xed value of D = 0.25 in the m vs. s

parameter space. The three distinct regions, marked with
different colors, represent the relevant spatiotemporal insta-
bilities identied through linear stability analysis. Based on
prior literature,48 the oscillatory region near the Turing curve
will be our primary focus for spiral wave formation.
3 Derivation of amplitude equation
for spiral waves: a multiple timescale
based analysis

To explore the existence of spiral wave solutions in the spatially
extended system, we employ the well-established multiple-scale
perturbation technique, as mentioned earlier. The multiple
time-scale perturbation method is a well-established technique
within the broader framework of weakly nonlinear analysis
(WNL). It has been successfully applied to predict the emer-
gence of target and spiral waves, as well as other spatiotemporal
instabilities, in various reaction–diffusion systems, including
biological morphogenesis,45 the chlorine dioxide–iodine–
malonic acid system,46,47 and prey-predator models.48,51 This
method allows for the systematic derivation of amplitude
6856 | RSC Adv., 2025, 15, 6854–6862
equations governing spiral wave formation near the bifurcation.
Additionally, other weakly nonlinear analysis techniques have
been effectively used to study the emergence of spiral waves,
Turing patterns, and other spatiotemporal structures in elec-
trochemical and metal co-deposition systems.23,52 The general
reaction–diffusion equations for the Gierer–Meinhardt (GM)
model, as described in Section 2, are given by:

vuðx; y; tÞ
vt

¼ f ðu; vÞ þDV2u (3a)

vvðx; y; tÞ
vt

¼ mgðu; vÞ þ V2v (3b)

Here, m serves as our control bifurcation parameter, deter-
mining how far we can move from the Hopf curve to achieve the
spiral wave-like structure. As done earlier when deriving the
Hopf and Turing conditions, we introduce a small perturbation
[du(x,y,t), dv(x,y,t)] around the system's homogeneous steady
state (uss,vss). The key distinction in this instance lies in how
this small perturbation is expressed, which will now follow the
framework of multiple scales. Performing a Taylor series
expansion of the reaction terms and neglecting higher-order
terms, eqn (3) reduces to the following linearized form:

vðduÞ
vt

¼ fuðduÞ þ fvðdvÞ þDV2u (4a)

vðdvÞ
vt

¼ mguðduÞ þ mgvðdvÞ þ V2v (4b)

where fu, fv, gu, and gv are the partial derivatives of the reaction
terms with respect to u and v, evaluated at the steady state.

We expand the control parameter m around the Hopf bifur-
cation point (m0) as m= m0 + 3m1, where 0 < 3 < 1. The choice of 3 is
not unique, so our focus will be on deriving the expression for 3m1
as a whole. This provides valuable information regarding how far
from the Hopf curve the spiral solution can be observed. Given
the intrinsic spiral nature of the solution, it is advantageous to
work in polar coordinates. Thus, we scale the spatial coordinates
in two dimensions (polar coordinates) as q = 31/2q1 and r = r0 +
3r1. Similarly, the time variable is written as t = t0 + 3s. The
perturbations (du,dv) are expanded in the following form:

du = 3u1 + 32u2 +. (5a)

dv = 3v1 + 32v2 +. (5b)

Substituting these expressions into eqn (4) we get:

3

�
vu1

vt0
� fuu1 � fvv1 �DV0

2u1

�

þ32
�
vu2

vt0
þ vu1

vs
� fuu2 � fvv2 �DV0

2u2 �DV3
2u1

�
þ. ¼ 0

(6)

3

�
vv1

vt0
� m0guu1 � m0gvv1 � V0

2v1

�

þ32
�
vv2

vt0
þ vv1

vs
� m0guu2 � m0gvv2 � m1guu1 � m1gvv1�

V0
2v2 � V3

2v1
�þ. ¼ 0

(7)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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where,

V0
2 ¼ 1

r0

v

vr0
r0

v

vr0
þ 1

r02
v2

vq2

V3
2 ¼ 1

r0

v

vr0
r0

v

vr1
þ 1

r02
v2

vq2

Next, we collect the coefficients ofO(3) from both sides of eqn
(6) and (7), yielding the following equations:0
BBB@

v

vt0
�DV0

2 � fu �fv

�m0gu
v

vt0
� V0

2 � m0gv

1
CCCA
 
u1
v1

!
¼ L̂

 
u1
v1

!
¼ 0

(8)

Now, since the spirals are observed near the Hopf bifurcation
threshold, we assume the trial solution (u1,v1) to take the
following form:  

u1
v1

!
¼ Aðr1; q1; sÞ

�
u1

v1

�
egt0 (9)

where A(r1,q1,s) is the amplitude function, and (�u1,�v1) are the
eigenvectors corresponding to the eigenvalue g. The eigenvalue
(g) can be obtained by solving eqn (8) in the absence of the
diffusion terms. The corresponding solution for g is given as:

g1;2 ¼
1

2

�
ðfu þ m0gvÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfu þ m0gvÞ2 � 4m0ðfugv � gufvÞ

q �
: (10)

From this equation, wemay infer that when (fu + m0gv) > 0, the
growth rate g will increase. This condition allows us to deter-
mine the Hopf curve as:

m0 ¼ � fu

gv
: (11)

This result is consistent with our earlier expression for the
Hopf curve. Additionally, we obtain the Hopf frequency as:

uH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0ðfugv � gufvÞ

p
: (12)

Furthermore, substituting the trial solution eqn (9) into eqn
(8), we can explicitly solve for �u1 and �v1. Consequently, the
explicit form of the trial solution becomes: 

u1
v1

!
¼ Aðr1; q1; sÞ

 
g� m0gv
m0gu

!
egt0 (13)

Next, we seek the higher-order terms, O(32). As before, we
compare the coefficients of 32 from both sides of the governing
equations. This yields the following set of equations:
© 2025 The Author(s). Published by the Royal Society of Chemistry
L̂

 
u2
v2

!
¼

0
BB@

� v

vs
þDV3

2 0

m1gu � v

vs
þ V3

2 þ m1gv

1
CCA
 
u1
v1

!
(14)

The operator L̂ acts on u1 and v1 in eqn (8), leading to zero
eigenvalues. However, in eqn (14), a non-trivial term arises on
the right-hand side due to the action of the operator L̂ on u2 and
v2. Therefore, the solvability criterion (Fredholm theorem) must
be applied. According to this condition, the right-hand side of
eqn (14) must be orthogonal to the le eigenvector of L̂ corre-
sponding to the zero eigenvalue. This condition ultimately leads
to the following equation:

�
u*1 v*1

�
0
BB@

� v

vs
þDV3

2 0

m1gu � v

vs
þ V3

2 þ m1gv

1
CCA
 
u1
v1

!
¼ 0 (15)

where, u*1 and v*1 are the complex conjugate of u1 and v1,
respectively. Expanding eqn (15) leads to the following
equation:

�u*1
vu1

vs
þDu*1V3

2u1 þ m1guv
*
1u1 � v*1

vv1

vs
þ v*1V3

2v1 þ m1gvv
*
1v1 ¼ 0

(16)

Since the amplitude (A) depends on r1, q1, and t, we revert to
the original scale. Ultimately, we obtain the dynamics of the
amplitude as follows:

vA

vt
¼ C1

1

r

vA

vr
þ C1

1

r2
v2A

vq2
þ i3m1C2A (17)

Here,

C1 ¼
D
h
g2 þ ðm0gvÞ2

i
þ ðm0guÞ2

jgj2 þ ðm0guÞ2 þ ðm0gvÞ2
;

C2 ¼ uHm0gu
2

jgj2 þ ðm0guÞ2 þ ðm0gvÞ2

To solve eqn (17), we assume a generic solution for the spiral
wave53,54 of the form:

Aðr; q; tÞ ¼ AðrÞehteiðutþjðrÞþmqÞ (18)

where �A(r) is the amplitude of the spiral, h is the growth rate of
the spiral, u is the angular frequency, j(r) determines the type
of spiral, andm is the number of arms on the spiral. The sign of
m governs the direction of rotation: m = +1 for an anticlockwise
spiral wave rotating clockwise, andm=−1 for a clockwise spiral
wave rotating counterclockwise.

Substituting eqn (18) into eqn (17) and comparing the real
and imaginary components, we obtain:

h ¼ C1

rAðrÞ
vAðrÞ
vr

� C1

r2
m2 (19)
RSC Adv., 2025, 15, 6854–6862 | 6857
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Fig. 2 (a) Numerically simulated concentration profile for the activator
concentration (u) obtained by solving eqn (2a) and (2b) shows the
emergence of a spiral wave-like structure for the parameter valuesD=
0.25, m= 0.37, and s= 0.2. Domain size of the square box (200× 200),
grid spacing (dx = dy) = 1.0, time step (dt) = 0.001. In the colorbar, the
dark blue region represents a low concentration value, while the
yellow region demonstrates a high concentration. (b) The corre-
sponding time profile for a fixed point of (100, 100) of (a). Temporal
frequency of oscillation is found to be z0.0765.
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u ¼ C1

r

vjðrÞ
vr

þ 3m1C2 (20)

It follows from eqn (19) that if the amplitude (A(r)) varies
with respect to r, there is a possibility that the spiral's growth
rate (h) will be positive. Our analysis predicts the formation of
spiral waves with varying amplitude, a feature that aligns with
the general predictions of WNL theory. However, while our
approach conrms the existence of amplitude variations, it does
not fully resolve the nature of the amplitude evolution in space
and time. Nonetheless, our results demonstrate that if a spiral
wave forms, it will inherently exhibit a radially varying ampli-
tude. Additionally, a spiral with a nonzero frequency requires
that eqn (20) be satised. Assuming that the spiral type does not
change signicantly with respect to r, then we can approximate
vjðrÞ
vr

z 0. In this case, eqn (20) can be simplied and expressed

as:

3m1 ¼
u
h
jgj2 þ ðm0guÞ2 þ ðm0gvÞ2

i
uHm0gu

2
(21)

Finally, we can infer that, in addition to the spiral's ampli-
tude uctuating with r, if eqn (21) is satised, a fully developed
spiral wave can be observed. Since uH represents the Hopf
frequency of homogeneous oscillation in this case, we can
consider it as a zero-order approximation of the spiral's natural
frequency u. Consequently, uH can be equated to u within
a numerical factor z, such that u= zuH. Using this relation, eqn
(21) can be written as:

3m1 ¼
z
h
jgj2 þ ðm0guÞ2 þ ðm0gvÞ2

i
m0gu

2
(22)

To compare with the numerical ndings, we must now
determine the value of eqn (22). The only unknown term is z.
First, we use the formula (m − m0) to determine the value of 3m1

numerically. Where m0 is the Hopf curve
�
� fu

gv

�
and m is the

numerical value at which the rst spiral arises. Once we have
the value of 3m1 eqn (22) allows us to determine the value of z
using this value along with the other parameters. Keeping z

constant for the rest of the parameter set, we can then compare
the value of 3m1 value obtained from eqn (22) with the numerical
simulations.
4 Numerical analysis

We conducted detailed numerical simulations of eqn (2a) and
(2b) for parameter values within the oscillatory region near the
Turing curve, as shown in Fig. 1. The explicit Euler method was
used for numerical integration, with spatial and temporal dis-
cretization. The simulations were performed on a nite system
of size Lx= Ly= 200 with a grid size of dx= dy= 1 and a time step
of dt = 0.001. A zero-ux boundary condition was applied
6858 | RSC Adv., 2025, 15, 6854–6862
throughout the simulations unless otherwise specied. To
initiate the dynamics, the system was perturbed at the center of
the domain (10 × 10 mesh) by introducing ±1% random noise
around the homogeneous steady state, ensuring the breaking of
spatial symmetry. Numerical simulations conrm the feasibility
of obtaining spiral waves in the system. Fig. 2(a) shows the
concentration prole of the activator (u) for the parameter
values D = 0.25, s = 0.2, and m = 0.37. The corresponding time
evolution of the activator concentration at a xed point (100,
100) is presented in Fig. 2(b), from which the spiral's frequency
was determined to bez0.0765. A detailed video representation,
available in SM (Movie 1), illustrates the observed spiral's
temporal dynamics-rotating inwardly in an anticlockwise
direction while spatially exhibiting a clockwise geometry.

A closer examination of the spiral wave pattern reveals that
its amplitude is not constant with respect to the radial distance
r. Notably, one of the insights derived from the analytical
investigation suggests that the spiral's amplitude must vary
with r for it to grow. To better visualize this behavior, Fig. 3(a)
provides a contour diagram of the activator concentration (u),
highlighting regions where amplitude changes are most
prominent. To further elucidate, Fig. 3(b) displays heatmaps of
the spiral arm's concentration prole for two specic regions, A
and B, marked by blue arrows in Fig. 3(a), extending from the
spiral perimeter toward the core. The differing color intensities
between regions A and B indicate a clear variation in the spiral's
amplitude with respect to r, corroborating the analytical
predictions. Interestingly, there are only a few documented
instances where the amplitude of spiral waves varies with
respect to the radial distance r. Elmegreen et al.55 observed
variations in spiral arm amplitude in the grand design galaxies
M51, M81, and M100. Beyond amplitude uctuations, Li et al.56

demonstrated the formation of dense-sparse and sparse-dense
spiral waves in complex Ginzburg–Landau reaction–diffusion
systems, where the breadth of the spiral arm changes with r. As
far as reaction–diffusion systems are concerned, our study is the
rst to demonstrate the emergence of spirals with variable
amplitude with respect to r.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Colored contour diagram of spiral wave for the activator
concentration (u) for the parameter values D = 0.25, m = 0.37, and s =

0.2. Two regions highlighted with a white dotted line demonstrate the
region where there is a change of amplitude with respect to radial
distance (r). rc is the perpendicular distance from the periphery of the
spiral arm towards the inner side. How the r increases for a spiral is
indicated by the black arrow line. (b) Represents the heatmap for two
regions, A and B, on the spiral arms and how their color is changing
with rc. Since the color of the heatmap is not equivalent, it indicates
that there is a change of the spiral's amplitude with respect to r.

Fig. 5 Numerically estimated frequency (ns) values for different spirals
perceived for various combinations of 3m1 and s values. The blue
triangle points depict how the frequency values are changing with
respect to the numerically calculated 3m1, whereas the green circular
points represent how the frequency is varying with respect to the s

values.
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In the following stage, we wish to numerically test the
analytical prediction for obtaining a spiral for those 3m1 values
that satisfy eqn (22). To achieve this, we rst present the theo-
retical 3m1 values for various s values (which are associated with
the source densities of the inhibitor and activator concentra-
tions). In Fig. 4, we provide the corresponding diagram in the
3m1 vs. s parameter space with a solid curve. To obtain spiral
wave patterns, m is suitably adjusted numerically as the s value
is varied. By subtracting m0 from m (numerical), the numerical
values of 3m1 are determined. For various values of s, these are
represented by the triangular points in Fig. 4. This diagram
Fig. 4 Bifurcation curves of analytical prediction and numerical
simulations in the 3m1 vs. s parameter space. Other parameter is D =

0.25. The green solid line represents the prediction obtained from
analytical analysis. Blue triangle points depict the points where
numerically spirals have been observed. The diagram shows a well-
matching between the analytical predictions and numerical
simulations.

© 2025 The Author(s). Published by the Royal Society of Chemistry
clearly demonstrates that the predictions derived from analyt-
ical calculations align well with our numerical simulations.
Furthermore, we have computed numerically the frequency (ns)
of the spiral obtained for various s and 3m1 combinations. It is
worth noting that we observed a nearly linear decrease in
frequency values with respect to both s and 3m1. The depen-
dence of frequency values on 3m1 further corroborates our
analytical claim in eqn (21). Fig. 5 displays the associated
diagram. Blue triangular points in the curve indicate the
dependence of frequency values on 3m1, whereas green circular
points in the curve indicate the dependence of frequency values
on s.

Now, we aim to analyze the inuence of domain size, grid
spacing, and boundary conditions, which are critical charac-
teristics for maintaining spiral waves, as highlighted in
a previous study.8

4.1 Effect of system size, spatial grid length and boundary
condition

We rst investigate the impact of box size while maintaining
a xed grid spacing. Numerical simulations reveal that
increasing the box length from 200 to 800 signicantly affects
the formed spiral, even with the same grid spacing (dx = dy =

1.0). With a larger box length, numerous spiral sources emerge,
some rotating counterclockwise and others clockwise. Further-
more, neighboring spirals continuously annihilate each other
and form new ones. Notably, for a box size of 300 (Movie 2 in
SM), all spiral sources rotate counterclockwise. However, for
larger boxes (L = 400, 800), both clockwise and counterclock-
wise rotating spirals appear (Movie 3 and Movie 4 in SM). The
corresponding spatial patterns are shown in Fig. 6, where it is
evident that with a box size of 300, four spiral sources emerge
[Fig. 6(a)], whereas for a box size of 800, the number of spiral
sources increases signicantly [Fig. 6(c)].

Next, keeping the box length (Lx= Ly= 200) xed, we vary the
grid spacing (dx = dy) for the numerical simulations. We nd
RSC Adv., 2025, 15, 6854–6862 | 6859
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Fig. 6 Effect of box size on the formations of the spiral patterns for a fixed grid spacing (dx= dy= 1.0): numerically simulated concentrated profile
for activator u for box size-(a) Lx = Ly = 300, (b) Lx = Ly = 400, and (c) Lx = Ly = 800. Other parameter values are D = 0.25, m = 0.37, and s = 0.2.
With increasing box size, multiple spiral sources arise in the system.
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that spirals can form even with smaller grid spacings, though in
this case, multiple spiral sources appear, similar to the behavior
observed with larger box sizes. Additionally, spiral annihilation
and formation occur simultaneously. This differs from the case
of larger grid spacing (dx = 1.0), where the system tends to
maintain a single spiral wave. Finally, we applied periodic
boundary conditions in our numerical simulations to assess the
effect of boundary conditions on spiral waves. The systematic
modication of box sizes, grid spacing, and initial random
perturbation of the box domain consistently led to the forma-
tion of spiral waves. However, in none of the cases did we
observe a single spiral wave. Instead, multiple spiral sources,
with both clockwise and counterclockwise rotation, always
appeared in the system. Remarkably, in all of these instances,
the spirals formed consistently exhibited amplitude uctua-
tions as a function of radial distance (r). These observations
strongly support our analytical conclusion that the amplitude of
the spiral must change with respect to the radial distance in
order for it to grow highlighting a novel and unique aspect of
the system's spatiotemporal dynamics.

While our study primarily focuses on theoretical and
numerical aspects, we recognize the importance of linking our
ndings to experimentally realizable systems. Spiral waves have
been observed in a variety of reaction–diffusion systems,
including the classic Belousov–Zhabotinsky (BZ) reaction,
electrochemical deposition processes, and biological systems
such as cardiac tissue and cell signaling networks. However,
most reported spiral waves in these contexts exhibit nearly
constant amplitudes. The amplitude variation we predict could
potentially be observed in experimental systems with specic
kinetic and diffusion properties and suitable boundary condi-
tions. In particular, electrochemical systems and metal co-
deposition processes,23,52 where diffusion anisotropy, kinetic
feedback mechanisms and boundary effects play a crucial role,
may provide a suitable testbed for verifying our ndings.
5 Concluding remarks

In this work, we have explored the dynamics of spiral waves in
the Gierer–Meinhardt (GM) reaction–diffusion model. Despite
6860 | RSC Adv., 2025, 15, 6854–6862
extensive studies of this model over the years,39–44 the numerical
observation of spiral wave-like patterns has not been thoroughly
investigated. We employed the multiple-scale analysis pertur-
bative technique to analytically establish the possibility of spiral
wave formation. Our analytical results indicate that if the
amplitude of the spiral varies with the radial distance, the spiral
will grow positively. Additionally, we derived a condition that
denes the spatial extent within which the spiral pattern can
emerge from the Hopf bifurcation zone.

Our comprehensive numerical analysis of the GM reaction–
diffusion model corroborates the theoretical predictions. In all
numerically simulated spirals, we observed that the amplitude
changes with respect to the radial distance (r). Our ndings
conrm that the observed amplitude variation is not an artifact
of numerical discretization or initial conditions. To ensure the
robustness of our results, we performed extensive numerical
checks by varying the discretization schemes, using different
grid sizes, and altering the domain sizes. Additionally, we tested
a range of initial conditions and consistently observed the
emergence of spiral waves with varying amplitude. These checks
validate that the amplitude modulation is an intrinsic feature of
the system rather than a numerical anomaly. Intriguingly, the
observed spiral consistently exhibited amplitude modulation as
a function of r, regardless of the variations in simulation
parameters. This phenomenon, to the best of our knowledge,
has not been previously documented in any reaction–diffusion
system.

This work not only demonstrates the feasibility of generating
spiral waves in the GM reaction–diffusion model but also
highlights the potential for creating a novel class of spirals with
variable amplitude, opening avenues for further exploration in
reaction–diffusion systems. The variation of spiral wave
amplitudes in reaction–diffusion (RD) systems is a crucial
aspect of pattern formation that can have signicant implica-
tions across multiple scientic domains:
5.1 Nonlinear chemical dynamics

Spiral waves are fundamental structures in RD systems, and
their amplitude variations can indicate underlying instabilities,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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mode selection, or the inuence of external perturbations.
Understanding these variations helps rene theoretical models
of chemical oscillations and pattern formation, which are
essential for predicting and controlling self-organization in
synthetic and natural chemical systems.
5.2 Biological morphogenesis

Many biological processes, such as cell signaling, tissue devel-
opment, and neural activity, involve RD-based mechanisms.
Amplitude variations in spiral waves could inuence how
biochemical signals propagate in systems like calcium waves in
cells, cardiac electrical waves, and embryonic development.
Recognizing these effects could improve models of morpho-
genesis and disease states (e.g., cardiac arrhythmias linked to
spiral wave instabilities).
5.3 Materials science

In electrochemical and metal co-deposition systems, spiral
waves and other RD patterns inuence the deposition
morphology and material properties. Understanding amplitude
variations can provide insights into the control of surface
structures, leading to advances in material fabrication tech-
niques, corrosion prevention, and nanoscale patterning. Simi-
larly, in precipitating RD systems, controlling these variations
could allow for the design of ordered structures with specic
functionalities.

By studying the mechanisms governing amplitude variations
in spiral waves, we gain deeper insights into pattern robustness,
stability, and the interplay between reaction kinetics and
diffusion. This knowledge not only advances fundamental
science but also has potential applications in designing
controllable self-organizing systems across chemistry, biology,
and materials engineering.
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