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Radially evolving spiral wave patterns in the
Gierer—Meinhardt reaction—diffusion system
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Spiral wave formation in spatially extended systems is a fascinating phenomenon that has garnered
significant attention in reaction—diffusion systems. In this study, we explore the emergence of spiral
wave-like patterns in the Gierer—Meinhardt reaction—diffusion model. By employing a multiple-time
scale perturbation technique, we derive amplitude equations that reveal the conditions for spiral wave
formation. Notably, our analysis shows that the amplitude of these spiral waves varies with the radial
distance, introducing a distinctive feature to this pattern. Our theoretical predictions are further
substantiated by numerical simulations, which confirm the emergence of spiral wave structures and
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1 Introduction

Self-organized pattern formation, one of the most captivating
out-of-equilibrium phenomena, has drawn immense attention
recent decades. Beyond biological systems, such
phenomena have been observed in a wide variety of chemical
and physical systems.”” Alan Turing's pioneering work on
reaction-diffusion systems, which proposed diffusion-driven
instability in activator-inhibitor kinetics as the fundamental
mechanism behind self-organization, has laid the foundation
for extensive research in this field.** This framework has
revealed a plethora of spatiotemporal structures, such as
stripes, spots, traveling waves, labyrinthine patterns, and
others, both experimentally*” and theoretically.*'* Among
these, spiral wave patterns stand out as a particularly fasci-
nating example of spatiotemporal organization.

A spiral wave is a two-dimensional structure that propagates
either outward from or inward toward a central core, forming
a characteristic spiral geometry. The Belousov-Zhabotinsky (BZ)
reaction, a classical example of a homogeneous reaction-
diffusion system, has been widely studied for its ability to
generate oscillatory behavior and spatially extended patterns
such as spiral and target waves. The first experimental obser-
vation of spiral waves was achieved in the Belousov-Zhabotin-
sky (BZ) reaction,** followed by similar findings in other
chemical systems such as the sodium silicate-cobalt chloride
reaction,® the photosensitive chlorine dioxide iodine malonic
acid reaction.’® Similarly, heterogeneous autocatalytic
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validate the distinct radial dependence of their amplitude.

reactions, including the oxidation of CO on platinum surfaces,
exhibit rich spatiotemporal dynamics governed by reaction-
diffusion mechanisms."” Beyond these, precipitating reaction—
diffusion systems have also been shown to produce intricate
patterns, including Liesegang rings and reaction-driven waves,
which share similarities with spiral and target waves observed
in classical reaction-diffusion models."*?* In electrochemical
and metal co-deposition systems, reaction-diffusion dynamics
play a crucial role in the formation of complex spatiotemporal
structures, including spiral waves and target patterns, influ-
enced by the coupling between reaction kinetics and mass
transport.>>>*

Spiral waves have also been observed in numerous biological
processes, including the aggregation of slime molds,* the
development of frog eggs,* cardiac arrhythmias,” fertilized
starfish eggs,” and dense bacterial populations,” among
others. From a theoretical perspective, various reaction-diffu-
sion models have successfully captured spiral wave dynamics.
These include chemical models such as the Oregonator model
for the BZ reaction,**** the CDIMA reaction-diffusion
model,**>* and the delayed-feedback induced spiral in Brus-
selator model.** Similarly, biological self-organization processes
have been described using models such as the FitzHugh-
Nagumo,**** Hastings-Powell,>” and Decroly-Goldbeter®®
models. The Gierer-Meinhardt (GM) model is another widely
studied reaction-diffusion framework, originally developed to
elucidate spatial pattern formation during morphogenesis.*
This model has been instrumental in simulating a range of
patterns, including spots, stripes, combinations of spots and
stripes,**™** as well as traveling wave-like patterns.** However,
the dynamics of spiral waves within the GM model remain
underexplored, particularly from a numerical analysis
perspective. Bhattacharyay et al.** analytically demonstrated the
potential for spiral and target wave formation in the GM system

© 2025 The Author(s). Published by the Royal Society of Chemistry
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using multiple-scale analysis. However, numerical validation of
these insights is lacking, highlighting the need for further
investigation. These diverse systems highlight the universality
of RD-driven pattern formation and motivate further investi-
gation into the underlying mechanisms that govern the emer-
gence of novel structures. Understanding the conditions under
which these patterns arise, particularly the variation of spiral
wave amplitudes or frequency modulation, has broad implica-
tions for nonlinear chemical dynamics, biological morphogen-
esis, and materials science.

In this study, we undertake a comprehensive exploration of
spiral wave dynamics in the GM reaction-diffusion system from
both analytical and numerical perspectives. Employing the
multiple-scale analysis technique,**** a weakly nonlinear anal-
ysis, we derive amplitude equations to elucidate the conditions
for spiral wave formation. To corroborate these analytical
findings, we perform numerical simulations and examine the
emergence of spiral waves under both zero-flux and periodic
boundary conditions. Furthermore, we investigate the depen-
dence of spiral wave formation on domain size and grid reso-
lution, to ensure the robustness of the spiral waves providing
deeper insights into the system's behavior. Remarkably, our
findings reveal the existence of amplitude variations of the
developed spiral waves in GM model, radially-varying spiral
wave patterns, a phenomenon not previously reported to the
best of our knowledge. The derived amplitude equations predict
this unique behavior, offering valuable insights into the
radially-evolving spiral wave dynamics in the GM model. This
distinctive characteristic sets our study apart from existing
research on spiral wave dynamics and highlights the novel
contributions of our work. Understanding the variation of spiral
wave amplitudes in reaction-diffusion (RD) systems is essential
for advancing multiple scientific fields. In nonlinear chemical
dynamics, such variations reveal instabilities and mode selec-
tion, refining models of self-organization in chemical systems.
In biological morphogenesis, they influence processes like cell
signaling, cardiac waves, and tissue development, with impli-
cations for disease modeling. In materials science, amplitude
variations impact pattern formation in electrochemical and
metal co-deposition systems, affecting surface morphology,
nanoscale fabrication, and corrosion control. Similarly, in
precipitating RD systems, they offer pathways for designing
ordered material structures with specific functionalities.

2 The model

In this study, we consider the two-variable Gierer-Meinhardt
(GM) model,*** which was originally proposed to describe the
emergence of spatial patterns in tissue structures, starting from
nearly homogeneous conditions during embryological devel-
opment and regeneration. The model builds upon Alan Turing's
groundbreaking concept of reaction—-diffusion systems, specif-
ically emphasizing the autocatalytic behavior of an activator
and the cross-catalytic inhibition mediated by an inhibitor. The
governing equations of the original two-variable GM model are
given as follows:

© 2025 The Author(s). Published by the Royal Society of Chemistry
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— =py———— U DyV*U 1
o~ PV kpuryy  MOT Tt POV (1a)
14 5 5
ﬁ:va —,LLVV+0'V+DVV V. (1b)

Here, U and V represent the concentration of the activator and
inhibitor species, respectively, and thus have the dimension of
concentration. In accordance with the activator-inhibitor
dynamics of a reaction-diffusion system, the activator species
promotes the production of both itself and the inhibitor, while
the inhibitor suppresses the activator's production. The term

2
(—) captures the saturable nature of activator produc-
1+ kyU?

tion, with ky serving as the saturation constant. The parameters
oy and oy are the basic production term of the activator and
inhibitor, respectively, while the removal rates of the two
species are represented by uy, uy. py and py are the cross-
reaction coefficients and are related to the product of the rate
constant and source densities of the activator and inhibitor
species, respectively. The diffusion coefficients for the activator
and inhibitor are denoted by Dy and Dy. Although this model
was originally proposed to explain the development of spatial
patterns in tissue structures during morphogenesis, it can also
describe spatiotemporal pattern formation observed in various
chemical systems. To reduce the complexity of the equation, we
set the saturation constant (ky) and the basic production term
of the inhibitor (ay) to zero in the current investigation.*® This
scenario closely resembles a chemical reaction occurring in
a continuously stirred tank reactor (CSTR),*® where reactants
and products are continuously introduced and removed. During
these reactions, intermediate species® generated in the system
act as activator and inhibitor components. The following
dimensionless quantities have been introduced to render the
overall eqn (1) dimensionless:

My My Huypv
t=uyT, x=, /X, y=,/7Y, u=—-U,
v Dy Dy My Py

2
:,U-UPVV

v
pyvpu?

Substituting these transformations, eqn (1) becomes:

ou u?
—=|——u+o DV:u, 2a
at (v ) * (2a)
dv
i w(u® —v) + V. (2b)
D o . .
Here, D = —U, uw= ﬂ, and o= Y% are dimensionless
Dy My My Py

parameters. Setting the reaction terms in eqn (2) to zero
provides the system's homogeneous steady state, given by
(uSS’vSS) = [(1 + O’), (1 + 0)2]'

2.1 Linear stability analysis: Hopf and Turing instability

We performed a systematic linear stability analysis around the
homogeneous steady state of the system in the absence of
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Fig.1 Bifurcation diagram obtained from linear stability analysis of eqn
(2) of the GM model for the parameter values: D = 0.25. The region
above and below the Hopf curve (green line) represents temporally
stable and unstable regions, respectively. The region above and below
the Turing curve (blue line) represents spatially stable and unstable
regions, respectively.

diffusion. This analysis provides the condition for Hopf bifur-
Lo 1-0 .
cation in the parameter space as uy = iTo The Hopf bifur-
o

cation curve separates the parameter space into regions of
temporally stable and unstable states. Subsequently, we carried
out the stability analysis of the spatially extended GM model
around the homogeneous steady state in the presence of
diffusion. This yields the Turing condition as:

1 2 . ..
Hp = — — 1 |. The Turing curve divides the parameter
D 1+o

space into two regions, indicating the presence of diffusion-
driven instability. Fig. 1 illustrates the corresponding bifurca-
tion diagram for a fixed value of D = 0.25 in the u vs. ¢
parameter space. The three distinct regions, marked with
different colors, represent the relevant spatiotemporal insta-
bilities identified through linear stability analysis. Based on
prior literature,*® the oscillatory region near the Turing curve
will be our primary focus for spiral wave formation.

3 Derivation of amplitude equation
for spiral waves: a multiple timescale
based analysis

To explore the existence of spiral wave solutions in the spatially
extended system, we employ the well-established multiple-scale
perturbation technique, as mentioned earlier. The multiple
time-scale perturbation method is a well-established technique
within the broader framework of weakly nonlinear analysis
(WNL). It has been successfully applied to predict the emer-
gence of target and spiral waves, as well as other spatiotemporal
instabilities, in various reaction-diffusion systems, including
biological morphogenesis,* the chlorine dioxide-iodine-
malonic acid system,***” and prey-predator models.**** This
method allows for the systematic derivation of amplitude
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equations governing spiral wave formation near the bifurcation.
Additionally, other weakly nonlinear analysis techniques have
been effectively used to study the emergence of spiral waves,
Turing patterns, and other spatiotemporal structures in elec-
trochemical and metal co-deposition systems.***> The general
reaction-diffusion equations for the Gierer-Meinhardt (GM)
model, as described in Section 2, are given by:

WD) _ (4, 3) + DV (3a)
v(x,y, t
% = ug(u,v) + V% (3b)

Here, u serves as our control bifurcation parameter, deter-
mining how far we can move from the Hopf curve to achieve the
spiral wave-like structure. As done earlier when deriving the
Hopf and Turing conditions, we introduce a small perturbation
[0u(xy,t), ov(x,y,t)] around the system's homogeneous steady
state (ugs,Vss)- The key distinction in this instance lies in how
this small perturbation is expressed, which will now follow the
framework of multiple scales. Performing a Taylor series
expansion of the reaction terms and neglecting higher-order
terms, eqn (3) reduces to the following linearized form:

0((;5214) = fu(ou) + £,(6v) + DV*u (4a)
00— wgow) + g (o0) + P (4b)

where fi,, fv, gu, and g, are the partial derivatives of the reaction
terms with respect to « and v, evaluated at the steady state.
We expand the control parameter u around the Hopf bifur-
cation point (uo) as i = o + 11, where 0 < e < 1. The choice of ¢ is
not unique, so our focus will be on deriving the expression for eu,
as a whole. This provides valuable information regarding how far
from the Hopf curve the spiral solution can be observed. Given
the intrinsic spiral nature of the solution, it is advantageous to
work in polar coordinates. Thus, we scale the spatial coordinates
in two dimensions (polar coordinates) as § = ¢4, and r = r, +
ery. Similarly, the time variable is written as ¢t = ¢, + et. The
perturbations (éu,6v) are expanded in the following form:

ou = euy + hup +... (5a)
0v = evy + &2vy +... (5b)
Substituting these expressions into eqn (4) we get:
d
8(671:1 *ﬁlul *f;,V] — DV02H])
0
Ou,  Ou ©
+€2 72+717ﬁ,u2 7f;,V27DV02u2*DV52M1 +:0
a1, Jdt
dv
8(8—1 — Mo&ullt — Mo&vV1 — V02"1)
ty
v dv 7
+e =+ —— Ho&ully — Mo8vV2 — Hi8ulht — M1 &vVI— )
6t0 Jat

V02V2 — V52V1) +...=0

© 2025 The Author(s). Published by the Royal Society of Chemistry
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where,

, 19 o 1 &

Vol = — oo+
0 o a"or0 dry  ro® 96>

19 o0 19

Vi= = gt — —
' 7o a"oro oy re? 96°

Next, we collect the coefficients of O(¢) from both sides of eqn
(6) and (7), yielding the following equations:

a . .
—— DV’ —f, ks
alo <u1>_l:<ul>_0
d Vi Vi
—— Vo' — ko8

~Ho8u ato

Now, since the spirals are observed near the Hopf bifurcation
threshold, we assume the trial solution (u;,v,) to take the

following form:
u U\
= A(r,, 0 i 9
<v1> o 17T)<V1)e B

where A(ry,604,7) is the amplitude function, and (i,,v,) are the
eigenvectors corresponding to the eigenvalue . The eigenvalue
() can be obtained by solving eqn (8) in the absence of the
diffusion terms. The corresponding solution for v is given as:

Y12 = % |:(fu + togy) £ \/(fu + :u()gV)z —4uo(fugy — gufv) } . (10)

From this equation, we may infer that when (f,, + uogy) > 0, the
growth rate y will increase. This condition allows us to deter-
mine the Hopf curve as:

e

Mo =

This result is consistent with our earlier expression for the
Hopf curve. Additionally, we obtain the Hopf frequency as:

WH = 1/ ,u()(fugv - gufv)

(12)

Furthermore, substituting the trial solution eqn (9) into eqn
(8), we can explicitly solve for #; and v,. Consequently, the
explicit form of the trial solution becomes:

“ = A(ry, 0, 7) T Ho8v ) i
V1 /J'()gu

Next, we seek the higher-order terms, O(¢?). As before, we
compare the coefficients of ¢* from both sides of the governing
equations. This yields the following set of equations:

(13)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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_aiJ’ DV,? 0
l: Uy _ T up (14)
%) aJ ) Vi
H18u —a*'i‘vs + U8y
T

The operator L acts on u; and v, in eqn (8), leading to zero
eigenvalues. However, in eqn (14), a non-trivial term arises on
the right-hand side due to the action of the operator L on u, and
v,. Therefore, the solvability criterion (Fredholm theorem) must
be applied. According to this condition, the right-hand side of
eqn (14) must be orthogonal to the left eigenvector of L corre-
sponding to the zero eigenvalue. This condition ultimately leads
to the following equation:

* * 0
(”1 Vl) f
H18u

9
—— 4+ DV,? 0

“1> =0 (15)

9
—g VS g

where, u; and v; are the complex conjugate of u; and vy,
respectively. Expanding eqn (15) leads to the following
equation:

* aul

* * * aV
—U, (Tr + Dulvszul + U guviur — V) 7

afl + VI + g =0

(16)

Since the amplitude (A) depends on ry, 6,, and ¢, we revert to
the original scale. Ultimately, we obtain the dynamics of the
amplitude as follows:

04 104

1 9*4
a9

;o T O g TiemGA

(17)
Here,

D {72 + (,U'OgV)Z] + (:U'Ogu)z
]+ (oga)” + (togy)’

C = wH/"Oguz
2= 2 2 2
17"+ (ogu)” + (kogv)

1=

To solve eqn (17), we assume a generic solution for the spiral
wave®>** of the form:

A(r7 19, [) _ Z(r)entei((utJr\p(r)JrrnH) (18)

where A(r) is the amplitude of the spiral, 7 is the growth rate of
the spiral, o is the angular frequency, y(r) determines the type
of spiral, and m is the number of arms on the spiral. The sign of
m governs the direction of rotation: m = +1 for an anticlockwise
spiral wave rotating clockwise, and m = —1 for a clockwise spiral
wave rotating counterclockwise.
Substituting eqn (18) into eqn (17) and comparing the real
and imaginary components, we obtain:
C] 0Z(r) Cl 5

n= = — —Mm

rA(r) Or r?

(19)
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C
r or + eu G

(20)

1t follows from eqn (19) that if the amplitude (A(r)) varies
with respect to r, there is a possibility that the spiral's growth
rate (n) will be positive. Our analysis predicts the formation of
spiral waves with varying amplitude, a feature that aligns with
the general predictions of WNL theory. However, while our
approach confirms the existence of amplitude variations, it does
not fully resolve the nature of the amplitude evolution in space
and time. Nonetheless, our results demonstrate that if a spiral
wave forms, it will inherently exhibit a radially varying ampli-
tude. Additionally, a spiral with a nonzero frequency requires
that eqn (20) be satisfied. Assuming that the spiral type does not
change significantly with respect to r, then we can approximate
ay(r)

or

as:

= 0. In this case, eqn (20) can be simplified and expressed

o[V + (o) + (g’

Qﬁ{uoguz

(1)

ey =

Finally, we can infer that, in addition to the spiral's ampli-
tude fluctuating with r, if eqn (21) is satisfied, a fully developed
spiral wave can be observed. Since wy represents the Hopf
frequency of homogeneous oscillation in this case, we can
consider it as a zero-order approximation of the spiral's natural
frequency w. Consequently, wy can be equated to w within
a numerical factor £, such that w = {wy. Using this relation, eqn
(21) can be written as:

C[Ivl2 + (mogu)” + (uogv)z}
Mo&u?

& = (22)

To compare with the numerical findings, we must now
determine the value of eqn (22). The only unknown term is .
First, we use the formula (u — p,) to determine the value of eu,

numerically. Where p, is the Hopf curve (7?) and u is the

v
numerical value at which the first spiral arises. Once we have
the value of ey, eqn (22) allows us to determine the value of {
using this value along with the other parameters. Keeping ¢
constant for the rest of the parameter set, we can then compare
the value of eu; value obtained from eqn (22) with the numerical
simulations.

4 Numerical analysis

We conducted detailed numerical simulations of eqn (2a) and
(2b) for parameter values within the oscillatory region near the
Turing curve, as shown in Fig. 1. The explicit Euler method was
used for numerical integration, with spatial and temporal dis-
cretization. The simulations were performed on a finite system
of size L, = L, = 200 with a grid size of 6, = 6, = 1 and a time step
of dt = 0.001. A zero-flux boundary condition was applied

6858 | RSC Adv, 2025, 15, 6854-6862
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Fig.2 (a) Numerically simulated concentration profile for the activator
concentration (u) obtained by solving egn (2a) and (2b) shows the
emergence of a spiral wave-like structure for the parameter values D =
0.25, u =0.37, and ¢ = 0.2. Domain size of the square box (200 x 200),
grid spacing (6, = ¢,) = 1.0, time step (dt) = 0.001. In the colorbar, the
dark blue region represents a low concentration value, while the
yellow region demonstrates a high concentration. (b) The corre-
sponding time profile for a fixed point of (100, 100) of (a). Temporal
frequency of oscillation is found to be =0.0765.

throughout the simulations unless otherwise specified. To
initiate the dynamics, the system was perturbed at the center of
the domain (10 x 10 mesh) by introducing +1% random noise
around the homogeneous steady state, ensuring the breaking of
spatial symmetry. Numerical simulations confirm the feasibility
of obtaining spiral waves in the system. Fig. 2(a) shows the
concentration profile of the activator (x) for the parameter
values D = 0.25, ¢ = 0.2, and u = 0.37. The corresponding time
evolution of the activator concentration at a fixed point (100,
100) is presented in Fig. 2(b), from which the spiral's frequency
was determined to be =0.0765. A detailed video representation,
available in SM (Movie 1), illustrates the observed spiral's
temporal dynamics-rotating inwardly in an anticlockwise
direction while spatially exhibiting a clockwise geometry.

A closer examination of the spiral wave pattern reveals that
its amplitude is not constant with respect to the radial distance
r. Notably, one of the insights derived from the analytical
investigation suggests that the spiral's amplitude must vary
with 7 for it to grow. To better visualize this behavior, Fig. 3(a)
provides a contour diagram of the activator concentration (u),
highlighting regions where amplitude changes are most
prominent. To further elucidate, Fig. 3(b) displays heatmaps of
the spiral arm's concentration profile for two specific regions, A
and B, marked by blue arrows in Fig. 3(a), extending from the
spiral perimeter toward the core. The differing color intensities
between regions A and B indicate a clear variation in the spiral's
amplitude with respect to r, corroborating the analytical
predictions. Interestingly, there are only a few documented
instances where the amplitude of spiral waves varies with
respect to the radial distance r. Elmegreen et al>® observed
variations in spiral arm amplitude in the grand design galaxies
M51, M81, and M100. Beyond amplitude fluctuations, Li et al.>®
demonstrated the formation of dense-sparse and sparse-dense
spiral waves in complex Ginzburg-Landau reaction-diffusion
systems, where the breadth of the spiral arm changes with r. As
far as reaction—diffusion systems are concerned, our study is the
first to demonstrate the emergence of spirals with variable
amplitude with respect to r.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Colored contour diagram of spiral wave for the activator

concentration (u) for the parameter values D = 0.25, u = 0.37, and ¢ =
0.2. Two regions highlighted with a white dotted line demonstrate the
region where there is a change of amplitude with respect to radial
distance (r). r. is the perpendicular distance from the periphery of the
spiral arm towards the inner side. How the r increases for a spiral is
indicated by the black arrow line. (b) Represents the heatmap for two
regions, A and B, on the spiral arms and how their color is changing
with r.. Since the color of the heatmap is not equivalent, it indicates
that there is a change of the spiral's amplitude with respect to r.

In the following stage, we wish to numerically test the
analytical prediction for obtaining a spiral for those eu, values
that satisfy eqn (22). To achieve this, we first present the theo-
retical eu, values for various o values (which are associated with
the source densities of the inhibitor and activator concentra-
tions). In Fig. 4, we provide the corresponding diagram in the
€Uy vs. ¢ parameter space with a solid curve. To obtain spiral
wave patterns, u is suitably adjusted numerically as the ¢ value
is varied. By subtracting u, from p (numerical), the numerical
values of ¢u, are determined. For various values of ¢, these are
represented by the triangular points in Fig. 4. This diagram

0.0

—0.11

—-0.24

£l

—0.31

—0.4-

-0.5 T T T T
0.2 0.4 0.6 0.8
o

Fig. 4 Bifurcation curves of analytical prediction and numerical
simulations in the eu, vs. ¢ parameter space. Other parameter is D =
0.25. The green solid line represents the prediction obtained from
analytical analysis. Blue triangle points depict the points where
numerically spirals have been observed. The diagram shows a well-
matching between the analytical predictions and numerical
simulations.
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Fig. 5 Numerically estimated frequency (v) values for different spirals
perceived for various combinations of eu; and ¢ values. The blue
triangle points depict how the frequency values are changing with
respect to the numerically calculated euy, whereas the green circular
points represent how the frequency is varying with respect to the ¢
values.

clearly demonstrates that the predictions derived from analyt-
ical calculations align well with our numerical simulations.
Furthermore, we have computed numerically the frequency ()
of the spiral obtained for various ¢ and eu,; combinations. It is
worth noting that we observed a nearly linear decrease in
frequency values with respect to both ¢ and eu;. The depen-
dence of frequency values on eu, further corroborates our
analytical claim in eqn (21). Fig. 5 displays the associated
diagram. Blue triangular points in the curve indicate the
dependence of frequency values on eu,, whereas green circular
points in the curve indicate the dependence of frequency values
on g.

Now, we aim to analyze the influence of domain size, grid
spacing, and boundary conditions, which are critical charac-
teristics for maintaining spiral waves, as highlighted in
a previous study.®

4.1 Effect of system size, spatial grid length and boundary
condition

We first investigate the impact of box size while maintaining
a fixed grid spacing. Numerical simulations reveal that
increasing the box length from 200 to 800 significantly affects
the formed spiral, even with the same grid spacing (6, = 6, =
1.0). With a larger box length, numerous spiral sources emerge,
some rotating counterclockwise and others clockwise. Further-
more, neighboring spirals continuously annihilate each other
and form new ones. Notably, for a box size of 300 (Movie 2 in
SM), all spiral sources rotate counterclockwise. However, for
larger boxes (L = 400, 800), both clockwise and counterclock-
wise rotating spirals appear (Movie 3 and Movie 4 in SM). The
corresponding spatial patterns are shown in Fig. 6, where it is
evident that with a box size of 300, four spiral sources emerge
[Fig. 6(a)], whereas for a box size of 800, the number of spiral
sources increases significantly [Fig. 6(c)].

Next, keeping the box length (L, = L, = 200) fixed, we vary the
grid spacing (6, = d,) for the numerical simulations. We find
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Fig.6 Effect of box size on the formations of the spiral patterns for a fixed grid spacing (0, = d, = 1.0): numerically simulated concentrated profile
for activator u for box size-(a) L, = L, = 300, (b) L, = L, = 400, and (c) L, = L, = 800. Other parameter values are D = 0.25, u = 0.37,and ¢ = 0.2.

With increasing box size, multiple spiral sources arise in the system.

that spirals can form even with smaller grid spacings, though in
this case, multiple spiral sources appear, similar to the behavior
observed with larger box sizes. Additionally, spiral annihilation
and formation occur simultaneously. This differs from the case
of larger grid spacing (6, = 1.0), where the system tends to
maintain a single spiral wave. Finally, we applied periodic
boundary conditions in our numerical simulations to assess the
effect of boundary conditions on spiral waves. The systematic
modification of box sizes, grid spacing, and initial random
perturbation of the box domain consistently led to the forma-
tion of spiral waves. However, in none of the cases did we
observe a single spiral wave. Instead, multiple spiral sources,
with both clockwise and counterclockwise rotation, always
appeared in the system. Remarkably, in all of these instances,
the spirals formed consistently exhibited amplitude fluctua-
tions as a function of radial distance (r). These observations
strongly support our analytical conclusion that the amplitude of
the spiral must change with respect to the radial distance in
order for it to grow highlighting a novel and unique aspect of
the system's spatiotemporal dynamics.

While our study primarily focuses on theoretical and
numerical aspects, we recognize the importance of linking our
findings to experimentally realizable systems. Spiral waves have
been observed in a variety of reaction-diffusion systems,
including the classic Belousov-Zhabotinsky (BZ) reaction,
electrochemical deposition processes, and biological systems
such as cardiac tissue and cell signaling networks. However,
most reported spiral waves in these contexts exhibit nearly
constant amplitudes. The amplitude variation we predict could
potentially be observed in experimental systems with specific
kinetic and diffusion properties and suitable boundary condi-
tions. In particular, electrochemical systems and metal co-
deposition processes,*»** where diffusion anisotropy, kinetic
feedback mechanisms and boundary effects play a crucial role,
may provide a suitable testbed for verifying our findings.

5 Concluding remarks

In this work, we have explored the dynamics of spiral waves in
the Gierer-Meinhardt (GM) reaction-diffusion model. Despite

6860 | RSC Adv, 2025, 15, 6854-6862

extensive studies of this model over the years,**** the numerical
observation of spiral wave-like patterns has not been thoroughly
investigated. We employed the multiple-scale analysis pertur-
bative technique to analytically establish the possibility of spiral
wave formation. Our analytical results indicate that if the
amplitude of the spiral varies with the radial distance, the spiral
will grow positively. Additionally, we derived a condition that
defines the spatial extent within which the spiral pattern can
emerge from the Hopf bifurcation zone.

Our comprehensive numerical analysis of the GM reaction-
diffusion model corroborates the theoretical predictions. In all
numerically simulated spirals, we observed that the amplitude
changes with respect to the radial distance (r). Our findings
confirm that the observed amplitude variation is not an artifact
of numerical discretization or initial conditions. To ensure the
robustness of our results, we performed extensive numerical
checks by varying the discretization schemes, using different
grid sizes, and altering the domain sizes. Additionally, we tested
a range of initial conditions and consistently observed the
emergence of spiral waves with varying amplitude. These checks
validate that the amplitude modulation is an intrinsic feature of
the system rather than a numerical anomaly. Intriguingly, the
observed spiral consistently exhibited amplitude modulation as
a function of r, regardless of the variations in simulation
parameters. This phenomenon, to the best of our knowledge,
has not been previously documented in any reaction-diffusion
system.

This work not only demonstrates the feasibility of generating
spiral waves in the GM reaction-diffusion model but also
highlights the potential for creating a novel class of spirals with
variable amplitude, opening avenues for further exploration in
reaction-diffusion systems. The variation of spiral wave
amplitudes in reaction-diffusion (RD) systems is a crucial
aspect of pattern formation that can have significant implica-
tions across multiple scientific domains:

5.1 Nonlinear chemical dynamics

Spiral waves are fundamental structures in RD systems, and
their amplitude variations can indicate underlying instabilities,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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mode selection, or the influence of external perturbations.
Understanding these variations helps refine theoretical models
of chemical oscillations and pattern formation, which are
essential for predicting and controlling self-organization in
synthetic and natural chemical systems.

5.2 Biological morphogenesis

Many biological processes, such as cell signaling, tissue devel-
opment, and neural activity, involve RD-based mechanisms.
Amplitude variations in spiral waves could influence how
biochemical signals propagate in systems like calcium waves in
cells, cardiac electrical waves, and embryonic development.
Recognizing these effects could improve models of morpho-
genesis and disease states (e.g., cardiac arrhythmias linked to
spiral wave instabilities).

5.3 Materials science

In electrochemical and metal co-deposition systems, spiral
waves and other RD patterns influence the deposition
morphology and material properties. Understanding amplitude
variations can provide insights into the control of surface
structures, leading to advances in material fabrication tech-
niques, corrosion prevention, and nanoscale patterning. Simi-
larly, in precipitating RD systems, controlling these variations
could allow for the design of ordered structures with specific
functionalities.

By studying the mechanisms governing amplitude variations
in spiral waves, we gain deeper insights into pattern robustness,
stability, and the interplay between reaction kinetics and
diffusion. This knowledge not only advances fundamental
science but also has potential applications in designing
controllable self-organizing systems across chemistry, biology,
and materials engineering.
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