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Palladium-catalyzed cross-coupling of gem-
difluorocyclopropanes with gem-diborylalkanes:
facile synthesis of a diverse array of gem-diboryl-
substituted fluorinated alkenesfy
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and Tian-Jun Gong (2 *2

This study introduces an efficacious palladium-catalyzed method for the regioselective and stereoselective
cross-coupling of gem-difluorinated cyclopropanes with an array of gem-diborylalkanes under mild
reaction conditions. The innovative methodology facilitates the synthesis of 2-fluoroallylic gem-
diboronic esters with exceptional Z-stereo- and chemo-selectivity. Notably, this protocol extended to
the ligand-modulated and stereoselectivity divergence cross-coupling of 1,1-difluoro-2-
vinylcyclopropane as a reaction partner. Furthermore, we explore further transformations of the

regio-

fluorinated gem-diboronates, encompassing the oxidation to form ketone and hydrogenation to

rsc.li/rsc-advances

Introduction

Organoboronates play a critical role in organic synthesis.!
Among them, gem-diborylalkanes, as a new class of organo-
boron compounds possess multiple transformable sp*-hybrid-
ized carbon units,” have gained prominence in organic
synthesis due to their stability and ready availability, serving as
versatile intermediates in organic synthesis with valuable
applications in materials science and medicinal chemistry. Over
the past two decades, significant efforts have been dedicated
towards construction and transformation of gem-diboron
compounds,® this includes transition metal-catalyzed or tran-
sition metal-free multi-borylation of readily available gem-
dihalides,* alkynes,® alkenes,® and so on.” Additionally, the
classic “lithiation-substitution” strategy provided a modular
and straightforward route to gem-bis(boronates), leveraging
readily available 1,1-diborylalkanes.® Given the important value
of gem-diborylalkanes in organic synthesis, the synthesis of
multi-functional substituted gem-diboron compounds remains
an important research topic.
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generate mono-fluorinated alkylated gem-diboronate.

On the other hand, fluorinated compounds have found
widespread applications across diverse fields, primarily due to
the introduction of fluorine moieties that significantly enhance
hydrophobicity and metabolic stability.” Recently, gem-
difluorinated cyclopropanes (gem-F,CPs)' an easily accessible
fluorinated building block,™ has undergone diverse metal-
catalyzed transformations to fluorinated functional molecules.
In 2015, Fu and co-workers pioneered a Pd-catalyzed C-C/C-F
activation ring-opening reaction of gem-F,CPs, achieving C-N,
C-0, and C-C cross-coupling reactions to produce mono-
fluorinated alkenes with high linear selectivity.”> Since this
groundbreaking work, this reaction mode has been extended to
a variety of transition metal catalysts (Pd, Ni, Rh, and Co) and
nucleophiles afford linear/branched monofluoroalkenes."® For
example, Li, Lv and co-workers reported the regioselective Pd/
NHC-catalyzed ring-opening hydrodefluorination/
defluorinative functionalization of gem-F,CPs.**»***/ Xia and
co-workers reported the Rh-catalyzed regio-switchable cross-
coupling of gem-F,CPs to afford different types of fluorinated
compounds.t*%3&13kmr - Recently, our group reported Pd-
catalysed cross-coupling of gem-F,CPs with gem-diborylalkanes
and Cu/Pd bimetallic-catalyzed three-component reaction for
synthesizing of boryl-substituted fluorinated alkenes.'* Despite
these advancements, no effective method for the synthesizing of
gem-diboryl-substituted fluorinated alkenes has been reported
until now. Herein, we demonstrate an example of palladium-
catalyzed cross-coupling of gem-difluorinated cyclopropanes
with gem-diborylalkanes using LDA as a base to produce gem-
diboryl-substituted fluorinated alkenes under mild reaction
conditions with high stereoselectivity. When 1,1-difluoro-2-
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Scheme 1 Transition metal-catalyzed cross-coupling of gem-
difluorinated cyclopropanes.

vinylcyclopropane is used as the substrate, ligand-modulated
regio- and stereoselectivity cross-coupling can be achieved.
Incorporating these versatile scaffolds with fluoroallyls, partic-
ularly considering the unique properties of fluorine atoms,
would enrich the building blocks of gem-diborylalkanes
(Scheme 1).

Results and discussion

We set out to investigate the cross-coupling reaction using 2-(2,2-
difluorocyclopropyl)naphthalene (1a) and 2,2’-(3-phenylpropane-
1,1-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) ~ (2a) as
model substrates (Table 1). Based on our prior studies, we
initially investigated the impact of phosphorus ligands and Pd
catalysts. In the presence of Pd" and LDA, the reaction produced
the target product 3a in low to moderate yields with mono-
dentate ligands (Table 1, entries 1-8). When, switching to Pd’
catalysts, such as Pd,(dba); and [{Pd(u-Br)(P’Bus)},] along with
phosphorus ligands, yields remained moderate but regiose-
lectivity decreased (entries 9, 10). Delightedly, when employing
[{Pd(u-Br)(P‘Bus)},] in the presence of LDA as the base in THF, 3a
could be obtained in good yield with perfect Z-selectivity (28 : 1 Z/
E ratio, entry 11). Subsequently, Buchwald's palladacycle pre-
catalyst controlled the ring-coupling reaction effectively,
providing reasonable yield and regioselectivity (entry 15). We also
screened a variety of organic and inorganic bases and found that
LDA was the most suitable, as other bases were incompatible in
the process (entries 12-14, see ESIT for further details). The
transformation did not conduct in the absence of LDA or palla-
dium catalyst (entries 16, 17).
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Table 1 Optimization of reaction conditions®
Bpin o
F F [Pd] (10 mol %)
X . Ph/\/\Bpin LU2mol %) Nap”™ Ph
Nap Base (x equiv) F BpinBpin
1a 2a THF, 60 °C, 24 h 38 Z/E
a,
\ "‘Bu /</—(
pu Bu. ! P.
Bu—P-Bu BF, Bup-Bu @ Bu
H By Ph_Fe Ph ©/P'BU2
Ph/§®j\Ph
Ph
L1 L2 L3
H3CO Csz
Ph
mep OO 0
Ph O
OCHj3 Cy2
L5 L6
Entry  [Pd] L Base vield® (%)  ZIE°
1 d(OTFA), L1 LDA 25 Z
2 d(OTFA), L2 LDA 30 4
3 d(OTFA), L3 LDA 35 11:1
4 d(OTFA), L4 LDA 46 9:1
5 d(OTFA), L5 LDA 65 2:1
6 Pd(OTFA), L6 LDA 61 2:1
7 d(OTFA), L7 LDA 13 —
8 Pd(OTFA), L8 LDA 10 —
9 Pd,(dba), L5 LDA 56 2:1
10 [{Pd(p-Br)(P'Bus)},] L5  LDA 72 3.5:1
11 [{pd(w-Br)(P'Bus)},] —  LDA 70 (65)° 28:1
12 [{Pd(u-Br)(P'Buz)},] —  LiO‘Bu n.r. —
13 [{Pd(n-Br)(P'Bus)},] —  LiHMDS  Trace —
14 [{Pd(u-Br)(P'Bus)},] —  LTMP 10 —
15 P'Bu;PdG-3 — LDA 55 22:1
16 [{Pd(w-Br)(P'Buy)},] — — n.r. —
17 — — LDA n.r. —

“ Standard reaction conditions: 1a (0.1 mmol), 2a (1.5 equiv.), [Pd]
(10 mol%), ligand (12 mol%), base (2 equlv) in 1.0 mL of THF at
60 °C for 24 h under Ar atmosphere. ? The yield was determined by
F NMR using triﬂuoromethylbenzene as internal standard. For
[{Pd(u-Br)(P‘Bu;)},] and P‘BusPdG-3 catalysts, 10 mol% was used.
¢ The ratio of Z/E isomer was determined by '’F NMR spectroscopy.

?vield represents isolated yield after purification by silica gel
chromatography. dba =  dibenzylideneacetone, @~ OTFA =
trifluoroacetate. LDA = lithium diisopropylamide. LIHMDS = Lithium
bis(trimethylsilyl)amide. LTMP = Lithium tetramethylpiperiddide.
Nap = 2-naphthyl.

Having established the optimal reaction conditions (as
described in Table 1, entry 11), a series of gem-F,CPs and gem-
diborylalkanes were employed to confirm the generality of the
reaction, as depicted in Scheme 2. The ring-coupling proceeded
smoothly with neutrally substituted compounds (3b-3d) and
electron-donating groups at various positions on aromatic rings
(3e, 3f), yielding products in the range of 50-85% with reason-
able to good regioselectivity. Nitrogen-containing functional
groups, such as pyridine, pyrrole, morpholine, dimethylamine
substituents, also participated in the reaction with various gem-
diborylalkanes, furnishing mono-fluorinated gem-dibor-
ylalkenes (3g-30) in good yields and regioselectivities. Other
functional groups, such as acetal (3p), pyrrolidinone (3r, 3s),

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Substrate Scope,®

standard reaction conditions: gem-F,CP 1 (0.2 mmol), gem-diborylalkanes 2 (1.5 equiv.), [{Pd(u-Br)(P‘Bus)},l

(10 mol%), LDA (0.4 mmol), in 2 mL of THF at 60 °C for 24 h under Ar atmosphere.P Results are an average of two experiments and yield
represents isolated yield after purification by silica gel chromatography, Z/E selectivity = 20 : 1 unless noted. © Oxidant by NaBOs-4H,0 (4 equiv.)

after the reaction.

were formed smoothly when gem-F,CPs reacted with gem-
diboryl derivatives, respectively. Conjugated monofluorinated
gem-diboronates (3w-3y) were synthesized using the corre-
sponding alkenyl gem-F,CPs. To our delight, alkyl-substituted
gem-F,CPs were well-tolerated and converted into 3t-3v. Addi-
tionally, the simplest gem-diborylmethane also participated in
the reaction, yielding 3z in moderate yield when using Buch-
wald's precatalysts (e.g. BrettPdG3 and ‘BuXPhosPdG3) instead

[{Pd(w-Br)(P’Bus)},]. Finally, late-stage modification of
complex molecules, such as 3-tocopherol-derived gem-F,CP, was
compatible and resulted in yields of 3aa (68%) and 3ab (75%).

© 2025 The Author(s). Published by the Royal Society of Chemistry

Furthermore, a gem-F,CP-derived canagliflozin participated
under optimized conditions, and the corresponding ketone 3ac
was formed via a further oxidation step. This approach provides
valuable methods for modifying biologically active compounds.

Subsequently, we investigated the scope of gem-F,CPs by
performing cross-coupling reactions between 1,1-difluoro-2-
vinylcyclopropane and gem-diborylalkanes, as illustrated in
Scheme 3. By adjusting the optimal conditions, we found that
the utilization of a Pd" catalyst, such as Pd(OTFA),, in combi-
nation with difference mono-dentate phosphor ligands,
enabled successful regio- and stereoselectivity divergence cross-

RSC Adv, 2025, 15, 10265-10272 | 10267
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Scheme 3 Regio- and stereoselectivities of allyl-gem-difluorinated cyclopropane.?

R S S

@ = Bpin

1: 4al5a, 18%/79%
L5 4al5a, 73%/25%

NN =
F F
4b 5b

L1: 4b/5b, 12%/85%
L5: 4b/5b, 79%/15%

L1: 4c/5¢, 16%/85%
L5: 4c/5¢, 82%/10%

Standard reaction conditions: 1,1-difluoro-2-vinyl-

cyclopropane (0.2 mmol), gem-diborylalkanes (1.5 equiv.), PA(OTFA), (10 mol%), ligand L1 or L5 (12 mol%), LDA (0.4 mmol), in 1 mL of THF at 60 °
C for 24 h under Ar atmosphere.® Results are an average of two experiments and yield represents isolated yield after purification by silica gel
chromatography, Z/E selectivity = 30 : 1 unless noted. L1 = P'Bus-HBF,, L5 = di-tert-butyl(2’-methyl-[1,1’-biphenyll-2-yl)phosphane.

coupling. We examined the coupling of 1,1-difluoro-2-
vinylcyclopropane with phenylpropane gem-diboronates (see
ESI} for optimal conditions). For instance, using ligand L5 led
to smooth ring-opening and the formation of 4a with high
stereoselectivity. Interestingly, a flipped ratio products (4a/5a)

Wittig reaction

difluorocyclopropanation

was observed when P‘Bus-HBF, (L1) was used as the ligand.
This trend also proved compatible with other gem-dibor-
ylalkanes, yielding the corresponding compounds (4b, 4c, 5b,
5¢) under mild conditions. This represents the first regionally
selectively controlled cross-coupling reaction involving 1,1-

No cat. [Pd]
W F BpinBpin

Bpin
Cond ti
e o - Bpin 6a, 80%, (E/Z=1:5)

Borylation
F
F
Wittig reaction
difluorocyclopropanation
cat. [Pd] N

Reduction

Borylation

Bpin
mm

F BpinBpin

6b, 57%, (E/ Z=1:8)

Scheme 4 Easy access C—C coupling reaction toward gem-diborylfluorinated alkenes.? Isolated yield for 0.2 mmol scale reaction.
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difluoro-2-vinylcyclopropane, thereby broadening the type of
difluorocyclopropane ring-opening coupling reaction.

Gem-diborylalkanes and gem-difluorocyclopropanes are well-
known compounds that can be easily prepared in the laboratory
using readily available substrates. Phenylpropanal and cinna-
maldehyde, which are biomass-derived feedstocks, can be
utilized to synthesize the corresponding gem-F,CPs and gem-
diborylalkanes. Utilizing our developed method, we achieved
the straightforward synthesis of 6a and 6b under optimized
conditions, yielding the target products in 80% yield and 57%
yield, respectively, as illustrated in Scheme 4.

To demonstrate the utility of our cross-coupling method, we
performed a gram-scale synthesis of 3¢ under standard condi-
tions, resulting in a high yield of 3¢ (4.30 g, 85% yield).
Furthermore, we explored the potential applications of mono-
fluoroalkene diboronates as a versatile building block.
Notably, 3c was successfully oxidized by NaBO3-4H,O to yield
the corresponding ketone 7 in moderate yield. Additionally, the

F
/<i/F . Bpin{\( cat. Pd Napw
—_—
Nap Bpin LDA F BpinBpin
1a 2 3c, 85%

(10 mmol scale)

Pd/ C |Hydrogenation NaBO3ze4H,0 Oxidation
Napw NBPW
F BpinBpin F (0]

8, 49% 7, 43%

Scheme 5 Gram-scale synthesis and transformation of mono-fluo-
roalkene diboronates.? For preparation of 3c, isolated yield for
10 mmol scale reaction; isolated yield for final product of oxidation and
hydrogenation reactions were 0.1 mmol scale reaction.

R F
R1/WR2 /K
F BpinBpin Pd(0)L R

RZB in \
L kP
Pld Bpin FF
R1/Y R4
mF Ed
|

Bpin
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FI’dL F/
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F
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Bpin

Scheme 6 Proposed reaction mechanism.
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hydrogenation reaction was carried out to produce mono-
fluoroalkane gem-diboronate 8 (Scheme 5).

The proposed reaction pathway for this strategy is elucidated
based on prior studies, as depicted in Scheme 6. Initially, the
Pd(0) catalyst interacts readily with gem-difluorinated cyclo-
propanes, leading to the formation of the four-membered-ring
palladacycle intermediate (I). Subsequently, a B-F elimination
step facilitates the generation of the 2-fluorinated Pd r-allyl
complex (II). This complex then undergoes transmetalation
with the in situ generated gem-diborylalkyl-lithium interme-
diate, leading to the formation of intermediate (III). Finally,
a C-C bond elimination assembles the target products, while
the Pd catalyst is released for further transformation.

Conclusions

In conclusion, the study demonstrates an instance of Pd-
catalyzed ring-opening cross-coupling between gem-F,CPs and
gem-diborylalkanes to produce gem-diboryl-substituted fluori-
nated alkenes. This reaction proceeds under mild conditions
with LDA as the base and exhibits exceptional compatibility
with diverse functional groups. Ligand-controlled regio- and
stereoselective cross-coupling of 1,1-difluoro-2-
vinylcyclopropane can be achieved. This achievement
broadens the scope of C-C coupling reactions involving gem-
F,CPs and gem-diborylalkanes, providing an efficient synthetic
route to diverse gem-diboronate analogs. Ongoing research
focuses on addressing remaining challenges in C-C coupling
reactions to further advance this area of work.
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